Abstract

We present an advanced numerical formulation to calculate the optical properties of 3D nanoparticles (single or coupled) of arbitrary shape and lack of symmetry. The method is based on the (formally exact) surface integral equation formulation, implemented for parametric surfaces describing particles with arbitrary shape through a unified treatment (Gielis’ formula). Extinction, scattering, and absorption spectra of a variety of metal nanoparticles are shown, thus determining rigorously the localised surface-plasmon resonances of nanocubes, nanostars, and nanodimers. Far-field and near-field patterns for such resonances are also calculated, revealing their nature. The flexibility and reliability of the formulation makes it specially suitable for complex scattering problems in Nano-Optics & Plasmonics.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, and Y. Xia, “Chemical synthesis of novel plasmonic nanoparticles,” Annu. Rev. Phys. Chem. 60, 167–92 (2009).
    [CrossRef]
  2. T. R. Jensen, G. C. Schatz, and R. P. V. Duyne, “Nanosphere lithography: surface plasmon resonance spectrum of a periodic array of silver nanoparticles by ultraviolet-visible extinction spectroscopy and electrodynamic modeling,” J. Phys. Chem. B 103, 2394–2401 (1999).
    [CrossRef]
  3. A. Ono, J. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95, 267407 (2005).
    [CrossRef]
  4. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
    [CrossRef] [PubMed]
  5. V. Giannini, A. Fernandez-Dominguez, Y. Sonnefraud, T. Roschuk, R. Fernandez-García, and S. A. Maier, “Controlling light localization and light–matter interactions with nanoplasmonics,” Small 6, 2498–2507 (2010).
    [CrossRef] [PubMed]
  6. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
    [CrossRef]
  7. J. A. Sánchez-Gil and J. V. García-Ramos, “Local and average electromagnetic enhancement in surface-enhanced Raman scattering from self-affine fractal metal substrates with nanoscale irregularities,” Chem. Phys. Lett. 367, 361–366 (2003).
    [CrossRef]
  8. E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, Al, Ga, In, Zn, and Cd,” J. Phys. C 91, 634–643 (1987).
  9. H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface- enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
    [CrossRef]
  10. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, and B. Hecht, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
    [CrossRef] [PubMed]
  11. J. J. Greffet, “Nanoantennas for light emission,” Science 308, 1561–1563 (2005).
    [CrossRef] [PubMed]
  12. O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7, 2871–2875 (2007).
    [CrossRef] [PubMed]
  13. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. V. Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33 (2007).
    [CrossRef] [PubMed]
  14. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
    [CrossRef]
  15. W. L. Barnes, “Comparing experiment and theory in plasmonics,” J. Opt. A, Pure Appl. Opt. 11, 114002 (2009).
    [CrossRef]
  16. K. S. Yee, “Numerical Solution of initial value problems of Maxwells equations,” IEEE Trans. Antenn. Propag. 14, 302–307 (1966).
    [CrossRef]
  17. R. Clough, “The finite element method after twenty-five years: a personal view,” Comput. Struct. 12, 361–370 (1980).
    [CrossRef]
  18. C. Girard and A. Dereux, “Near-field optics theories,” Rep. Progr. Phys. 59, 657 (1996).
    [CrossRef]
  19. B. T. Draine and P. J. Flatau, “Discrete-Dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491 (1994).
    [CrossRef]
  20. M. I. Mishchenko, N. T. Zakharova, G. Videen, N. G. Khlebtsov, and T. Wriedt, “Comprehensive T-matrix reference database: a 2007–2009 update,” J. Quant. Spectrosc. Radiat. Tranfer. 111, 650–658 (2010).
    [CrossRef]
  21. V. Myroshnychenko, E. Carbó-Argibay, I. Pastoriza-Santos, J. Pérez-Juste, L. M. Liz-Marzán, and F. García de Abajo, “Modeling the optical response of highly faceted metal nanoparticles with a fully 3D boundary element method,” Adv. Mater. 20, 4288–4293 (2008).
    [CrossRef]
  22. A. A. Maradudin, T. R. Michel, A. Mcgurn, and E. R. Mendez, “Enhanced backscattering of light from a random grating,” Ann. Phys. 203, 255–307 (1990).
    [CrossRef]
  23. J. A. Sanchez-Gil and M. Nieto-Vesperinas, “Light scattering from random rough dielectric surfaces,” J. Opt. Soc. Am A 8, 1270 (1991).
    [CrossRef]
  24. S. Rao, D. Wilton, and A. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antenn. Propag. 30, 409–418 (1982).
    [CrossRef]
  25. A. M. Kern and O. J. F. Martin, “Surface integral formulation for 3D simulations of plasmonics and high permittivity nanostructures,” J. Opt. Soc. Am. A 26, 732–740 (2009).
    [CrossRef]
  26. P. Tran and A. Maradudin, “The scattering of electromagnetic waves from two-dimensional randomly rough perfectly conducting surfaces: the full angular intensity distribution,” Opt. Commun. 110, 269–273 (1994).
    [CrossRef]
  27. K. Pak, L. Tsang, and J. Johnson, “Numerical simulations and backscattering enhancement of electromagnetic waves from two-dimensional dielectric random rough surfaces with the sparse-matrix canonical grid method,” J. Opt. Soc. Am. A 14, 1515 (1997).
    [CrossRef]
  28. I. Simonsen, A. A. Maradudin, and T. A. Leskova, “The scattering of electromagnetic waves from two-dimensional randomly rough perfectly conducting surfaces: the full angular intensity distribution,” Phys. Rev. A 81, 013,806 (2009).
  29. I. Simonsen, A. A. Maradudin, and T. A. Leskova, “Scattering of Electromagnetic Waves from Two-Dimensional Randomly Rough Penetrable Surfaces,” Phys. Rev. Lett. 104, 223,904 (2010).
    [CrossRef] [PubMed]
  30. C. I. Valencia, E. R. Méndez, and B. S. Mendoza, “Second-harmonic generation in the scattering of light by two dimensional nanoparticles,” J. Opt. Soc. Am. B 20, 2150–2161 (2003).
    [CrossRef]
  31. V. Giannini and J. A. Sánchez-Gil, “Calculations of light scattering from isolated and interacting metallic nanowires of arbitrary cross section by means of Green’s theorem surface integral equations in parametric form,” J. Opt. Soc. Am. A 24, 2822 (2007).
    [CrossRef]
  32. U. Hohenester and J. Krenn, “Surface plasmon resonances of single and coupled metallic nanoparticles: a boundary integral method approach,” Phys. Rev. B 72, 1–9 (2005).
    [CrossRef]
  33. J. Jung and T. Sodergaard, “Greens function surface integral equation method for theoretical analysis of scatterers close to a metal interface,” Phys. Rev. B 77, 245310 (2008).
    [CrossRef]
  34. P. I. Geshev, U. Fischer, and H. Fuchs, “Calculation of tip enhanced Raman scattering caused by nanoparticle plasmons acting on a molecule placed near a metallic film,” Phys. Rev. B 81, 125,441 (2010).
    [CrossRef]
  35. J. Gielis, “A generic geometric transformation that unifies a wide range of natural and abstract shapes,” Am. J. Bot. 90, 333–338 (2003).
    [CrossRef] [PubMed]
  36. J. Stratton and L. Chu, “Diffraction theory of electromagnetic waves,” Phys. Rev. 56, 99–107 (1939).
    [CrossRef]
  37. M. Born and E. Wolf, Principles of Optics , 6th ed. (Pergamon, 1980).
  38. H. Ying Yao and Y. Bing Gan, “Regularization of the combined field integral equation on parametric surface for EM scattering problems,” Electromagnetics 26, 423–438 (2006).
    [CrossRef]
  39. P. Bourke, “SuperShape in 3D,” URL http://local.wasp.uwa.edu.au/~{}pbourke/geometry/supershape3d/ .
  40. H. Van De Hulst, Light Scattering by Small Particles , 1st ed. (Dover, 1981).
  41. P. B. Johnson and R. W. Christie, “Optical constants of nobel metals,” Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  42. S. Y. Lee, L. Hung, G. S. Lang, J. E. Cornett, I. D. Mayergoyz, and O. Rabin, “Dispersion in the SERS enhancement with silver nanocube dimers,” ACS Nano 4, 5763–5772 (2010).
    [CrossRef] [PubMed]
  43. A. L. González and C. Noguez, “Optical properties of silver nanoparticles,” Phys. Stat. Solidi C 4, 4118–4126 (2007).
    [CrossRef]
  44. V. Giannini, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Surface plasmon resonances of metallic nanostars/nanoflowers for surface-enhanced raman scattering,” Plasmonics 5, 99–104 (2010).
    [CrossRef]
  45. P. Senthil Kumar, I. Pastoriza-Santos, B. Rodríguez-González, F. Javier García de Abajo, and L. M. Liz-Marzán, “High-yield synthesis and optical response of gold nanostars,” Nanotechnology 19, 015606 (2008).
    [CrossRef] [PubMed]
  46. E. R. Encina and E. A. Coronado, “Plasmon coupling in silver nanosphere pairs,” J Chem. Phys. C 114, 3918–3923 (2010).
    [CrossRef]
  47. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of Silicon nanoparticles in the infrared,” Opt. Express 19, 4815–4826 (2011).
    [CrossRef] [PubMed]

2011

2010

E. R. Encina and E. A. Coronado, “Plasmon coupling in silver nanosphere pairs,” J Chem. Phys. C 114, 3918–3923 (2010).
[CrossRef]

V. Giannini, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Surface plasmon resonances of metallic nanostars/nanoflowers for surface-enhanced raman scattering,” Plasmonics 5, 99–104 (2010).
[CrossRef]

S. Y. Lee, L. Hung, G. S. Lang, J. E. Cornett, I. D. Mayergoyz, and O. Rabin, “Dispersion in the SERS enhancement with silver nanocube dimers,” ACS Nano 4, 5763–5772 (2010).
[CrossRef] [PubMed]

V. Giannini, A. Fernandez-Dominguez, Y. Sonnefraud, T. Roschuk, R. Fernandez-García, and S. A. Maier, “Controlling light localization and light–matter interactions with nanoplasmonics,” Small 6, 2498–2507 (2010).
[CrossRef] [PubMed]

M. I. Mishchenko, N. T. Zakharova, G. Videen, N. G. Khlebtsov, and T. Wriedt, “Comprehensive T-matrix reference database: a 2007–2009 update,” J. Quant. Spectrosc. Radiat. Tranfer. 111, 650–658 (2010).
[CrossRef]

I. Simonsen, A. A. Maradudin, and T. A. Leskova, “Scattering of Electromagnetic Waves from Two-Dimensional Randomly Rough Penetrable Surfaces,” Phys. Rev. Lett. 104, 223,904 (2010).
[CrossRef] [PubMed]

P. I. Geshev, U. Fischer, and H. Fuchs, “Calculation of tip enhanced Raman scattering caused by nanoparticle plasmons acting on a molecule placed near a metallic film,” Phys. Rev. B 81, 125,441 (2010).
[CrossRef]

2009

I. Simonsen, A. A. Maradudin, and T. A. Leskova, “The scattering of electromagnetic waves from two-dimensional randomly rough perfectly conducting surfaces: the full angular intensity distribution,” Phys. Rev. A 81, 013,806 (2009).

A. M. Kern and O. J. F. Martin, “Surface integral formulation for 3D simulations of plasmonics and high permittivity nanostructures,” J. Opt. Soc. Am. A 26, 732–740 (2009).
[CrossRef]

X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, and Y. Xia, “Chemical synthesis of novel plasmonic nanoparticles,” Annu. Rev. Phys. Chem. 60, 167–92 (2009).
[CrossRef]

W. L. Barnes, “Comparing experiment and theory in plasmonics,” J. Opt. A, Pure Appl. Opt. 11, 114002 (2009).
[CrossRef]

2008

V. Myroshnychenko, E. Carbó-Argibay, I. Pastoriza-Santos, J. Pérez-Juste, L. M. Liz-Marzán, and F. García de Abajo, “Modeling the optical response of highly faceted metal nanoparticles with a fully 3D boundary element method,” Adv. Mater. 20, 4288–4293 (2008).
[CrossRef]

J. Jung and T. Sodergaard, “Greens function surface integral equation method for theoretical analysis of scatterers close to a metal interface,” Phys. Rev. B 77, 245310 (2008).
[CrossRef]

P. Senthil Kumar, I. Pastoriza-Santos, B. Rodríguez-González, F. Javier García de Abajo, and L. M. Liz-Marzán, “High-yield synthesis and optical response of gold nanostars,” Nanotechnology 19, 015606 (2008).
[CrossRef] [PubMed]

2007

A. L. González and C. Noguez, “Optical properties of silver nanoparticles,” Phys. Stat. Solidi C 4, 4118–4126 (2007).
[CrossRef]

V. Giannini and J. A. Sánchez-Gil, “Calculations of light scattering from isolated and interacting metallic nanowires of arbitrary cross section by means of Green’s theorem surface integral equations in parametric form,” J. Opt. Soc. Am. A 24, 2822 (2007).
[CrossRef]

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7, 2871–2875 (2007).
[CrossRef] [PubMed]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. V. Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33 (2007).
[CrossRef] [PubMed]

2006

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

H. Ying Yao and Y. Bing Gan, “Regularization of the combined field integral equation on parametric surface for EM scattering problems,” Electromagnetics 26, 423–438 (2006).
[CrossRef]

2005

A. Ono, J. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95, 267407 (2005).
[CrossRef]

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, and B. Hecht, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

J. J. Greffet, “Nanoantennas for light emission,” Science 308, 1561–1563 (2005).
[CrossRef] [PubMed]

U. Hohenester and J. Krenn, “Surface plasmon resonances of single and coupled metallic nanoparticles: a boundary integral method approach,” Phys. Rev. B 72, 1–9 (2005).
[CrossRef]

2003

C. I. Valencia, E. R. Méndez, and B. S. Mendoza, “Second-harmonic generation in the scattering of light by two dimensional nanoparticles,” J. Opt. Soc. Am. B 20, 2150–2161 (2003).
[CrossRef]

J. Gielis, “A generic geometric transformation that unifies a wide range of natural and abstract shapes,” Am. J. Bot. 90, 333–338 (2003).
[CrossRef] [PubMed]

J. A. Sánchez-Gil and J. V. García-Ramos, “Local and average electromagnetic enhancement in surface-enhanced Raman scattering from self-affine fractal metal substrates with nanoscale irregularities,” Chem. Phys. Lett. 367, 361–366 (2003).
[CrossRef]

2000

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface- enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[CrossRef]

1999

T. R. Jensen, G. C. Schatz, and R. P. V. Duyne, “Nanosphere lithography: surface plasmon resonance spectrum of a periodic array of silver nanoparticles by ultraviolet-visible extinction spectroscopy and electrodynamic modeling,” J. Phys. Chem. B 103, 2394–2401 (1999).
[CrossRef]

1997

1996

C. Girard and A. Dereux, “Near-field optics theories,” Rep. Progr. Phys. 59, 657 (1996).
[CrossRef]

1994

B. T. Draine and P. J. Flatau, “Discrete-Dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491 (1994).
[CrossRef]

P. Tran and A. Maradudin, “The scattering of electromagnetic waves from two-dimensional randomly rough perfectly conducting surfaces: the full angular intensity distribution,” Opt. Commun. 110, 269–273 (1994).
[CrossRef]

1991

J. A. Sanchez-Gil and M. Nieto-Vesperinas, “Light scattering from random rough dielectric surfaces,” J. Opt. Soc. Am A 8, 1270 (1991).
[CrossRef]

1990

A. A. Maradudin, T. R. Michel, A. Mcgurn, and E. R. Mendez, “Enhanced backscattering of light from a random grating,” Ann. Phys. 203, 255–307 (1990).
[CrossRef]

1987

E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, Al, Ga, In, Zn, and Cd,” J. Phys. C 91, 634–643 (1987).

1982

S. Rao, D. Wilton, and A. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antenn. Propag. 30, 409–418 (1982).
[CrossRef]

1980

R. Clough, “The finite element method after twenty-five years: a personal view,” Comput. Struct. 12, 361–370 (1980).
[CrossRef]

1972

P. B. Johnson and R. W. Christie, “Optical constants of nobel metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

1966

K. S. Yee, “Numerical Solution of initial value problems of Maxwells equations,” IEEE Trans. Antenn. Propag. 14, 302–307 (1966).
[CrossRef]

1939

J. Stratton and L. Chu, “Diffraction theory of electromagnetic waves,” Phys. Rev. 56, 99–107 (1939).
[CrossRef]

Aizpurua, J.

Apell, P.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface- enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[CrossRef]

Barnes, W. L.

W. L. Barnes, “Comparing experiment and theory in plasmonics,” J. Opt. A, Pure Appl. Opt. 11, 114002 (2009).
[CrossRef]

Bing Gan, Y.

H. Ying Yao and Y. Bing Gan, “Regularization of the combined field integral equation on parametric surface for EM scattering problems,” Electromagnetics 26, 423–438 (2006).
[CrossRef]

Bohren, C.

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics , 6th ed. (Pergamon, 1980).

Carbó-Argibay, E.

V. Myroshnychenko, E. Carbó-Argibay, I. Pastoriza-Santos, J. Pérez-Juste, L. M. Liz-Marzán, and F. García de Abajo, “Modeling the optical response of highly faceted metal nanoparticles with a fully 3D boundary element method,” Adv. Mater. 20, 4288–4293 (2008).
[CrossRef]

Chantada, L.

Christie, R. W.

P. B. Johnson and R. W. Christie, “Optical constants of nobel metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Chu, L.

J. Stratton and L. Chu, “Diffraction theory of electromagnetic waves,” Phys. Rev. 56, 99–107 (1939).
[CrossRef]

Clough, R.

R. Clough, “The finite element method after twenty-five years: a personal view,” Comput. Struct. 12, 361–370 (1980).
[CrossRef]

Cornett, J. E.

S. Y. Lee, L. Hung, G. S. Lang, J. E. Cornett, I. D. Mayergoyz, and O. Rabin, “Dispersion in the SERS enhancement with silver nanocube dimers,” ACS Nano 4, 5763–5772 (2010).
[CrossRef] [PubMed]

Coronado, E. A.

E. R. Encina and E. A. Coronado, “Plasmon coupling in silver nanosphere pairs,” J Chem. Phys. C 114, 3918–3923 (2010).
[CrossRef]

Dereux, A.

C. Girard and A. Dereux, “Near-field optics theories,” Rep. Progr. Phys. 59, 657 (1996).
[CrossRef]

Draine, B. T.

Duyne, R. P. V.

T. R. Jensen, G. C. Schatz, and R. P. V. Duyne, “Nanosphere lithography: surface plasmon resonance spectrum of a periodic array of silver nanoparticles by ultraviolet-visible extinction spectroscopy and electrodynamic modeling,” J. Phys. Chem. B 103, 2394–2401 (1999).
[CrossRef]

Eisler, H. J.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, and B. Hecht, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

Encina, E. R.

E. R. Encina and E. A. Coronado, “Plasmon coupling in silver nanosphere pairs,” J Chem. Phys. C 114, 3918–3923 (2010).
[CrossRef]

Fernandez-Dominguez, A.

V. Giannini, A. Fernandez-Dominguez, Y. Sonnefraud, T. Roschuk, R. Fernandez-García, and S. A. Maier, “Controlling light localization and light–matter interactions with nanoplasmonics,” Small 6, 2498–2507 (2010).
[CrossRef] [PubMed]

Fernandez-García, R.

V. Giannini, A. Fernandez-Dominguez, Y. Sonnefraud, T. Roschuk, R. Fernandez-García, and S. A. Maier, “Controlling light localization and light–matter interactions with nanoplasmonics,” Small 6, 2498–2507 (2010).
[CrossRef] [PubMed]

Fischer, U.

P. I. Geshev, U. Fischer, and H. Fuchs, “Calculation of tip enhanced Raman scattering caused by nanoparticle plasmons acting on a molecule placed near a metallic film,” Phys. Rev. B 81, 125,441 (2010).
[CrossRef]

Flatau, P. J.

Froufe-Pérez, L. S.

Fuchs, H.

P. I. Geshev, U. Fischer, and H. Fuchs, “Calculation of tip enhanced Raman scattering caused by nanoparticle plasmons acting on a molecule placed near a metallic film,” Phys. Rev. B 81, 125,441 (2010).
[CrossRef]

García de Abajo, F.

V. Myroshnychenko, E. Carbó-Argibay, I. Pastoriza-Santos, J. Pérez-Juste, L. M. Liz-Marzán, and F. García de Abajo, “Modeling the optical response of highly faceted metal nanoparticles with a fully 3D boundary element method,” Adv. Mater. 20, 4288–4293 (2008).
[CrossRef]

García-Etxarri, A.

García-Ramos, J. V.

J. A. Sánchez-Gil and J. V. García-Ramos, “Local and average electromagnetic enhancement in surface-enhanced Raman scattering from self-affine fractal metal substrates with nanoscale irregularities,” Chem. Phys. Lett. 367, 361–366 (2003).
[CrossRef]

Geshev, P. I.

P. I. Geshev, U. Fischer, and H. Fuchs, “Calculation of tip enhanced Raman scattering caused by nanoparticle plasmons acting on a molecule placed near a metallic film,” Phys. Rev. B 81, 125,441 (2010).
[CrossRef]

Giannini, V.

V. Giannini, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Surface plasmon resonances of metallic nanostars/nanoflowers for surface-enhanced raman scattering,” Plasmonics 5, 99–104 (2010).
[CrossRef]

V. Giannini, A. Fernandez-Dominguez, Y. Sonnefraud, T. Roschuk, R. Fernandez-García, and S. A. Maier, “Controlling light localization and light–matter interactions with nanoplasmonics,” Small 6, 2498–2507 (2010).
[CrossRef] [PubMed]

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7, 2871–2875 (2007).
[CrossRef] [PubMed]

V. Giannini and J. A. Sánchez-Gil, “Calculations of light scattering from isolated and interacting metallic nanowires of arbitrary cross section by means of Green’s theorem surface integral equations in parametric form,” J. Opt. Soc. Am. A 24, 2822 (2007).
[CrossRef]

Gielis, J.

J. Gielis, “A generic geometric transformation that unifies a wide range of natural and abstract shapes,” Am. J. Bot. 90, 333–338 (2003).
[CrossRef] [PubMed]

Girard, C.

C. Girard and A. Dereux, “Near-field optics theories,” Rep. Progr. Phys. 59, 657 (1996).
[CrossRef]

Glisson, A.

S. Rao, D. Wilton, and A. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antenn. Propag. 30, 409–418 (1982).
[CrossRef]

Gómez Rivas, J.

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7, 2871–2875 (2007).
[CrossRef] [PubMed]

Gómez-Medina, R.

González, A. L.

A. L. González and C. Noguez, “Optical properties of silver nanoparticles,” Phys. Stat. Solidi C 4, 4118–4126 (2007).
[CrossRef]

Greffet, J. J.

J. J. Greffet, “Nanoantennas for light emission,” Science 308, 1561–1563 (2005).
[CrossRef] [PubMed]

Hecht, B.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, and B. Hecht, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

Hohenester, U.

U. Hohenester and J. Krenn, “Surface plasmon resonances of single and coupled metallic nanoparticles: a boundary integral method approach,” Phys. Rev. B 72, 1–9 (2005).
[CrossRef]

Huffman, D.

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
[CrossRef]

Hulst, N. F. V.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. V. Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33 (2007).
[CrossRef] [PubMed]

Hung, L.

S. Y. Lee, L. Hung, G. S. Lang, J. E. Cornett, I. D. Mayergoyz, and O. Rabin, “Dispersion in the SERS enhancement with silver nanocube dimers,” ACS Nano 4, 5763–5772 (2010).
[CrossRef] [PubMed]

Javier García de Abajo, F.

P. Senthil Kumar, I. Pastoriza-Santos, B. Rodríguez-González, F. Javier García de Abajo, and L. M. Liz-Marzán, “High-yield synthesis and optical response of gold nanostars,” Nanotechnology 19, 015606 (2008).
[CrossRef] [PubMed]

Jensen, T. R.

T. R. Jensen, G. C. Schatz, and R. P. V. Duyne, “Nanosphere lithography: surface plasmon resonance spectrum of a periodic array of silver nanoparticles by ultraviolet-visible extinction spectroscopy and electrodynamic modeling,” J. Phys. Chem. B 103, 2394–2401 (1999).
[CrossRef]

Johnson, J.

Johnson, P. B.

P. B. Johnson and R. W. Christie, “Optical constants of nobel metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Jung, J.

J. Jung and T. Sodergaard, “Greens function surface integral equation method for theoretical analysis of scatterers close to a metal interface,” Phys. Rev. B 77, 245310 (2008).
[CrossRef]

Käll, M.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface- enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[CrossRef]

Kato, J.

A. Ono, J. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95, 267407 (2005).
[CrossRef]

Kawata, S.

A. Ono, J. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95, 267407 (2005).
[CrossRef]

Kern, A. M.

Khlebtsov, N. G.

M. I. Mishchenko, N. T. Zakharova, G. Videen, N. G. Khlebtsov, and T. Wriedt, “Comprehensive T-matrix reference database: a 2007–2009 update,” J. Quant. Spectrosc. Radiat. Tranfer. 111, 650–658 (2010).
[CrossRef]

Krenn, J.

U. Hohenester and J. Krenn, “Surface plasmon resonances of single and coupled metallic nanoparticles: a boundary integral method approach,” Phys. Rev. B 72, 1–9 (2005).
[CrossRef]

Kuipers, L.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. V. Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33 (2007).
[CrossRef] [PubMed]

Lang, G. S.

S. Y. Lee, L. Hung, G. S. Lang, J. E. Cornett, I. D. Mayergoyz, and O. Rabin, “Dispersion in the SERS enhancement with silver nanocube dimers,” ACS Nano 4, 5763–5772 (2010).
[CrossRef] [PubMed]

Lee, S. Y.

S. Y. Lee, L. Hung, G. S. Lang, J. E. Cornett, I. D. Mayergoyz, and O. Rabin, “Dispersion in the SERS enhancement with silver nanocube dimers,” ACS Nano 4, 5763–5772 (2010).
[CrossRef] [PubMed]

Leskova, T. A.

I. Simonsen, A. A. Maradudin, and T. A. Leskova, “Scattering of Electromagnetic Waves from Two-Dimensional Randomly Rough Penetrable Surfaces,” Phys. Rev. Lett. 104, 223,904 (2010).
[CrossRef] [PubMed]

I. Simonsen, A. A. Maradudin, and T. A. Leskova, “The scattering of electromagnetic waves from two-dimensional randomly rough perfectly conducting surfaces: the full angular intensity distribution,” Phys. Rev. A 81, 013,806 (2009).

Liz-Marzán, L. M.

V. Myroshnychenko, E. Carbó-Argibay, I. Pastoriza-Santos, J. Pérez-Juste, L. M. Liz-Marzán, and F. García de Abajo, “Modeling the optical response of highly faceted metal nanoparticles with a fully 3D boundary element method,” Adv. Mater. 20, 4288–4293 (2008).
[CrossRef]

P. Senthil Kumar, I. Pastoriza-Santos, B. Rodríguez-González, F. Javier García de Abajo, and L. M. Liz-Marzán, “High-yield synthesis and optical response of gold nanostars,” Nanotechnology 19, 015606 (2008).
[CrossRef] [PubMed]

López, C.

Lu, X.

X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, and Y. Xia, “Chemical synthesis of novel plasmonic nanoparticles,” Annu. Rev. Phys. Chem. 60, 167–92 (2009).
[CrossRef]

Maier, S. A.

V. Giannini, A. Fernandez-Dominguez, Y. Sonnefraud, T. Roschuk, R. Fernandez-García, and S. A. Maier, “Controlling light localization and light–matter interactions with nanoplasmonics,” Small 6, 2498–2507 (2010).
[CrossRef] [PubMed]

Maradudin, A.

P. Tran and A. Maradudin, “The scattering of electromagnetic waves from two-dimensional randomly rough perfectly conducting surfaces: the full angular intensity distribution,” Opt. Commun. 110, 269–273 (1994).
[CrossRef]

Maradudin, A. A.

I. Simonsen, A. A. Maradudin, and T. A. Leskova, “Scattering of Electromagnetic Waves from Two-Dimensional Randomly Rough Penetrable Surfaces,” Phys. Rev. Lett. 104, 223,904 (2010).
[CrossRef] [PubMed]

I. Simonsen, A. A. Maradudin, and T. A. Leskova, “The scattering of electromagnetic waves from two-dimensional randomly rough perfectly conducting surfaces: the full angular intensity distribution,” Phys. Rev. A 81, 013,806 (2009).

A. A. Maradudin, T. R. Michel, A. Mcgurn, and E. R. Mendez, “Enhanced backscattering of light from a random grating,” Ann. Phys. 203, 255–307 (1990).
[CrossRef]

Martin, O. J. F.

Mayergoyz, I. D.

S. Y. Lee, L. Hung, G. S. Lang, J. E. Cornett, I. D. Mayergoyz, and O. Rabin, “Dispersion in the SERS enhancement with silver nanocube dimers,” ACS Nano 4, 5763–5772 (2010).
[CrossRef] [PubMed]

Mcgurn, A.

A. A. Maradudin, T. R. Michel, A. Mcgurn, and E. R. Mendez, “Enhanced backscattering of light from a random grating,” Ann. Phys. 203, 255–307 (1990).
[CrossRef]

Mendez, E. R.

A. A. Maradudin, T. R. Michel, A. Mcgurn, and E. R. Mendez, “Enhanced backscattering of light from a random grating,” Ann. Phys. 203, 255–307 (1990).
[CrossRef]

Méndez, E. R.

Mendoza, B. S.

Michel, T. R.

A. A. Maradudin, T. R. Michel, A. Mcgurn, and E. R. Mendez, “Enhanced backscattering of light from a random grating,” Ann. Phys. 203, 255–307 (1990).
[CrossRef]

Mishchenko, M. I.

M. I. Mishchenko, N. T. Zakharova, G. Videen, N. G. Khlebtsov, and T. Wriedt, “Comprehensive T-matrix reference database: a 2007–2009 update,” J. Quant. Spectrosc. Radiat. Tranfer. 111, 650–658 (2010).
[CrossRef]

Moerland, R. J.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. V. Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33 (2007).
[CrossRef] [PubMed]

Mühlschlegel, P.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, and B. Hecht, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

Muskens, O. L.

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7, 2871–2875 (2007).
[CrossRef] [PubMed]

Myroshnychenko, V.

V. Myroshnychenko, E. Carbó-Argibay, I. Pastoriza-Santos, J. Pérez-Juste, L. M. Liz-Marzán, and F. García de Abajo, “Modeling the optical response of highly faceted metal nanoparticles with a fully 3D boundary element method,” Adv. Mater. 20, 4288–4293 (2008).
[CrossRef]

Nieto-Vesperinas, M.

Noguez, C.

A. L. González and C. Noguez, “Optical properties of silver nanoparticles,” Phys. Stat. Solidi C 4, 4118–4126 (2007).
[CrossRef]

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[CrossRef]

Ono, A.

A. Ono, J. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95, 267407 (2005).
[CrossRef]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

Pak, K.

Pastoriza-Santos, I.

P. Senthil Kumar, I. Pastoriza-Santos, B. Rodríguez-González, F. Javier García de Abajo, and L. M. Liz-Marzán, “High-yield synthesis and optical response of gold nanostars,” Nanotechnology 19, 015606 (2008).
[CrossRef] [PubMed]

V. Myroshnychenko, E. Carbó-Argibay, I. Pastoriza-Santos, J. Pérez-Juste, L. M. Liz-Marzán, and F. García de Abajo, “Modeling the optical response of highly faceted metal nanoparticles with a fully 3D boundary element method,” Adv. Mater. 20, 4288–4293 (2008).
[CrossRef]

Pérez-Juste, J.

V. Myroshnychenko, E. Carbó-Argibay, I. Pastoriza-Santos, J. Pérez-Juste, L. M. Liz-Marzán, and F. García de Abajo, “Modeling the optical response of highly faceted metal nanoparticles with a fully 3D boundary element method,” Adv. Mater. 20, 4288–4293 (2008).
[CrossRef]

Rabin, O.

S. Y. Lee, L. Hung, G. S. Lang, J. E. Cornett, I. D. Mayergoyz, and O. Rabin, “Dispersion in the SERS enhancement with silver nanocube dimers,” ACS Nano 4, 5763–5772 (2010).
[CrossRef] [PubMed]

Rao, S.

S. Rao, D. Wilton, and A. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antenn. Propag. 30, 409–418 (1982).
[CrossRef]

Rodríguez-González, B.

P. Senthil Kumar, I. Pastoriza-Santos, B. Rodríguez-González, F. Javier García de Abajo, and L. M. Liz-Marzán, “High-yield synthesis and optical response of gold nanostars,” Nanotechnology 19, 015606 (2008).
[CrossRef] [PubMed]

Rodríguez-Oliveros, R.

V. Giannini, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Surface plasmon resonances of metallic nanostars/nanoflowers for surface-enhanced raman scattering,” Plasmonics 5, 99–104 (2010).
[CrossRef]

Roschuk, T.

V. Giannini, A. Fernandez-Dominguez, Y. Sonnefraud, T. Roschuk, R. Fernandez-García, and S. A. Maier, “Controlling light localization and light–matter interactions with nanoplasmonics,” Small 6, 2498–2507 (2010).
[CrossRef] [PubMed]

Rycenga, M.

X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, and Y. Xia, “Chemical synthesis of novel plasmonic nanoparticles,” Annu. Rev. Phys. Chem. 60, 167–92 (2009).
[CrossRef]

Sáenz, J. J.

Sanchez-Gil, J. A.

J. A. Sanchez-Gil and M. Nieto-Vesperinas, “Light scattering from random rough dielectric surfaces,” J. Opt. Soc. Am A 8, 1270 (1991).
[CrossRef]

Sánchez-Gil, J. A.

V. Giannini, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Surface plasmon resonances of metallic nanostars/nanoflowers for surface-enhanced raman scattering,” Plasmonics 5, 99–104 (2010).
[CrossRef]

V. Giannini and J. A. Sánchez-Gil, “Calculations of light scattering from isolated and interacting metallic nanowires of arbitrary cross section by means of Green’s theorem surface integral equations in parametric form,” J. Opt. Soc. Am. A 24, 2822 (2007).
[CrossRef]

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7, 2871–2875 (2007).
[CrossRef] [PubMed]

J. A. Sánchez-Gil and J. V. García-Ramos, “Local and average electromagnetic enhancement in surface-enhanced Raman scattering from self-affine fractal metal substrates with nanoscale irregularities,” Chem. Phys. Lett. 367, 361–366 (2003).
[CrossRef]

Schatz, G. C.

T. R. Jensen, G. C. Schatz, and R. P. V. Duyne, “Nanosphere lithography: surface plasmon resonance spectrum of a periodic array of silver nanoparticles by ultraviolet-visible extinction spectroscopy and electrodynamic modeling,” J. Phys. Chem. B 103, 2394–2401 (1999).
[CrossRef]

E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, Al, Ga, In, Zn, and Cd,” J. Phys. C 91, 634–643 (1987).

Scheffold, F.

Segerink, F. B.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. V. Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33 (2007).
[CrossRef] [PubMed]

Senthil Kumar, P.

P. Senthil Kumar, I. Pastoriza-Santos, B. Rodríguez-González, F. Javier García de Abajo, and L. M. Liz-Marzán, “High-yield synthesis and optical response of gold nanostars,” Nanotechnology 19, 015606 (2008).
[CrossRef] [PubMed]

Simonsen, I.

I. Simonsen, A. A. Maradudin, and T. A. Leskova, “Scattering of Electromagnetic Waves from Two-Dimensional Randomly Rough Penetrable Surfaces,” Phys. Rev. Lett. 104, 223,904 (2010).
[CrossRef] [PubMed]

I. Simonsen, A. A. Maradudin, and T. A. Leskova, “The scattering of electromagnetic waves from two-dimensional randomly rough perfectly conducting surfaces: the full angular intensity distribution,” Phys. Rev. A 81, 013,806 (2009).

Skrabalak, S. E.

X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, and Y. Xia, “Chemical synthesis of novel plasmonic nanoparticles,” Annu. Rev. Phys. Chem. 60, 167–92 (2009).
[CrossRef]

Sodergaard, T.

J. Jung and T. Sodergaard, “Greens function surface integral equation method for theoretical analysis of scatterers close to a metal interface,” Phys. Rev. B 77, 245310 (2008).
[CrossRef]

Sonnefraud, Y.

V. Giannini, A. Fernandez-Dominguez, Y. Sonnefraud, T. Roschuk, R. Fernandez-García, and S. A. Maier, “Controlling light localization and light–matter interactions with nanoplasmonics,” Small 6, 2498–2507 (2010).
[CrossRef] [PubMed]

Stratton, J.

J. Stratton and L. Chu, “Diffraction theory of electromagnetic waves,” Phys. Rev. 56, 99–107 (1939).
[CrossRef]

Taminiau, T. H.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. V. Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33 (2007).
[CrossRef] [PubMed]

Tran, P.

P. Tran and A. Maradudin, “The scattering of electromagnetic waves from two-dimensional randomly rough perfectly conducting surfaces: the full angular intensity distribution,” Opt. Commun. 110, 269–273 (1994).
[CrossRef]

Tsang, L.

Valencia, C. I.

Van De Hulst, H.

H. Van De Hulst, Light Scattering by Small Particles , 1st ed. (Dover, 1981).

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[CrossRef]

Videen, G.

M. I. Mishchenko, N. T. Zakharova, G. Videen, N. G. Khlebtsov, and T. Wriedt, “Comprehensive T-matrix reference database: a 2007–2009 update,” J. Quant. Spectrosc. Radiat. Tranfer. 111, 650–658 (2010).
[CrossRef]

Wiley, B.

X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, and Y. Xia, “Chemical synthesis of novel plasmonic nanoparticles,” Annu. Rev. Phys. Chem. 60, 167–92 (2009).
[CrossRef]

Wilton, D.

S. Rao, D. Wilton, and A. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antenn. Propag. 30, 409–418 (1982).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics , 6th ed. (Pergamon, 1980).

Wriedt, T.

M. I. Mishchenko, N. T. Zakharova, G. Videen, N. G. Khlebtsov, and T. Wriedt, “Comprehensive T-matrix reference database: a 2007–2009 update,” J. Quant. Spectrosc. Radiat. Tranfer. 111, 650–658 (2010).
[CrossRef]

Xia, Y.

X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, and Y. Xia, “Chemical synthesis of novel plasmonic nanoparticles,” Annu. Rev. Phys. Chem. 60, 167–92 (2009).
[CrossRef]

Xu, H.

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface- enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[CrossRef]

Yee, K. S.

K. S. Yee, “Numerical Solution of initial value problems of Maxwells equations,” IEEE Trans. Antenn. Propag. 14, 302–307 (1966).
[CrossRef]

Ying Yao, H.

H. Ying Yao and Y. Bing Gan, “Regularization of the combined field integral equation on parametric surface for EM scattering problems,” Electromagnetics 26, 423–438 (2006).
[CrossRef]

Zakharova, N. T.

M. I. Mishchenko, N. T. Zakharova, G. Videen, N. G. Khlebtsov, and T. Wriedt, “Comprehensive T-matrix reference database: a 2007–2009 update,” J. Quant. Spectrosc. Radiat. Tranfer. 111, 650–658 (2010).
[CrossRef]

Zeman, E. J.

E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, Al, Ga, In, Zn, and Cd,” J. Phys. C 91, 634–643 (1987).

ACS Nano

S. Y. Lee, L. Hung, G. S. Lang, J. E. Cornett, I. D. Mayergoyz, and O. Rabin, “Dispersion in the SERS enhancement with silver nanocube dimers,” ACS Nano 4, 5763–5772 (2010).
[CrossRef] [PubMed]

Adv. Mater.

V. Myroshnychenko, E. Carbó-Argibay, I. Pastoriza-Santos, J. Pérez-Juste, L. M. Liz-Marzán, and F. García de Abajo, “Modeling the optical response of highly faceted metal nanoparticles with a fully 3D boundary element method,” Adv. Mater. 20, 4288–4293 (2008).
[CrossRef]

Am. J. Bot.

J. Gielis, “A generic geometric transformation that unifies a wide range of natural and abstract shapes,” Am. J. Bot. 90, 333–338 (2003).
[CrossRef] [PubMed]

Ann. Phys.

A. A. Maradudin, T. R. Michel, A. Mcgurn, and E. R. Mendez, “Enhanced backscattering of light from a random grating,” Ann. Phys. 203, 255–307 (1990).
[CrossRef]

Annu. Rev. Phys. Chem.

X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, and Y. Xia, “Chemical synthesis of novel plasmonic nanoparticles,” Annu. Rev. Phys. Chem. 60, 167–92 (2009).
[CrossRef]

Chem. Phys. Lett.

J. A. Sánchez-Gil and J. V. García-Ramos, “Local and average electromagnetic enhancement in surface-enhanced Raman scattering from self-affine fractal metal substrates with nanoscale irregularities,” Chem. Phys. Lett. 367, 361–366 (2003).
[CrossRef]

Comput. Struct.

R. Clough, “The finite element method after twenty-five years: a personal view,” Comput. Struct. 12, 361–370 (1980).
[CrossRef]

Electromagnetics

H. Ying Yao and Y. Bing Gan, “Regularization of the combined field integral equation on parametric surface for EM scattering problems,” Electromagnetics 26, 423–438 (2006).
[CrossRef]

IEEE Trans. Antenn. Propag.

S. Rao, D. Wilton, and A. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antenn. Propag. 30, 409–418 (1982).
[CrossRef]

K. S. Yee, “Numerical Solution of initial value problems of Maxwells equations,” IEEE Trans. Antenn. Propag. 14, 302–307 (1966).
[CrossRef]

J Chem. Phys. C

E. R. Encina and E. A. Coronado, “Plasmon coupling in silver nanosphere pairs,” J Chem. Phys. C 114, 3918–3923 (2010).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

W. L. Barnes, “Comparing experiment and theory in plasmonics,” J. Opt. A, Pure Appl. Opt. 11, 114002 (2009).
[CrossRef]

J. Opt. Soc. Am A

J. A. Sanchez-Gil and M. Nieto-Vesperinas, “Light scattering from random rough dielectric surfaces,” J. Opt. Soc. Am A 8, 1270 (1991).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

J. Phys. C

E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, Al, Ga, In, Zn, and Cd,” J. Phys. C 91, 634–643 (1987).

J. Phys. Chem. B

T. R. Jensen, G. C. Schatz, and R. P. V. Duyne, “Nanosphere lithography: surface plasmon resonance spectrum of a periodic array of silver nanoparticles by ultraviolet-visible extinction spectroscopy and electrodynamic modeling,” J. Phys. Chem. B 103, 2394–2401 (1999).
[CrossRef]

J. Quant. Spectrosc. Radiat. Tranfer.

M. I. Mishchenko, N. T. Zakharova, G. Videen, N. G. Khlebtsov, and T. Wriedt, “Comprehensive T-matrix reference database: a 2007–2009 update,” J. Quant. Spectrosc. Radiat. Tranfer. 111, 650–658 (2010).
[CrossRef]

Nano Lett.

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7, 2871–2875 (2007).
[CrossRef] [PubMed]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. V. Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33 (2007).
[CrossRef] [PubMed]

Nanotechnology

P. Senthil Kumar, I. Pastoriza-Santos, B. Rodríguez-González, F. Javier García de Abajo, and L. M. Liz-Marzán, “High-yield synthesis and optical response of gold nanostars,” Nanotechnology 19, 015606 (2008).
[CrossRef] [PubMed]

Nat. Photonics

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[CrossRef]

Opt. Commun.

P. Tran and A. Maradudin, “The scattering of electromagnetic waves from two-dimensional randomly rough perfectly conducting surfaces: the full angular intensity distribution,” Opt. Commun. 110, 269–273 (1994).
[CrossRef]

Opt. Express

Phys. Rev.

J. Stratton and L. Chu, “Diffraction theory of electromagnetic waves,” Phys. Rev. 56, 99–107 (1939).
[CrossRef]

Phys. Rev. A

I. Simonsen, A. A. Maradudin, and T. A. Leskova, “The scattering of electromagnetic waves from two-dimensional randomly rough perfectly conducting surfaces: the full angular intensity distribution,” Phys. Rev. A 81, 013,806 (2009).

Phys. Rev. B

U. Hohenester and J. Krenn, “Surface plasmon resonances of single and coupled metallic nanoparticles: a boundary integral method approach,” Phys. Rev. B 72, 1–9 (2005).
[CrossRef]

J. Jung and T. Sodergaard, “Greens function surface integral equation method for theoretical analysis of scatterers close to a metal interface,” Phys. Rev. B 77, 245310 (2008).
[CrossRef]

P. I. Geshev, U. Fischer, and H. Fuchs, “Calculation of tip enhanced Raman scattering caused by nanoparticle plasmons acting on a molecule placed near a metallic film,” Phys. Rev. B 81, 125,441 (2010).
[CrossRef]

P. B. Johnson and R. W. Christie, “Optical constants of nobel metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Phys. Rev. E

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface- enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000).
[CrossRef]

Phys. Rev. Lett.

A. Ono, J. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95, 267407 (2005).
[CrossRef]

I. Simonsen, A. A. Maradudin, and T. A. Leskova, “Scattering of Electromagnetic Waves from Two-Dimensional Randomly Rough Penetrable Surfaces,” Phys. Rev. Lett. 104, 223,904 (2010).
[CrossRef] [PubMed]

Phys. Stat. Solidi C

A. L. González and C. Noguez, “Optical properties of silver nanoparticles,” Phys. Stat. Solidi C 4, 4118–4126 (2007).
[CrossRef]

Plasmonics

V. Giannini, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Surface plasmon resonances of metallic nanostars/nanoflowers for surface-enhanced raman scattering,” Plasmonics 5, 99–104 (2010).
[CrossRef]

Rep. Progr. Phys.

C. Girard and A. Dereux, “Near-field optics theories,” Rep. Progr. Phys. 59, 657 (1996).
[CrossRef]

Science

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, and B. Hecht, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

J. J. Greffet, “Nanoantennas for light emission,” Science 308, 1561–1563 (2005).
[CrossRef] [PubMed]

Small

V. Giannini, A. Fernandez-Dominguez, Y. Sonnefraud, T. Roschuk, R. Fernandez-García, and S. A. Maier, “Controlling light localization and light–matter interactions with nanoplasmonics,” Small 6, 2498–2507 (2010).
[CrossRef] [PubMed]

Other

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
[CrossRef]

M. Born and E. Wolf, Principles of Optics , 6th ed. (Pergamon, 1980).

P. Bourke, “SuperShape in 3D,” URL http://local.wasp.uwa.edu.au/~{}pbourke/geometry/supershape3d/ .

H. Van De Hulst, Light Scattering by Small Particles , 1st ed. (Dover, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic representation of the scattering problem. An incident electromagnetic field E i impinges on a set of scatterers made of different materials embedded on a medium with permittivity εout . The vector r(t, s) is the position vector and n, t, s denote the local basis on the surface of the scatterers.

Fig. 2
Fig. 2

(a) Qext and (b) Qsca for the GTm (black-dashed curve) and the analitical Mie solution (red-solid curve) for a Ag nanosphere of radius 5 nm. The 3D radiation pattern and two projections on the polarization plane and the propagation plane are plotted in (c) and (d), respectively. (e) Near electricfield intensity distribution in the polarization plane, (f) and NF intensity versus d/λ, distance from the surface normalized to the resonance wavelength, along the white line drawn in e) for the GTm (black-dashed curve) and Mie (red-solid curve).

Fig. 3
Fig. 3

Extinction cross sections for rounded Ag nanocubes with L = 50 nm with varying vertex sharpness: SS parameters n 1 = n 2 = n 3 = n, a = b = 1, m = 4, for both realizations (r 1 = r 2) of Eq. (11).

Fig. 4
Fig. 4

(a) Extinction cross section for a 5-fold starlike silver nanostructure with SS parameters n 1 = 0.2, n 2 = n 3 = n = 1.85, a = b = 1, m = 5: thus the distance from center to the farthest tip is 50 nm. (b),(c) Surface electricfield distribution and 3D radiation pattern at the LSPR wavelength λ = 365 nm; the proyection of the radiation pattern on the polarization plane is shown in (d).

Fig. 5
Fig. 5

(a) Scattering cross sections of three different kind of nanodimers. The incident field propagates normal to the cube sides with the polarization vector oriented along the axis of the dimers. In (b),(c) and (d) we show the intensity of the surface electric field distribution at the LSPR of the three systems studied: (b) cube-cube, (cc), (c) cube-sphere, (cs), (d) and sphere-sphere, (ss). Dimensions are: L = 30 nm (cubes), r = 15 nm (sphere), and gap= 1.5 nm.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

E > ( r ) = E inc ( r ) - 1 4 π ik μ G 0 ( r , r ) ( n × H > ( r ) ) d S + 1 4 π ( n × E > ( r ) ) × G 0 ( r , r ) + ( n E > ( r ) ) G 0 ( r , r ) d S , r V ,
E < ( r ) = - 1 4 π i k μ G ɛ ( r , r ) ( n × H < ( r ) ) d S - 1 4 π ( n × E < ( r ) ) × G ɛ ( r , r ) + ɛ out ɛ in ( n E < ( r ) ) G ɛ ( r , r ) d S , r V ,
H > ( r ) = H inc ( r ) 1 4 π ik G 0 ( r , r ) ( n × E > ( r ) ) d S + 1 4 π ( n × H < ( r ) ) × G 0 ( r , r ) + ( n H < ( r ) ) G 0 ( r , r ) d S , r V ,
H < ( r ) = 1 4 π ik ɛ in G ɛ ( r , r ) ( n × E < ( r ) ) d S 1 4 π ( n × H < ( r ) ) × G ɛ ( r , r ) + ( n H < ( r ) ) G ɛ ( r , r ) d S , r V ;
n E > ( r ) , n × E > ( r ) , n H > ( r ) , n × H > ( r ) .
ɛ out n E > = ɛ i n n E < , n × E > = n × E < , n H > = n H < , n × H > = n × H < .
t r t | r t | , s r s | r s | , n r t | r t | × r s | r s | ,
S f ( S ) dS = i = 1 N f Δ i ( r i ) ,
G 0 e ikr r e i k r , G 0 ik e ikr r e i k r .
E ff = e ikr r ik 4 π [ e i k r n × H dS e i k r ( n × E ) × R dS e i k r E n R dS ] .
E fs = e ikr r ik 4 π [ e i k r ( n × H ) R s dS + e i k r ( n × E ) R t ] dS
E ft = e ikr r ik 4 π [ e i k r ( n × H ) R t dS e i k r ( n × E ) R s ] dS ,
Q sc = 1 ɛ o | E inc | S ff | E ft | 2 + | E fs | 2 dS . Q ext = 4 π k Im ( E ffw k fw | k fw | ) Q abs = Q ext Q sca .
x ( t , s ) = r 1 ( s ) r 2 ( t ) sin ( t ) cos ( s )
y ( t , s ) = r 1 ( s ) r 2 ( t ) sin ( t ) sin ( s )
z ( t , s ) = r 2 ( t ) cos ( t ) ,
r ( u ) = ( | 1 a sin ( m 4 u ) | n 2 + | 1 b cos ( m 4 u ) | n 3 ) 1 n 1 , u = t , s

Metrics