Abstract

We report a direct DPSK receiver based on polymer planar lightwave circuit technology, which incorporates a 2x25 GHz photodiode (PD) array hybridly integrated via 45° mirrors. In this direct DPSK receiver, a half-wave plate and heating electrodes are implemented to eliminate the polarization-dependent frequency-shift (PDFS) of the delay-line interferometer (DLI). By applying a proper heating current, a residual PDFS of practically zero at 1550 nm and within ±125 MHz was achieved over the full C-band. Integrated with the PD array, the peak responsivity is ~0.14 A/W for orthogonal polarizations over the C-band. To characterize this direct receiver, we introduce an adapted common-mode rejection ratio (CMRR), which takes into account the unequal responsivities of the PDs, the uneven split of the input power by the DLI, the phase error and the extinction ratio of the DLI. The measured CMRR under DC condition is below −20 dB over the C-band.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Gnauck and P. Winzer, “Optical phase-shift-keyed transmission,” J. Lightwave Technol. 23(1), 115–130 (2005).
    [CrossRef]
  2. H. Kim and P. Winzer, “Robustness to laser frequency offset in direct detection DPSK and DQPSK systems,” J. Lightwave Technol. 21(9), 1887–1891 (2003).
    [CrossRef]
  3. C. R. Doerr, D. M. Gill, A. H. Gnauck, L. I. Buhl, P. J. Winzer, M. A. Cappuzzo, A. Wong-Foy, E. Y. Chen, and L. T. Gomez, “Monolithic demonstrator for 40 Gb/s DQPSK using a star coupler,” J. Lightwave Technol. 24(1), 171–174 (2006).
    [CrossRef]
  4. C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, S. S. Patel, S. Chandrasekhar, and A. E. White, “Polarization-insensitive planar lightwave circuit dual-rate Mach-Zehnder delay-interferometer,” IEEE Photon. Technol. Lett. 18(16), 1708–1710 (2006).
    [CrossRef]
  5. M. Oguma, Y. Nasu, H. Takahashi, H. Kawakami, and E. Yoshida, “Single MZI-based 1×4 DQPSK demodulator,” in Proc. 33rd ECOC (Berlin, Germany, 2007), pp. 147 – 148.
  6. Y. Nasu, Y. Hashizume, Y. Sakamaki, T. Hashimoto, K. Hattori, and Y. Inoue, “Reduction of Polarization Dependence of PLC Mach-Zehnder Interferometer Over Wide Wavelength Range,” J. Lightw. Technol. 27, 4814–4820.
  7. Y. Nasu, M. Oguma, T. Hashimoto, H. Takahashi, Y. Inoue, H. Kawakami, and E. Yoshida, “Asymmetric Half-Wave Plate Configuration of PLC Mach–Zehnder Interferometer for Polarization Insensitive DQPSK Demodulator,” J. Lightw. Technol. 27, 5348–5355.
  8. J. Gamet and G. Pandraud, “C- and L-Band planar delay interferometer for DPSK decoders,” IEEE Photon. Technol. Lett. 17(6), 1217–1219 (2005).
    [CrossRef]
  9. H. H. Yaffe, C. H. Henry, R. F. Kazarinov, and M. A. Milbrodt, “Polarization-independent silica-on-silicon Mach-Zehnder Interferometers,” J. Lightwave Technol. 12(1), 64–67 (1994).
    [CrossRef]
  10. J. Li, K. Worms, D. Hillerkuss, B. Richter, R. Maestle, W. Freude, and J. Leuthold, “Tunable free space optical delay interferometer for demodulation of differential phase shift keying signals”, in Proc. OFC’10 (San Diego, CA, USA, 2010), pp. 1–3.
  11. N. Keil, C. Zawadzki, Z. Zhang, J. Wang, N. Mettbach, N. Grote, and M. Schell, “Polymer PLC as an Optical Integration Bench,” in Proc. OFC’11 (Los Angeles, CA, USA, 2011), paper OWM1.
  12. L. Eldada and L. W. Shachlette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
    [CrossRef]
  13. H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. (Deerfield Beach Fla.) 14(19), 1339–1365 (2002).
    [CrossRef]
  14. G. Yu, J. Mallari, H. Shen, E. Miller, C. Wei, V. Shofman, D. Jin, B. Chen, H. Chen, and R. Dinu, “40GHz zero chirp single-ended EO polymer modulators with low half-wave voltage,” in Proc. CLEO 2011 (Baltimore, MD, USA, 2011).
  15. Technical documentations, ZPU12-RI & ZPU13-RI (UV curable polymers), ChemOptics co., Korea. http://inct.raonnet.com/admin_e/pageMake_proto.php?a_name=VGVjaG5vbG9neSBEb2N1bWVudHM=&aa_code=1214 .
  16. N. Keil, H. H. Yao, C. Zawadzki, K. Lösch, K. Satzke, W. Wischmann, J. V. Wirth, J. Schneider, J. Bauer, and M. Bauer, “Hybrid polymer/silica thermo-optic vertical coupler switches,” Appl. Phys. B 73, 469 (2001).
  17. M. Seimetz, “High-order modulation for optical fiber transmission,” in Optical Sciences, W.T. Rhodes, ed. (Springer, Atlanta, GA., 2009).
  18. M. Schell, N. Keil, H. Yao, and C. Zawadzki, “Method and apparatus for compensating polarization-dependent frequency shifts in optical waveguides,” U.S. Patent 2010/0209, 039, (2010).
  19. OIF, “Implementation agreement for integrated dual polarization intradyne coherent receivers,” 2010. http://www.oiforum.com/public/documents/OIF_DPC_RX-01.0.pdf .
  20. Y. Painchaud, M. Poulin, M. Morin, and M. Têtu, “Performance of balanced detection in a coherent receiver,” Opt. Express 17(5), 3659–3672 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-5-3659 .
    [CrossRef] [PubMed]

2009 (1)

2006 (2)

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, S. S. Patel, S. Chandrasekhar, and A. E. White, “Polarization-insensitive planar lightwave circuit dual-rate Mach-Zehnder delay-interferometer,” IEEE Photon. Technol. Lett. 18(16), 1708–1710 (2006).
[CrossRef]

C. R. Doerr, D. M. Gill, A. H. Gnauck, L. I. Buhl, P. J. Winzer, M. A. Cappuzzo, A. Wong-Foy, E. Y. Chen, and L. T. Gomez, “Monolithic demonstrator for 40 Gb/s DQPSK using a star coupler,” J. Lightwave Technol. 24(1), 171–174 (2006).
[CrossRef]

2005 (2)

A. Gnauck and P. Winzer, “Optical phase-shift-keyed transmission,” J. Lightwave Technol. 23(1), 115–130 (2005).
[CrossRef]

J. Gamet and G. Pandraud, “C- and L-Band planar delay interferometer for DPSK decoders,” IEEE Photon. Technol. Lett. 17(6), 1217–1219 (2005).
[CrossRef]

2003 (1)

2002 (1)

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. (Deerfield Beach Fla.) 14(19), 1339–1365 (2002).
[CrossRef]

2001 (1)

N. Keil, H. H. Yao, C. Zawadzki, K. Lösch, K. Satzke, W. Wischmann, J. V. Wirth, J. Schneider, J. Bauer, and M. Bauer, “Hybrid polymer/silica thermo-optic vertical coupler switches,” Appl. Phys. B 73, 469 (2001).

2000 (1)

L. Eldada and L. W. Shachlette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
[CrossRef]

1994 (1)

H. H. Yaffe, C. H. Henry, R. F. Kazarinov, and M. A. Milbrodt, “Polarization-independent silica-on-silicon Mach-Zehnder Interferometers,” J. Lightwave Technol. 12(1), 64–67 (1994).
[CrossRef]

Bauer, J.

N. Keil, H. H. Yao, C. Zawadzki, K. Lösch, K. Satzke, W. Wischmann, J. V. Wirth, J. Schneider, J. Bauer, and M. Bauer, “Hybrid polymer/silica thermo-optic vertical coupler switches,” Appl. Phys. B 73, 469 (2001).

Bauer, M.

N. Keil, H. H. Yao, C. Zawadzki, K. Lösch, K. Satzke, W. Wischmann, J. V. Wirth, J. Schneider, J. Bauer, and M. Bauer, “Hybrid polymer/silica thermo-optic vertical coupler switches,” Appl. Phys. B 73, 469 (2001).

Buhl, L. I.

Cappuzzo, M. A.

C. R. Doerr, D. M. Gill, A. H. Gnauck, L. I. Buhl, P. J. Winzer, M. A. Cappuzzo, A. Wong-Foy, E. Y. Chen, and L. T. Gomez, “Monolithic demonstrator for 40 Gb/s DQPSK using a star coupler,” J. Lightwave Technol. 24(1), 171–174 (2006).
[CrossRef]

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, S. S. Patel, S. Chandrasekhar, and A. E. White, “Polarization-insensitive planar lightwave circuit dual-rate Mach-Zehnder delay-interferometer,” IEEE Photon. Technol. Lett. 18(16), 1708–1710 (2006).
[CrossRef]

Chandrasekhar, S.

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, S. S. Patel, S. Chandrasekhar, and A. E. White, “Polarization-insensitive planar lightwave circuit dual-rate Mach-Zehnder delay-interferometer,” IEEE Photon. Technol. Lett. 18(16), 1708–1710 (2006).
[CrossRef]

Chen, E. Y.

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, S. S. Patel, S. Chandrasekhar, and A. E. White, “Polarization-insensitive planar lightwave circuit dual-rate Mach-Zehnder delay-interferometer,” IEEE Photon. Technol. Lett. 18(16), 1708–1710 (2006).
[CrossRef]

C. R. Doerr, D. M. Gill, A. H. Gnauck, L. I. Buhl, P. J. Winzer, M. A. Cappuzzo, A. Wong-Foy, E. Y. Chen, and L. T. Gomez, “Monolithic demonstrator for 40 Gb/s DQPSK using a star coupler,” J. Lightwave Technol. 24(1), 171–174 (2006).
[CrossRef]

Dalton, L. R.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. (Deerfield Beach Fla.) 14(19), 1339–1365 (2002).
[CrossRef]

Doerr, C. R.

C. R. Doerr, D. M. Gill, A. H. Gnauck, L. I. Buhl, P. J. Winzer, M. A. Cappuzzo, A. Wong-Foy, E. Y. Chen, and L. T. Gomez, “Monolithic demonstrator for 40 Gb/s DQPSK using a star coupler,” J. Lightwave Technol. 24(1), 171–174 (2006).
[CrossRef]

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, S. S. Patel, S. Chandrasekhar, and A. E. White, “Polarization-insensitive planar lightwave circuit dual-rate Mach-Zehnder delay-interferometer,” IEEE Photon. Technol. Lett. 18(16), 1708–1710 (2006).
[CrossRef]

Eldada, L.

L. Eldada and L. W. Shachlette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
[CrossRef]

Gamet, J.

J. Gamet and G. Pandraud, “C- and L-Band planar delay interferometer for DPSK decoders,” IEEE Photon. Technol. Lett. 17(6), 1217–1219 (2005).
[CrossRef]

Gill, D. M.

Gnauck, A.

Gnauck, A. H.

Gomez, L. T.

C. R. Doerr, D. M. Gill, A. H. Gnauck, L. I. Buhl, P. J. Winzer, M. A. Cappuzzo, A. Wong-Foy, E. Y. Chen, and L. T. Gomez, “Monolithic demonstrator for 40 Gb/s DQPSK using a star coupler,” J. Lightwave Technol. 24(1), 171–174 (2006).
[CrossRef]

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, S. S. Patel, S. Chandrasekhar, and A. E. White, “Polarization-insensitive planar lightwave circuit dual-rate Mach-Zehnder delay-interferometer,” IEEE Photon. Technol. Lett. 18(16), 1708–1710 (2006).
[CrossRef]

Hashimoto, T.

Y. Nasu, M. Oguma, T. Hashimoto, H. Takahashi, Y. Inoue, H. Kawakami, and E. Yoshida, “Asymmetric Half-Wave Plate Configuration of PLC Mach–Zehnder Interferometer for Polarization Insensitive DQPSK Demodulator,” J. Lightw. Technol. 27, 5348–5355.

Y. Nasu, Y. Hashizume, Y. Sakamaki, T. Hashimoto, K. Hattori, and Y. Inoue, “Reduction of Polarization Dependence of PLC Mach-Zehnder Interferometer Over Wide Wavelength Range,” J. Lightw. Technol. 27, 4814–4820.

Hashizume, Y.

Y. Nasu, Y. Hashizume, Y. Sakamaki, T. Hashimoto, K. Hattori, and Y. Inoue, “Reduction of Polarization Dependence of PLC Mach-Zehnder Interferometer Over Wide Wavelength Range,” J. Lightw. Technol. 27, 4814–4820.

Hattori, K.

Y. Nasu, Y. Hashizume, Y. Sakamaki, T. Hashimoto, K. Hattori, and Y. Inoue, “Reduction of Polarization Dependence of PLC Mach-Zehnder Interferometer Over Wide Wavelength Range,” J. Lightw. Technol. 27, 4814–4820.

Henry, C. H.

H. H. Yaffe, C. H. Henry, R. F. Kazarinov, and M. A. Milbrodt, “Polarization-independent silica-on-silicon Mach-Zehnder Interferometers,” J. Lightwave Technol. 12(1), 64–67 (1994).
[CrossRef]

Inoue, Y.

Y. Nasu, Y. Hashizume, Y. Sakamaki, T. Hashimoto, K. Hattori, and Y. Inoue, “Reduction of Polarization Dependence of PLC Mach-Zehnder Interferometer Over Wide Wavelength Range,” J. Lightw. Technol. 27, 4814–4820.

Y. Nasu, M. Oguma, T. Hashimoto, H. Takahashi, Y. Inoue, H. Kawakami, and E. Yoshida, “Asymmetric Half-Wave Plate Configuration of PLC Mach–Zehnder Interferometer for Polarization Insensitive DQPSK Demodulator,” J. Lightw. Technol. 27, 5348–5355.

Jen, A. K.-Y.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. (Deerfield Beach Fla.) 14(19), 1339–1365 (2002).
[CrossRef]

Kawakami, H.

Y. Nasu, M. Oguma, T. Hashimoto, H. Takahashi, Y. Inoue, H. Kawakami, and E. Yoshida, “Asymmetric Half-Wave Plate Configuration of PLC Mach–Zehnder Interferometer for Polarization Insensitive DQPSK Demodulator,” J. Lightw. Technol. 27, 5348–5355.

Kazarinov, R. F.

H. H. Yaffe, C. H. Henry, R. F. Kazarinov, and M. A. Milbrodt, “Polarization-independent silica-on-silicon Mach-Zehnder Interferometers,” J. Lightwave Technol. 12(1), 64–67 (1994).
[CrossRef]

Keil, N.

N. Keil, H. H. Yao, C. Zawadzki, K. Lösch, K. Satzke, W. Wischmann, J. V. Wirth, J. Schneider, J. Bauer, and M. Bauer, “Hybrid polymer/silica thermo-optic vertical coupler switches,” Appl. Phys. B 73, 469 (2001).

Kim, H.

Lösch, K.

N. Keil, H. H. Yao, C. Zawadzki, K. Lösch, K. Satzke, W. Wischmann, J. V. Wirth, J. Schneider, J. Bauer, and M. Bauer, “Hybrid polymer/silica thermo-optic vertical coupler switches,” Appl. Phys. B 73, 469 (2001).

Ma, H.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. (Deerfield Beach Fla.) 14(19), 1339–1365 (2002).
[CrossRef]

Milbrodt, M. A.

H. H. Yaffe, C. H. Henry, R. F. Kazarinov, and M. A. Milbrodt, “Polarization-independent silica-on-silicon Mach-Zehnder Interferometers,” J. Lightwave Technol. 12(1), 64–67 (1994).
[CrossRef]

Morin, M.

Nasu, Y.

Y. Nasu, M. Oguma, T. Hashimoto, H. Takahashi, Y. Inoue, H. Kawakami, and E. Yoshida, “Asymmetric Half-Wave Plate Configuration of PLC Mach–Zehnder Interferometer for Polarization Insensitive DQPSK Demodulator,” J. Lightw. Technol. 27, 5348–5355.

Y. Nasu, Y. Hashizume, Y. Sakamaki, T. Hashimoto, K. Hattori, and Y. Inoue, “Reduction of Polarization Dependence of PLC Mach-Zehnder Interferometer Over Wide Wavelength Range,” J. Lightw. Technol. 27, 4814–4820.

Oguma, M.

Y. Nasu, M. Oguma, T. Hashimoto, H. Takahashi, Y. Inoue, H. Kawakami, and E. Yoshida, “Asymmetric Half-Wave Plate Configuration of PLC Mach–Zehnder Interferometer for Polarization Insensitive DQPSK Demodulator,” J. Lightw. Technol. 27, 5348–5355.

Painchaud, Y.

Pandraud, G.

J. Gamet and G. Pandraud, “C- and L-Band planar delay interferometer for DPSK decoders,” IEEE Photon. Technol. Lett. 17(6), 1217–1219 (2005).
[CrossRef]

Patel, S. S.

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, S. S. Patel, S. Chandrasekhar, and A. E. White, “Polarization-insensitive planar lightwave circuit dual-rate Mach-Zehnder delay-interferometer,” IEEE Photon. Technol. Lett. 18(16), 1708–1710 (2006).
[CrossRef]

Poulin, M.

Sakamaki, Y.

Y. Nasu, Y. Hashizume, Y. Sakamaki, T. Hashimoto, K. Hattori, and Y. Inoue, “Reduction of Polarization Dependence of PLC Mach-Zehnder Interferometer Over Wide Wavelength Range,” J. Lightw. Technol. 27, 4814–4820.

Satzke, K.

N. Keil, H. H. Yao, C. Zawadzki, K. Lösch, K. Satzke, W. Wischmann, J. V. Wirth, J. Schneider, J. Bauer, and M. Bauer, “Hybrid polymer/silica thermo-optic vertical coupler switches,” Appl. Phys. B 73, 469 (2001).

Schneider, J.

N. Keil, H. H. Yao, C. Zawadzki, K. Lösch, K. Satzke, W. Wischmann, J. V. Wirth, J. Schneider, J. Bauer, and M. Bauer, “Hybrid polymer/silica thermo-optic vertical coupler switches,” Appl. Phys. B 73, 469 (2001).

Shachlette, L. W.

L. Eldada and L. W. Shachlette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
[CrossRef]

Takahashi, H.

Y. Nasu, M. Oguma, T. Hashimoto, H. Takahashi, Y. Inoue, H. Kawakami, and E. Yoshida, “Asymmetric Half-Wave Plate Configuration of PLC Mach–Zehnder Interferometer for Polarization Insensitive DQPSK Demodulator,” J. Lightw. Technol. 27, 5348–5355.

Têtu, M.

White, A. E.

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, S. S. Patel, S. Chandrasekhar, and A. E. White, “Polarization-insensitive planar lightwave circuit dual-rate Mach-Zehnder delay-interferometer,” IEEE Photon. Technol. Lett. 18(16), 1708–1710 (2006).
[CrossRef]

Winzer, P.

Winzer, P. J.

Wirth, J. V.

N. Keil, H. H. Yao, C. Zawadzki, K. Lösch, K. Satzke, W. Wischmann, J. V. Wirth, J. Schneider, J. Bauer, and M. Bauer, “Hybrid polymer/silica thermo-optic vertical coupler switches,” Appl. Phys. B 73, 469 (2001).

Wischmann, W.

N. Keil, H. H. Yao, C. Zawadzki, K. Lösch, K. Satzke, W. Wischmann, J. V. Wirth, J. Schneider, J. Bauer, and M. Bauer, “Hybrid polymer/silica thermo-optic vertical coupler switches,” Appl. Phys. B 73, 469 (2001).

Wong-Foy, A.

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, S. S. Patel, S. Chandrasekhar, and A. E. White, “Polarization-insensitive planar lightwave circuit dual-rate Mach-Zehnder delay-interferometer,” IEEE Photon. Technol. Lett. 18(16), 1708–1710 (2006).
[CrossRef]

C. R. Doerr, D. M. Gill, A. H. Gnauck, L. I. Buhl, P. J. Winzer, M. A. Cappuzzo, A. Wong-Foy, E. Y. Chen, and L. T. Gomez, “Monolithic demonstrator for 40 Gb/s DQPSK using a star coupler,” J. Lightwave Technol. 24(1), 171–174 (2006).
[CrossRef]

Yaffe, H. H.

H. H. Yaffe, C. H. Henry, R. F. Kazarinov, and M. A. Milbrodt, “Polarization-independent silica-on-silicon Mach-Zehnder Interferometers,” J. Lightwave Technol. 12(1), 64–67 (1994).
[CrossRef]

Yao, H. H.

N. Keil, H. H. Yao, C. Zawadzki, K. Lösch, K. Satzke, W. Wischmann, J. V. Wirth, J. Schneider, J. Bauer, and M. Bauer, “Hybrid polymer/silica thermo-optic vertical coupler switches,” Appl. Phys. B 73, 469 (2001).

Yoshida, E.

Y. Nasu, M. Oguma, T. Hashimoto, H. Takahashi, Y. Inoue, H. Kawakami, and E. Yoshida, “Asymmetric Half-Wave Plate Configuration of PLC Mach–Zehnder Interferometer for Polarization Insensitive DQPSK Demodulator,” J. Lightw. Technol. 27, 5348–5355.

Zawadzki, C.

N. Keil, H. H. Yao, C. Zawadzki, K. Lösch, K. Satzke, W. Wischmann, J. V. Wirth, J. Schneider, J. Bauer, and M. Bauer, “Hybrid polymer/silica thermo-optic vertical coupler switches,” Appl. Phys. B 73, 469 (2001).

Adv. Mater. (Deerfield Beach Fla.) (1)

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. (Deerfield Beach Fla.) 14(19), 1339–1365 (2002).
[CrossRef]

Appl. Phys. B (1)

N. Keil, H. H. Yao, C. Zawadzki, K. Lösch, K. Satzke, W. Wischmann, J. V. Wirth, J. Schneider, J. Bauer, and M. Bauer, “Hybrid polymer/silica thermo-optic vertical coupler switches,” Appl. Phys. B 73, 469 (2001).

IEEE J. Sel. Top. Quantum Electron. (1)

L. Eldada and L. W. Shachlette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, S. S. Patel, S. Chandrasekhar, and A. E. White, “Polarization-insensitive planar lightwave circuit dual-rate Mach-Zehnder delay-interferometer,” IEEE Photon. Technol. Lett. 18(16), 1708–1710 (2006).
[CrossRef]

J. Gamet and G. Pandraud, “C- and L-Band planar delay interferometer for DPSK decoders,” IEEE Photon. Technol. Lett. 17(6), 1217–1219 (2005).
[CrossRef]

J. Lightw. Technol. (2)

Y. Nasu, Y. Hashizume, Y. Sakamaki, T. Hashimoto, K. Hattori, and Y. Inoue, “Reduction of Polarization Dependence of PLC Mach-Zehnder Interferometer Over Wide Wavelength Range,” J. Lightw. Technol. 27, 4814–4820.

Y. Nasu, M. Oguma, T. Hashimoto, H. Takahashi, Y. Inoue, H. Kawakami, and E. Yoshida, “Asymmetric Half-Wave Plate Configuration of PLC Mach–Zehnder Interferometer for Polarization Insensitive DQPSK Demodulator,” J. Lightw. Technol. 27, 5348–5355.

J. Lightwave Technol. (4)

Opt. Express (1)

Other (8)

M. Seimetz, “High-order modulation for optical fiber transmission,” in Optical Sciences, W.T. Rhodes, ed. (Springer, Atlanta, GA., 2009).

M. Schell, N. Keil, H. Yao, and C. Zawadzki, “Method and apparatus for compensating polarization-dependent frequency shifts in optical waveguides,” U.S. Patent 2010/0209, 039, (2010).

OIF, “Implementation agreement for integrated dual polarization intradyne coherent receivers,” 2010. http://www.oiforum.com/public/documents/OIF_DPC_RX-01.0.pdf .

J. Li, K. Worms, D. Hillerkuss, B. Richter, R. Maestle, W. Freude, and J. Leuthold, “Tunable free space optical delay interferometer for demodulation of differential phase shift keying signals”, in Proc. OFC’10 (San Diego, CA, USA, 2010), pp. 1–3.

N. Keil, C. Zawadzki, Z. Zhang, J. Wang, N. Mettbach, N. Grote, and M. Schell, “Polymer PLC as an Optical Integration Bench,” in Proc. OFC’11 (Los Angeles, CA, USA, 2011), paper OWM1.

M. Oguma, Y. Nasu, H. Takahashi, H. Kawakami, and E. Yoshida, “Single MZI-based 1×4 DQPSK demodulator,” in Proc. 33rd ECOC (Berlin, Germany, 2007), pp. 147 – 148.

G. Yu, J. Mallari, H. Shen, E. Miller, C. Wei, V. Shofman, D. Jin, B. Chen, H. Chen, and R. Dinu, “40GHz zero chirp single-ended EO polymer modulators with low half-wave voltage,” in Proc. CLEO 2011 (Baltimore, MD, USA, 2011).

Technical documentations, ZPU12-RI & ZPU13-RI (UV curable polymers), ChemOptics co., Korea. http://inct.raonnet.com/admin_e/pageMake_proto.php?a_name=VGVjaG5vbG9neSBEb2N1bWVudHM=&aa_code=1214 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Scheme of direct detection receiver for DPSK signals. (b) Illustrative definitions of the polarization dependent frequency shift (PDFS), the free spectral range (FSR) and the polarization dependent loss (PDL) of the delay-line interferometer.

Fig. 2
Fig. 2

(a) Layout for birefringence compensation in a delay-line interferometer (DLI) by using a half-wave plate combined with four heating electrodes. (b) Cross-section of waveguide structure.

Fig. 3
Fig. 3

Waveguide birefringence versus the ambient temperature. δB 1 and δB 1 are the birefringence changes when the waveguide temperature changes from a room temperature of 20°C to T 1 or T 2.

Fig. 4
Fig. 4

(a) PDFS and (b) FSR of the DLI at different heating currents applied to the electrodes on the right DLI arm (see Fig. 2(a)), and at two different substrate temperatures. The lower row shows the transmission spectra at output 2 while the substrate temperature is kept at 20°C. LCP: left-handed circularly polarized; RCP: right-handed circularly polarized.

Fig. 5
Fig. 5

(a) Residual PDFS of the both DLI-outputs at a heating current of 22 mA and a substrate temperature of 20°C. Two solid lines are linear fits of these residual PDFS data. (b) Relative phase between DLI outputs, calculated from optical transmission spectra.

Fig. 6
Fig. 6

(a) Schematic of hybrid integration of a photodiode on a polymer waveguide chip via a 45° mirror. (b) Small signal frequency response of typical photodiodes used for 25 Gbaud detection.

Fig. 7
Fig. 7

(a) Current responses of a PD-array mounted on a DLI chip. (b) Maximum and minimum responsivity of the mounted PDs. (c) Relative phase between two current responses.

Fig. 8
Fig. 8

Illustration of the parameters used in the definition of the adapted CMRR for the cases: (a) no phase error, and (b) with a virtual phase error δφ between currents from the two PDs.

Fig. 9
Fig. 9

Calculated CMRRDLI (black lines) from Eq. (7) and (8) for photo currents induced by cw input lights with (a) TE or (b) TM polarizations. Green and red lines are the alternative CMRRs at the wavelengths with a relative phase of π/2 or 3π/2 to the reference wavelength point. For comparison, the standard CMRR calculated from Eq. (6) are also plotted as blue lines.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

| H 1 ( λ ) | v 2 = P out,1 P in = sin 2 ( π n g , v Δ L / λ ) ; | H 2 ( λ ) | v 2 = P out,2 P in = cos 2 ( π n g , v Δ L / λ ) ,
Δ ϕ 1 = 2 π / λ δ B 1 δ L 1 ; Δ ϕ 2 = 2 π / λ δ B 2 δ L 1 ; Δ ϕ 2 Δ ϕ 1 = 2 π / λ ( δ B 2 δ B 1 ) δ L 1 = 2 π / λ ( T 2 T 1 ) S δ L 1 .
Δ ϕ res = 2 π / λ B res ( L + Δ L ) .
Δ ϕ res + Δ ϕ 2 Δ ϕ 1 = 0.
T 2 T 1 = B res ( L + Δ L ) / ( δ L 1 S ) = B res / B WG Δ T proc ( L + Δ L ) / δ L 1 .
C M R R = | I 1 I 2 | | I 1 | + | I 2 | .
C M R R φ = 2 | I 1 , φ I 2 , φ | | I 1 , max I 1 , min | + | I 2 , max I 2 , min | ,     for φ = π / 2     or     3 π / 2 .
C M R R DLI = max ( C M R R φ ) ,             for φ = π / 2     or     3 π / 2 .

Metrics