Abstract

We report a novel splicing-based pressure-assisted melt-filling technique for creating metallic nanowires in hollow channels in microstructured silica fibers. Wires with diameters as small as 120 nm (typical aspect ration 50:1) could be realized at a filling pressure of 300 bar. As an example we investigate a conventional single-mode step-index fiber with a parallel gold nanowire (wire diameter 510 nm) running next to the core. Optical transmission spectra show dips at wavelengths where guided surface plasmon modes on the nanowire phase match to the glass core mode. By monitoring the side-scattered light at narrow breaks in the nanowire, the loss could be estimated. Values as low as 0.7 dB/mm were measured at resonance, corresponding to those of an ultra-long-range eigenmode of the glass-core/nanowire system. By thermal treatment the hollow channel could be collapsed controllably, permitting creation of a conical gold nanowire, the optical properties of which could be monitored by side-scattering. The reproducibility of the technique and the high optical quality of the wires suggest applications in fields such as nonlinear plasmonics, near-field scanning optical microscope tips, cylindrical polarizers, optical sensing and telecommunications.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  2. S. A. Maier, “Plasmonics: The promise of highly integrated optical devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1671–1677 (2006).
    [CrossRef]
  3. M. A. Schmidt and P. St. J. Russell, “Long-range spiralling surface plasmon modes on metallic nanowires,” Opt. Express 16(18), 13617–13623 (2008).
    [CrossRef] [PubMed]
  4. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
    [CrossRef] [PubMed]
  5. A. L. Pyayt, B. Wiley, Y. N. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3(11), 660–665 (2008).
    [CrossRef] [PubMed]
  6. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
    [CrossRef] [PubMed]
  7. J. Tian, Z. Ma, Q. A. Li, Y. Song, Z. H. Liu, Q. Yang, C. L. Zha, J. Akerman, L. M. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97(23), 231121 (2010).
    [CrossRef]
  8. K. L. Wang and D. M. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett. 96(15), 157401 (2006).
    [CrossRef] [PubMed]
  9. Y. G. Ma, X. Y. Li, H. K. Yu, L. M. Tong, Y. Gu, and Q. H. Gong, “Direct measurement of propagation losses in silver nanowires,” Opt. Lett. 35(8), 1160–1162 (2010).
    [CrossRef] [PubMed]
  10. X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
    [CrossRef] [PubMed]
  11. E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102(20), 203904 (2009).
    [CrossRef] [PubMed]
  12. A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105(11), 116804 (2010).
    [CrossRef] [PubMed]
  13. H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008).
    [CrossRef]
  14. M. Schmidt, L. Prill Sempere, H. Tyagi, C. Poulton, and P. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
    [CrossRef]
  15. H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. St. J. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35(15), 2573–2575 (2010).
    [CrossRef] [PubMed]
  16. Z. X. Zhang, M. L. Hu, K. T. Chan, and C. Y. Wang, “Plasmonic waveguiding in a hexagonally ordered metal wire array,” Opt. Lett. 35(23), 3901–3903 (2010).
    [CrossRef] [PubMed]
  17. W. J. Wadsworth, A. Witkowska, S. G. Leon-Saval, and T. A. Birks, “Hole inflation and tapering of stock photonic crystal fibres,” Opt. Express 13(17), 6541–6549 (2005).
    [CrossRef] [PubMed]
  18. M. J. Weber, Handbook Of Optical Materials (CRC Press, 2002).
  19. N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. St. J. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids 356(35-36), 1829–1836 (2010).
    [CrossRef]
  20. M. A. Schmidt, N. Granzow, N. Da, M. Y. Peng, L. Wondraczek, and P. St. J. Russell, “All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers,” Opt. Lett. 34(13), 1946–1948 (2009).
    [CrossRef] [PubMed]
  21. H. K. Tyagi, M. A. Schmidt, L. Prill Sempere, and P. S. Russell, “Optical properties of photonic crystal fiber with integral micron-sized Ge wire,” Opt. Express 16(22), 17227–17236 (2008).
    [CrossRef] [PubMed]
  22. E. W. Washburn, “The dynamics of capillary flow,” Phys. Rev. 17(3), 273–283 (1921).
    [CrossRef]
  23. N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. St. J. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids 357(6), 1558–1563 (2011).
    [CrossRef]
  24. S. Z. Beer, Liquid Metals (Marcel Dekker, Inc, 1972).
  25. T. Iida, and R. Guthrie, The Physical Properties of Liquid Metals (Clarendon Press, 1988).
  26. A. W. Snyder, and J. Love, Optical Waveguide Theory , 1st ed. (Springer, 1983).
  27. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 127(18), 164705 (2007).
    [CrossRef]
  28. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt. 23(24), 4486–4493 (1984).
    [CrossRef] [PubMed]
  29. J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and S. Y. Shin, “Hybrid plasmonic waveguide for low-loss lightwave guiding,” Opt. Express 18(3), 2808–2813 (2010).
    [CrossRef] [PubMed]

2011 (1)

N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. St. J. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids 357(6), 1558–1563 (2011).
[CrossRef]

2010 (7)

N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. St. J. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids 356(35-36), 1829–1836 (2010).
[CrossRef]

J. Tian, Z. Ma, Q. A. Li, Y. Song, Z. H. Liu, Q. Yang, C. L. Zha, J. Akerman, L. M. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97(23), 231121 (2010).
[CrossRef]

A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105(11), 116804 (2010).
[CrossRef] [PubMed]

J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and S. Y. Shin, “Hybrid plasmonic waveguide for low-loss lightwave guiding,” Opt. Express 18(3), 2808–2813 (2010).
[CrossRef] [PubMed]

Y. G. Ma, X. Y. Li, H. K. Yu, L. M. Tong, Y. Gu, and Q. H. Gong, “Direct measurement of propagation losses in silver nanowires,” Opt. Lett. 35(8), 1160–1162 (2010).
[CrossRef] [PubMed]

H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. St. J. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35(15), 2573–2575 (2010).
[CrossRef] [PubMed]

Z. X. Zhang, M. L. Hu, K. T. Chan, and C. Y. Wang, “Plasmonic waveguiding in a hexagonally ordered metal wire array,” Opt. Lett. 35(23), 3901–3903 (2010).
[CrossRef] [PubMed]

2009 (3)

M. A. Schmidt, N. Granzow, N. Da, M. Y. Peng, L. Wondraczek, and P. St. J. Russell, “All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers,” Opt. Lett. 34(13), 1946–1948 (2009).
[CrossRef] [PubMed]

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102(20), 203904 (2009).
[CrossRef] [PubMed]

2008 (5)

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008).
[CrossRef]

M. Schmidt, L. Prill Sempere, H. Tyagi, C. Poulton, and P. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[CrossRef]

A. L. Pyayt, B. Wiley, Y. N. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3(11), 660–665 (2008).
[CrossRef] [PubMed]

M. A. Schmidt and P. St. J. Russell, “Long-range spiralling surface plasmon modes on metallic nanowires,” Opt. Express 16(18), 13617–13623 (2008).
[CrossRef] [PubMed]

H. K. Tyagi, M. A. Schmidt, L. Prill Sempere, and P. S. Russell, “Optical properties of photonic crystal fiber with integral micron-sized Ge wire,” Opt. Express 16(22), 17227–17236 (2008).
[CrossRef] [PubMed]

2007 (2)

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[CrossRef] [PubMed]

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 127(18), 164705 (2007).
[CrossRef]

2006 (2)

S. A. Maier, “Plasmonics: The promise of highly integrated optical devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1671–1677 (2006).
[CrossRef]

K. L. Wang and D. M. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett. 96(15), 157401 (2006).
[CrossRef] [PubMed]

2005 (2)

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

W. J. Wadsworth, A. Witkowska, S. G. Leon-Saval, and T. A. Birks, “Hole inflation and tapering of stock photonic crystal fibres,” Opt. Express 13(17), 6541–6549 (2005).
[CrossRef] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

1984 (1)

1921 (1)

E. W. Washburn, “The dynamics of capillary flow,” Phys. Rev. 17(3), 273–283 (1921).
[CrossRef]

Akerman, J.

J. Tian, Z. Ma, Q. A. Li, Y. Song, Z. H. Liu, Q. Yang, C. L. Zha, J. Akerman, L. M. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97(23), 231121 (2010).
[CrossRef]

Akimov, A. V.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Aussenegg, F. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Bao, J. M.

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Birks, T. A.

Chan, K. T.

Chang, D. E.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Chen, A.

A. L. Pyayt, B. Wiley, Y. N. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3(11), 660–665 (2008).
[CrossRef] [PubMed]

Da, N.

N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. St. J. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids 357(6), 1558–1563 (2011).
[CrossRef]

N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. St. J. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids 356(35-36), 1829–1836 (2010).
[CrossRef]

M. A. Schmidt, N. Granzow, N. Da, M. Y. Peng, L. Wondraczek, and P. St. J. Russell, “All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers,” Opt. Lett. 34(13), 1946–1948 (2009).
[CrossRef] [PubMed]

Dalton, L.

A. L. Pyayt, B. Wiley, Y. N. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3(11), 660–665 (2008).
[CrossRef] [PubMed]

Davoyan, A. R.

A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105(11), 116804 (2010).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Ditlbacher, H.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Enany, A. A.

N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. St. J. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids 357(6), 1558–1563 (2011).
[CrossRef]

Etchegoin, P. G.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 127(18), 164705 (2007).
[CrossRef]

Fleming, J. W.

Gong, Q. H.

Gramotnev, D. K.

A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105(11), 116804 (2010).
[CrossRef] [PubMed]

Granzow, N.

N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. St. J. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids 357(6), 1558–1563 (2011).
[CrossRef]

N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. St. J. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids 356(35-36), 1829–1836 (2010).
[CrossRef]

M. A. Schmidt, N. Granzow, N. Da, M. Y. Peng, L. Wondraczek, and P. St. J. Russell, “All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers,” Opt. Lett. 34(13), 1946–1948 (2009).
[CrossRef] [PubMed]

Gu, Y.

Guo, X.

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Hemmer, P. R.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Hofer, F.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Hohenau, A.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Hu, M. L.

Joly, N.

Ju, J. J.

Kim, J. T.

Kim, M. S.

Kivshar, Y. S.

A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105(11), 116804 (2010).
[CrossRef] [PubMed]

Kreibig, U.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Krenn, J. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Kuipers, L. K.

E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102(20), 203904 (2009).
[CrossRef] [PubMed]

Le Ru, E. C.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 127(18), 164705 (2007).
[CrossRef]

Lee, H. W.

H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. St. J. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35(15), 2573–2575 (2010).
[CrossRef] [PubMed]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008).
[CrossRef]

Leon-Saval, S. G.

Li, Q. A.

J. Tian, Z. Ma, Q. A. Li, Y. Song, Z. H. Liu, Q. Yang, C. L. Zha, J. Akerman, L. M. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97(23), 231121 (2010).
[CrossRef]

Li, X. Y.

Liu, Z. H.

J. Tian, Z. Ma, Q. A. Li, Y. Song, Z. H. Liu, Q. Yang, C. L. Zha, J. Akerman, L. M. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97(23), 231121 (2010).
[CrossRef]

Lukin, M. D.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Ma, Y. G.

Y. G. Ma, X. Y. Li, H. K. Yu, L. M. Tong, Y. Gu, and Q. H. Gong, “Direct measurement of propagation losses in silver nanowires,” Opt. Lett. 35(8), 1160–1162 (2010).
[CrossRef] [PubMed]

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Ma, Z.

J. Tian, Z. Ma, Q. A. Li, Y. Song, Z. H. Liu, Q. Yang, C. L. Zha, J. Akerman, L. M. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97(23), 231121 (2010).
[CrossRef]

Maier, S. A.

S. A. Maier, “Plasmonics: The promise of highly integrated optical devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1671–1677 (2006).
[CrossRef]

Meyer, M.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 127(18), 164705 (2007).
[CrossRef]

Mittleman, D. M.

K. L. Wang and D. M. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett. 96(15), 157401 (2006).
[CrossRef] [PubMed]

Mukherjee, A.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Park, H.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Park, S.

Park, S. K.

Peng, M. Y.

Polman, A.

E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102(20), 203904 (2009).
[CrossRef] [PubMed]

Poulton, C.

M. Schmidt, L. Prill Sempere, H. Tyagi, C. Poulton, and P. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[CrossRef]

Prill Sempere, L.

M. Schmidt, L. Prill Sempere, H. Tyagi, C. Poulton, and P. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[CrossRef]

H. K. Tyagi, M. A. Schmidt, L. Prill Sempere, and P. S. Russell, “Optical properties of photonic crystal fiber with integral micron-sized Ge wire,” Opt. Express 16(22), 17227–17236 (2008).
[CrossRef] [PubMed]

Pyayt, A. L.

A. L. Pyayt, B. Wiley, Y. N. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3(11), 660–665 (2008).
[CrossRef] [PubMed]

Qiu, M.

J. Tian, Z. Ma, Q. A. Li, Y. Song, Z. H. Liu, Q. Yang, C. L. Zha, J. Akerman, L. M. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97(23), 231121 (2010).
[CrossRef]

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Rogers, M.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Russell, P.

M. Schmidt, L. Prill Sempere, H. Tyagi, C. Poulton, and P. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[CrossRef]

Russell, P. S.

Russell, P. St. J.

N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. St. J. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids 357(6), 1558–1563 (2011).
[CrossRef]

H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. St. J. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35(15), 2573–2575 (2010).
[CrossRef] [PubMed]

N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. St. J. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids 356(35-36), 1829–1836 (2010).
[CrossRef]

M. A. Schmidt, N. Granzow, N. Da, M. Y. Peng, L. Wondraczek, and P. St. J. Russell, “All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers,” Opt. Lett. 34(13), 1946–1948 (2009).
[CrossRef] [PubMed]

M. A. Schmidt and P. St. J. Russell, “Long-range spiralling surface plasmon modes on metallic nanowires,” Opt. Express 16(18), 13617–13623 (2008).
[CrossRef] [PubMed]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008).
[CrossRef]

Scharrer, M.

Schmidt, M.

M. Schmidt, L. Prill Sempere, H. Tyagi, C. Poulton, and P. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[CrossRef]

Schmidt, M. A.

N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. St. J. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids 357(6), 1558–1563 (2011).
[CrossRef]

H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. St. J. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35(15), 2573–2575 (2010).
[CrossRef] [PubMed]

N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. St. J. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids 356(35-36), 1829–1836 (2010).
[CrossRef]

M. A. Schmidt, N. Granzow, N. Da, M. Y. Peng, L. Wondraczek, and P. St. J. Russell, “All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers,” Opt. Lett. 34(13), 1946–1948 (2009).
[CrossRef] [PubMed]

M. A. Schmidt and P. St. J. Russell, “Long-range spiralling surface plasmon modes on metallic nanowires,” Opt. Express 16(18), 13617–13623 (2008).
[CrossRef] [PubMed]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008).
[CrossRef]

H. K. Tyagi, M. A. Schmidt, L. Prill Sempere, and P. S. Russell, “Optical properties of photonic crystal fiber with integral micron-sized Ge wire,” Opt. Express 16(22), 17227–17236 (2008).
[CrossRef] [PubMed]

Sempere, L. P.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008).
[CrossRef]

Shadrivov, I. V.

A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105(11), 116804 (2010).
[CrossRef] [PubMed]

Shin, S. Y.

Song, Y.

J. Tian, Z. Ma, Q. A. Li, Y. Song, Z. H. Liu, Q. Yang, C. L. Zha, J. Akerman, L. M. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97(23), 231121 (2010).
[CrossRef]

Spasenovic, M.

E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102(20), 203904 (2009).
[CrossRef] [PubMed]

Tian, J.

J. Tian, Z. Ma, Q. A. Li, Y. Song, Z. H. Liu, Q. Yang, C. L. Zha, J. Akerman, L. M. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97(23), 231121 (2010).
[CrossRef]

Tong, L. M.

J. Tian, Z. Ma, Q. A. Li, Y. Song, Z. H. Liu, Q. Yang, C. L. Zha, J. Akerman, L. M. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97(23), 231121 (2010).
[CrossRef]

Y. G. Ma, X. Y. Li, H. K. Yu, L. M. Tong, Y. Gu, and Q. H. Gong, “Direct measurement of propagation losses in silver nanowires,” Opt. Lett. 35(8), 1160–1162 (2010).
[CrossRef] [PubMed]

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Tyagi, H.

M. Schmidt, L. Prill Sempere, H. Tyagi, C. Poulton, and P. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[CrossRef]

Tyagi, H. K.

Uebel, P.

Verhagen, E.

E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102(20), 203904 (2009).
[CrossRef] [PubMed]

Wadsworth, W. J.

Wagner, D.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Wang, C. Y.

Wang, K. L.

K. L. Wang and D. M. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett. 96(15), 157401 (2006).
[CrossRef] [PubMed]

Washburn, E. W.

E. W. Washburn, “The dynamics of capillary flow,” Phys. Rev. 17(3), 273–283 (1921).
[CrossRef]

Wiley, B.

A. L. Pyayt, B. Wiley, Y. N. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3(11), 660–665 (2008).
[CrossRef] [PubMed]

Wiley, B. J.

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Witkowska, A.

Wondraczek, L.

N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. St. J. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids 357(6), 1558–1563 (2011).
[CrossRef]

N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. St. J. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids 356(35-36), 1829–1836 (2010).
[CrossRef]

M. A. Schmidt, N. Granzow, N. Da, M. Y. Peng, L. Wondraczek, and P. St. J. Russell, “All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers,” Opt. Lett. 34(13), 1946–1948 (2009).
[CrossRef] [PubMed]

Xia, Y. N.

A. L. Pyayt, B. Wiley, Y. N. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3(11), 660–665 (2008).
[CrossRef] [PubMed]

Yang, Q.

J. Tian, Z. Ma, Q. A. Li, Y. Song, Z. H. Liu, Q. Yang, C. L. Zha, J. Akerman, L. M. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97(23), 231121 (2010).
[CrossRef]

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Yu, C. L.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Yu, H. K.

Y. G. Ma, X. Y. Li, H. K. Yu, L. M. Tong, Y. Gu, and Q. H. Gong, “Direct measurement of propagation losses in silver nanowires,” Opt. Lett. 35(8), 1160–1162 (2010).
[CrossRef] [PubMed]

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Zha, C. L.

J. Tian, Z. Ma, Q. A. Li, Y. Song, Z. H. Liu, Q. Yang, C. L. Zha, J. Akerman, L. M. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97(23), 231121 (2010).
[CrossRef]

Zhang, X. N.

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Zhang, Z. X.

Zharov, A. A.

A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105(11), 116804 (2010).
[CrossRef] [PubMed]

Zibrov, A. S.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

J. Tian, Z. Ma, Q. A. Li, Y. Song, Z. H. Liu, Q. Yang, C. L. Zha, J. Akerman, L. M. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97(23), 231121 (2010).
[CrossRef]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. A. Maier, “Plasmonics: The promise of highly integrated optical devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1671–1677 (2006).
[CrossRef]

J. Chem. Phys. (1)

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 127(18), 164705 (2007).
[CrossRef]

J. Non-Cryst. Solids (2)

N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. St. J. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids 357(6), 1558–1563 (2011).
[CrossRef]

N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. St. J. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids 356(35-36), 1829–1836 (2010).
[CrossRef]

Nano Lett. (1)

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

A. L. Pyayt, B. Wiley, Y. N. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3(11), 660–665 (2008).
[CrossRef] [PubMed]

Nature (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (4)

Phys. Rev. (1)

E. W. Washburn, “The dynamics of capillary flow,” Phys. Rev. 17(3), 273–283 (1921).
[CrossRef]

Phys. Rev. B (1)

M. Schmidt, L. Prill Sempere, H. Tyagi, C. Poulton, and P. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[CrossRef]

Phys. Rev. Lett. (4)

E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102(20), 203904 (2009).
[CrossRef] [PubMed]

A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105(11), 116804 (2010).
[CrossRef] [PubMed]

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

K. L. Wang and D. M. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett. 96(15), 157401 (2006).
[CrossRef] [PubMed]

Other (4)

S. Z. Beer, Liquid Metals (Marcel Dekker, Inc, 1972).

T. Iida, and R. Guthrie, The Physical Properties of Liquid Metals (Clarendon Press, 1988).

A. W. Snyder, and J. Love, Optical Waveguide Theory , 1st ed. (Springer, 1983).

M. J. Weber, Handbook Of Optical Materials (CRC Press, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The spliced-fiber pressure-filling technique. (a) A gold wire is inserted into a silica capillary. (b) The wire is pushed into the capillary using a tungsten wire and the capillary end cleaved off. (c) Capillary with wire is spliced to a silica fiber with hollow channels. (d) The spliced section is heated to the melting point of gold and high pressure argon gas is applied. (e) The filled structure.

Fig. 2
Fig. 2

(a) Channel diameter that can be filled within 1 hour to a 10 cm filling length as a function of pressure for three different materials (calculated using Eq. (1). The grey dashed line indicates the maximum pressure available with the current experimental system. (b) Scanning electronic micrograph of the smallest gold nanowire fabricated so far with the splice-filling technique (diameter 120 nm) (the end face is polished using focused ion-beam milling). (c) Minimum pressure required to overcome surface tension (so as to be able to fill a capillary with molten gold) as a function of capillary diameter.

Fig. 3
Fig. 3

Optical side-views of the splices (left-hand column) and SEMs of the cleaved end-faces (right-hand column). (a) Solid-core PCF with all its channels filled with Au. (b) PCF in which only two channels are filled with Au. (c) Modified step index fiber with a parallel gold nanowire.

Fig. 4
Fig. 4

(a) Schematic of the light scattering from a discontinuous gold nanowire located in a MSIF. Microscope side image (in reflection) of a representative section of the gold wire (diameter 510 nm). (b) No light in the glass core, side illumination. (c) Scattering pattern when white light is launched into the glass core from the right (no side illumination). The dashed yellow lines are guides, indicating that the red dots occur at the nanowire ends.

Fig. 5
Fig. 5

(a) Measured side-scattering spectra of the Au-filled MSIF at different positions along the fiber axis. The spacing between successive measurements is 1.5 mm. The yellow section indicates the mode coupling area (equal to the yellow section in Fig. 6a and b). (b) Polar plot of the polarization dependence of the side scattered light. The angle refer to the orientation of the polarizer axis and the purple line indicates the direction of the wire axis.

Fig. 6
Fig. 6

(a) Analytically calculated dispersion of the LP01 of an isolated glass core mode (purple) and the m = 2 and m = 3 guided SPP modes (green) on an isolated 510 nm wide gold wire. The yellow-shaded region indicates the position of the experimental loss peak. Inset: schematic of the gold-filled MSIF and definition of the coordinate axes. Dark grey: dielectric core, orange: plasmonic waveguide, white: air-gap. (b) Attenuation spectrum (black curve) determined experimentally from the side-scattering measurements (y-polarization launched into fiber). The other two curves refer to the attenuation of the dielectric-like mode (blue: coupled-mode theory (CMT); red: FE-simulations for y-polarization). Inset: Calculated attenuation (CMT) of the two hybrid supermodes plotted against wavelength (brown: plasmon-like mode; blue: dielectric-like mode). The dashed black line indicates the resonance (693.97 nm). The two right-hand images show FE modelling of the axial Poynting vector distributions at resonance (701.5 nm) for (c) the dielectric-like and (d) the plasmon-like modes. The Poynting vector (Sz) has been normalized to the maximum value (Sz N) and is plotted in common logarithmic scale. The colour scale refers to log(Sz N). The wire is on the right-hand side in both (c) and (d).

Fig. 7
Fig. 7

(a) Sketch of the conical coupler. (b) Side-scattering spectra for the conical wire, measured at different spatial positions. (c) Conical wire profile calculated from the side-scattering spectrum. Inset: experimentally determined relationship between wire diameter and resonance wavelength.

Tables (1)

Tables Icon

Table 1 Material Parameters for Glass, Gold and Water

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L = 1 2 ( 2 R γ cos θ + R 2 p ) t / η ,
β ± = β C + ( ϑ + i α ± i ( i ϑ + α ) 2 4 κ 2 ) / 2 ,

Metrics