Abstract

We report on single rolled-up microtubes integrated with silicon-on-insulator waveguides. Microtubes with diameters of ~7 μm, wall thicknesses of ~250 nm, and lengths greater than 100 μm are fabricated by selectively releasing a coherently strained InGaAs/GaAs quantum dot layer from the handling GaAs substrate. The microtubes are then transferred from their host substrate to silicon-on-insulator waveguides by an optical fiber abrupt taper. The Q-factor of the waveguide coupled microtube is measured to be 1.5×105, the highest recorded for a semiconductor microtube cavity to date. The insertion loss and extinction ratio of the microtube are 1 dB and 34 dB respectively. By pumping the microtube with a 635 nm laser, the resonance wavelength is shifted by 0.7 nm. The integration of InGaAs/GaAs microtubes with silicon-on-insulator waveguides provides a simple, low loss, high extinction passive filter solution in the C+L band communication regime.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Bruns, T. Mitze, M. Schnarrenberger, L. Zimmermann, K. Voigt, M. Krieg, J. Kreissl, K. Janiak, T. Hartwich, and K. Petermann, “SOI-based optical board technology,” AEU-Int. J. Electron. C. 61, 158–162 (2007).
    [CrossRef]
  2. Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101(12), 127403 (2008).
    [CrossRef] [PubMed]
  3. F. Li, Z. T. Mi, and S. Vicknesh, “Coherent emission from ultrathin-walled spiral InGaAs/GaAs quantum dot microtubes,” Opt. Lett. 34(19), 2915–2917 (2009).
    [CrossRef] [PubMed]
  4. F. Li and Z. T. Mi, “Optically pumped rolled-up InGaAs/GaAs quantum dot microtube lasers,” Opt. Express 17(22), 19933–19939 (2009).
    [CrossRef] [PubMed]
  5. S. Vicknesh, F. Li, and Z. T. Mi, “Optical microcavities on Si formed by self-assembled InGaAs/GaAs quantum dot microtubes,” Appl. Phys. Lett. 94(8), 081101 (2009).
    [CrossRef]
  6. X. Li, “Strain induced semiconductor nanotubes: from formation process to device applications,” J. Phys. D Appl. Phys. 41(19), 193001 (2008).
    [CrossRef]
  7. Z. Tian, F. Li, Z. T. Mi, and D. V. Plant, “Controlled transfer of single rolled-up InGaAs–GaAs quantum-dot microtube ring resonators using optical fiber abrupt tapers,” IEEE Photon. Technol. Lett. 22(5), 311–313 (2010).
    [CrossRef]
  8. A. Meldrum, P. Bianucci, and F. Marsiglio, “Modification of ensemble emission rates and luminescence spectra for inhomogeneously broadened distributions of quantum dots coupled to optical microcavities,” Opt. Express 18(10), 10230–10246 (2010).
    [CrossRef] [PubMed]
  9. A. V. Prinz, V. Y. Prinz, and V. A. Seleznev, “Semiconductor micro- and nanoneedles for microinjections and ink-jet printing,” Microelectron. Eng. 67–68, 782–788 (2003).
    [CrossRef]
  10. V. Veerasubramanian, A. G. Kirk, G. Beaudin, A. Giguère, B. LeDrogoff, and V. Aimez, “Waveguide coupled drop filters on SOI using vertical sidewalled grating resonators”, 23rd Annual Meeting of the IEEE Photonics Society, 634–635 (2010).
  11. G. T. Reed, Silicon Photonics: The State of the Art, (John Wiley & Sons, 2008).
  12. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
    [CrossRef]
  13. G. S. Murugan, J. S. Wilkinson, and M. N. Zervas, “Selective excitation of whispering gallery modes in a novel bottle microresonator,” Opt. Express 17(14), 11916–11925 (2009).
    [CrossRef]
  14. S. Adachi, “Optical Properties” in Properties of group-IV, III–V and II–VI semiconductors, 241(John Wiley & Sons, 2005).
  15. R. Kumar, L. Liu, G. Roelkens, E.-J. Geluk, T. de Vries, F. Karouta, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “10-GHz all-optical gate based on a III–V/SOI microdisk,” IEEE Photon. Technol. Lett. 22(13), 981–983 (2010).
    [CrossRef]
  16. L. Zhang, J.-Y. Yang, M. Song, Y. Li, B. Zhang, R. G. Beausoleil, and A. E. Willner, “Microring-based modulation and demodulation of DPSK signal,” Opt. Express 15(18), 11564–11569 (2007).
    [CrossRef] [PubMed]
  17. S.-W. Jeon, Y. H. Kim, B. H. Lee, M. A. Jung, and C.-S. Park, “OSNR monitoring technique based on cascaded long-period fiber grating with optically tunable phase shifter,” Opt. Express 16(25), 20603–20609 (2008).
    [CrossRef] [PubMed]

2010

Z. Tian, F. Li, Z. T. Mi, and D. V. Plant, “Controlled transfer of single rolled-up InGaAs–GaAs quantum-dot microtube ring resonators using optical fiber abrupt tapers,” IEEE Photon. Technol. Lett. 22(5), 311–313 (2010).
[CrossRef]

A. Meldrum, P. Bianucci, and F. Marsiglio, “Modification of ensemble emission rates and luminescence spectra for inhomogeneously broadened distributions of quantum dots coupled to optical microcavities,” Opt. Express 18(10), 10230–10246 (2010).
[CrossRef] [PubMed]

R. Kumar, L. Liu, G. Roelkens, E.-J. Geluk, T. de Vries, F. Karouta, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “10-GHz all-optical gate based on a III–V/SOI microdisk,” IEEE Photon. Technol. Lett. 22(13), 981–983 (2010).
[CrossRef]

2009

2008

X. Li, “Strain induced semiconductor nanotubes: from formation process to device applications,” J. Phys. D Appl. Phys. 41(19), 193001 (2008).
[CrossRef]

S.-W. Jeon, Y. H. Kim, B. H. Lee, M. A. Jung, and C.-S. Park, “OSNR monitoring technique based on cascaded long-period fiber grating with optically tunable phase shifter,” Opt. Express 16(25), 20603–20609 (2008).
[CrossRef] [PubMed]

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101(12), 127403 (2008).
[CrossRef] [PubMed]

2007

J. Bruns, T. Mitze, M. Schnarrenberger, L. Zimmermann, K. Voigt, M. Krieg, J. Kreissl, K. Janiak, T. Hartwich, and K. Petermann, “SOI-based optical board technology,” AEU-Int. J. Electron. C. 61, 158–162 (2007).
[CrossRef]

L. Zhang, J.-Y. Yang, M. Song, Y. Li, B. Zhang, R. G. Beausoleil, and A. E. Willner, “Microring-based modulation and demodulation of DPSK signal,” Opt. Express 15(18), 11564–11569 (2007).
[CrossRef] [PubMed]

2003

A. V. Prinz, V. Y. Prinz, and V. A. Seleznev, “Semiconductor micro- and nanoneedles for microinjections and ink-jet printing,” Microelectron. Eng. 67–68, 782–788 (2003).
[CrossRef]

2002

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

Baets, R.

R. Kumar, L. Liu, G. Roelkens, E.-J. Geluk, T. de Vries, F. Karouta, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “10-GHz all-optical gate based on a III–V/SOI microdisk,” IEEE Photon. Technol. Lett. 22(13), 981–983 (2010).
[CrossRef]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

Beausoleil, R. G.

Bianucci, P.

Bienstman, P.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

Bogaerts, W.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

Bruns, J.

J. Bruns, T. Mitze, M. Schnarrenberger, L. Zimmermann, K. Voigt, M. Krieg, J. Kreissl, K. Janiak, T. Hartwich, and K. Petermann, “SOI-based optical board technology,” AEU-Int. J. Electron. C. 61, 158–162 (2007).
[CrossRef]

De Mesel, K.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

de Vries, T.

R. Kumar, L. Liu, G. Roelkens, E.-J. Geluk, T. de Vries, F. Karouta, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “10-GHz all-optical gate based on a III–V/SOI microdisk,” IEEE Photon. Technol. Lett. 22(13), 981–983 (2010).
[CrossRef]

Geluk, E.-J.

R. Kumar, L. Liu, G. Roelkens, E.-J. Geluk, T. de Vries, F. Karouta, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “10-GHz all-optical gate based on a III–V/SOI microdisk,” IEEE Photon. Technol. Lett. 22(13), 981–983 (2010).
[CrossRef]

Hartwich, T.

J. Bruns, T. Mitze, M. Schnarrenberger, L. Zimmermann, K. Voigt, M. Krieg, J. Kreissl, K. Janiak, T. Hartwich, and K. Petermann, “SOI-based optical board technology,” AEU-Int. J. Electron. C. 61, 158–162 (2007).
[CrossRef]

Heitmann, D.

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101(12), 127403 (2008).
[CrossRef] [PubMed]

Heyn, Ch.

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101(12), 127403 (2008).
[CrossRef] [PubMed]

Janiak, K.

J. Bruns, T. Mitze, M. Schnarrenberger, L. Zimmermann, K. Voigt, M. Krieg, J. Kreissl, K. Janiak, T. Hartwich, and K. Petermann, “SOI-based optical board technology,” AEU-Int. J. Electron. C. 61, 158–162 (2007).
[CrossRef]

Jeon, S.-W.

Jung, M. A.

Karouta, F.

R. Kumar, L. Liu, G. Roelkens, E.-J. Geluk, T. de Vries, F. Karouta, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “10-GHz all-optical gate based on a III–V/SOI microdisk,” IEEE Photon. Technol. Lett. 22(13), 981–983 (2010).
[CrossRef]

Kim, Y. H.

Kipp, T.

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101(12), 127403 (2008).
[CrossRef] [PubMed]

Krauss, T. F.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

Kreissl, J.

J. Bruns, T. Mitze, M. Schnarrenberger, L. Zimmermann, K. Voigt, M. Krieg, J. Kreissl, K. Janiak, T. Hartwich, and K. Petermann, “SOI-based optical board technology,” AEU-Int. J. Electron. C. 61, 158–162 (2007).
[CrossRef]

Krieg, M.

J. Bruns, T. Mitze, M. Schnarrenberger, L. Zimmermann, K. Voigt, M. Krieg, J. Kreissl, K. Janiak, T. Hartwich, and K. Petermann, “SOI-based optical board technology,” AEU-Int. J. Electron. C. 61, 158–162 (2007).
[CrossRef]

Kumar, R.

R. Kumar, L. Liu, G. Roelkens, E.-J. Geluk, T. de Vries, F. Karouta, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “10-GHz all-optical gate based on a III–V/SOI microdisk,” IEEE Photon. Technol. Lett. 22(13), 981–983 (2010).
[CrossRef]

Lee, B. H.

Li, F.

Z. Tian, F. Li, Z. T. Mi, and D. V. Plant, “Controlled transfer of single rolled-up InGaAs–GaAs quantum-dot microtube ring resonators using optical fiber abrupt tapers,” IEEE Photon. Technol. Lett. 22(5), 311–313 (2010).
[CrossRef]

F. Li and Z. T. Mi, “Optically pumped rolled-up InGaAs/GaAs quantum dot microtube lasers,” Opt. Express 17(22), 19933–19939 (2009).
[CrossRef] [PubMed]

S. Vicknesh, F. Li, and Z. T. Mi, “Optical microcavities on Si formed by self-assembled InGaAs/GaAs quantum dot microtubes,” Appl. Phys. Lett. 94(8), 081101 (2009).
[CrossRef]

F. Li, Z. T. Mi, and S. Vicknesh, “Coherent emission from ultrathin-walled spiral InGaAs/GaAs quantum dot microtubes,” Opt. Lett. 34(19), 2915–2917 (2009).
[CrossRef] [PubMed]

Li, X.

X. Li, “Strain induced semiconductor nanotubes: from formation process to device applications,” J. Phys. D Appl. Phys. 41(19), 193001 (2008).
[CrossRef]

Li, Y.

Liu, L.

R. Kumar, L. Liu, G. Roelkens, E.-J. Geluk, T. de Vries, F. Karouta, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “10-GHz all-optical gate based on a III–V/SOI microdisk,” IEEE Photon. Technol. Lett. 22(13), 981–983 (2010).
[CrossRef]

Marsiglio, F.

Meldrum, A.

Mi, Z. T.

Z. Tian, F. Li, Z. T. Mi, and D. V. Plant, “Controlled transfer of single rolled-up InGaAs–GaAs quantum-dot microtube ring resonators using optical fiber abrupt tapers,” IEEE Photon. Technol. Lett. 22(5), 311–313 (2010).
[CrossRef]

S. Vicknesh, F. Li, and Z. T. Mi, “Optical microcavities on Si formed by self-assembled InGaAs/GaAs quantum dot microtubes,” Appl. Phys. Lett. 94(8), 081101 (2009).
[CrossRef]

F. Li and Z. T. Mi, “Optically pumped rolled-up InGaAs/GaAs quantum dot microtube lasers,” Opt. Express 17(22), 19933–19939 (2009).
[CrossRef] [PubMed]

F. Li, Z. T. Mi, and S. Vicknesh, “Coherent emission from ultrathin-walled spiral InGaAs/GaAs quantum dot microtubes,” Opt. Lett. 34(19), 2915–2917 (2009).
[CrossRef] [PubMed]

Mitze, T.

J. Bruns, T. Mitze, M. Schnarrenberger, L. Zimmermann, K. Voigt, M. Krieg, J. Kreissl, K. Janiak, T. Hartwich, and K. Petermann, “SOI-based optical board technology,” AEU-Int. J. Electron. C. 61, 158–162 (2007).
[CrossRef]

Moerman, I.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

Morthier, G.

R. Kumar, L. Liu, G. Roelkens, E.-J. Geluk, T. de Vries, F. Karouta, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “10-GHz all-optical gate based on a III–V/SOI microdisk,” IEEE Photon. Technol. Lett. 22(13), 981–983 (2010).
[CrossRef]

Murugan, G. S.

Park, C.-S.

Petermann, K.

J. Bruns, T. Mitze, M. Schnarrenberger, L. Zimmermann, K. Voigt, M. Krieg, J. Kreissl, K. Janiak, T. Hartwich, and K. Petermann, “SOI-based optical board technology,” AEU-Int. J. Electron. C. 61, 158–162 (2007).
[CrossRef]

Plant, D. V.

Z. Tian, F. Li, Z. T. Mi, and D. V. Plant, “Controlled transfer of single rolled-up InGaAs–GaAs quantum-dot microtube ring resonators using optical fiber abrupt tapers,” IEEE Photon. Technol. Lett. 22(5), 311–313 (2010).
[CrossRef]

Prinz, A. V.

A. V. Prinz, V. Y. Prinz, and V. A. Seleznev, “Semiconductor micro- and nanoneedles for microinjections and ink-jet printing,” Microelectron. Eng. 67–68, 782–788 (2003).
[CrossRef]

Prinz, V. Y.

A. V. Prinz, V. Y. Prinz, and V. A. Seleznev, “Semiconductor micro- and nanoneedles for microinjections and ink-jet printing,” Microelectron. Eng. 67–68, 782–788 (2003).
[CrossRef]

Regreny, P.

R. Kumar, L. Liu, G. Roelkens, E.-J. Geluk, T. de Vries, F. Karouta, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “10-GHz all-optical gate based on a III–V/SOI microdisk,” IEEE Photon. Technol. Lett. 22(13), 981–983 (2010).
[CrossRef]

Rehberg, H.

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101(12), 127403 (2008).
[CrossRef] [PubMed]

Roelkens, G.

R. Kumar, L. Liu, G. Roelkens, E.-J. Geluk, T. de Vries, F. Karouta, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “10-GHz all-optical gate based on a III–V/SOI microdisk,” IEEE Photon. Technol. Lett. 22(13), 981–983 (2010).
[CrossRef]

Schnarrenberger, M.

J. Bruns, T. Mitze, M. Schnarrenberger, L. Zimmermann, K. Voigt, M. Krieg, J. Kreissl, K. Janiak, T. Hartwich, and K. Petermann, “SOI-based optical board technology,” AEU-Int. J. Electron. C. 61, 158–162 (2007).
[CrossRef]

Schultz, C. M.

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101(12), 127403 (2008).
[CrossRef] [PubMed]

Seleznev, V. A.

A. V. Prinz, V. Y. Prinz, and V. A. Seleznev, “Semiconductor micro- and nanoneedles for microinjections and ink-jet printing,” Microelectron. Eng. 67–68, 782–788 (2003).
[CrossRef]

Song, M.

Strelow, Ch.

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101(12), 127403 (2008).
[CrossRef] [PubMed]

Taillaert, D.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

Thourhout, D. V.

R. Kumar, L. Liu, G. Roelkens, E.-J. Geluk, T. de Vries, F. Karouta, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “10-GHz all-optical gate based on a III–V/SOI microdisk,” IEEE Photon. Technol. Lett. 22(13), 981–983 (2010).
[CrossRef]

Tian, Z.

Z. Tian, F. Li, Z. T. Mi, and D. V. Plant, “Controlled transfer of single rolled-up InGaAs–GaAs quantum-dot microtube ring resonators using optical fiber abrupt tapers,” IEEE Photon. Technol. Lett. 22(5), 311–313 (2010).
[CrossRef]

Van Daele, P.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

Verstuyft, S.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

Vicknesh, S.

S. Vicknesh, F. Li, and Z. T. Mi, “Optical microcavities on Si formed by self-assembled InGaAs/GaAs quantum dot microtubes,” Appl. Phys. Lett. 94(8), 081101 (2009).
[CrossRef]

F. Li, Z. T. Mi, and S. Vicknesh, “Coherent emission from ultrathin-walled spiral InGaAs/GaAs quantum dot microtubes,” Opt. Lett. 34(19), 2915–2917 (2009).
[CrossRef] [PubMed]

Voigt, K.

J. Bruns, T. Mitze, M. Schnarrenberger, L. Zimmermann, K. Voigt, M. Krieg, J. Kreissl, K. Janiak, T. Hartwich, and K. Petermann, “SOI-based optical board technology,” AEU-Int. J. Electron. C. 61, 158–162 (2007).
[CrossRef]

Welsch, H.

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101(12), 127403 (2008).
[CrossRef] [PubMed]

Wilkinson, J. S.

Willner, A. E.

Yang, J.-Y.

Zervas, M. N.

Zhang, B.

Zhang, L.

Zimmermann, L.

J. Bruns, T. Mitze, M. Schnarrenberger, L. Zimmermann, K. Voigt, M. Krieg, J. Kreissl, K. Janiak, T. Hartwich, and K. Petermann, “SOI-based optical board technology,” AEU-Int. J. Electron. C. 61, 158–162 (2007).
[CrossRef]

AEU-Int. J. Electron. C.

J. Bruns, T. Mitze, M. Schnarrenberger, L. Zimmermann, K. Voigt, M. Krieg, J. Kreissl, K. Janiak, T. Hartwich, and K. Petermann, “SOI-based optical board technology,” AEU-Int. J. Electron. C. 61, 158–162 (2007).
[CrossRef]

Appl. Phys. Lett.

S. Vicknesh, F. Li, and Z. T. Mi, “Optical microcavities on Si formed by self-assembled InGaAs/GaAs quantum dot microtubes,” Appl. Phys. Lett. 94(8), 081101 (2009).
[CrossRef]

IEEE J. Quantum Electron.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

R. Kumar, L. Liu, G. Roelkens, E.-J. Geluk, T. de Vries, F. Karouta, P. Regreny, D. V. Thourhout, R. Baets, and G. Morthier, “10-GHz all-optical gate based on a III–V/SOI microdisk,” IEEE Photon. Technol. Lett. 22(13), 981–983 (2010).
[CrossRef]

Z. Tian, F. Li, Z. T. Mi, and D. V. Plant, “Controlled transfer of single rolled-up InGaAs–GaAs quantum-dot microtube ring resonators using optical fiber abrupt tapers,” IEEE Photon. Technol. Lett. 22(5), 311–313 (2010).
[CrossRef]

J. Phys. D Appl. Phys.

X. Li, “Strain induced semiconductor nanotubes: from formation process to device applications,” J. Phys. D Appl. Phys. 41(19), 193001 (2008).
[CrossRef]

Microelectron. Eng.

A. V. Prinz, V. Y. Prinz, and V. A. Seleznev, “Semiconductor micro- and nanoneedles for microinjections and ink-jet printing,” Microelectron. Eng. 67–68, 782–788 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101(12), 127403 (2008).
[CrossRef] [PubMed]

Other

S. Adachi, “Optical Properties” in Properties of group-IV, III–V and II–VI semiconductors, 241(John Wiley & Sons, 2005).

V. Veerasubramanian, A. G. Kirk, G. Beaudin, A. Giguère, B. LeDrogoff, and V. Aimez, “Waveguide coupled drop filters on SOI using vertical sidewalled grating resonators”, 23rd Annual Meeting of the IEEE Photonics Society, 634–635 (2010).

G. T. Reed, Silicon Photonics: The State of the Art, (John Wiley & Sons, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic diagram of the layer structure and rolling mechanism for InGaAs/GaAs based microtubes. (b) U-shaped mesa that results in a free-standing tube. (c) Free-standing tube, product from the rolling of the U-shaped mesa in (b).

Fig. 2
Fig. 2

Optical microscope images of (a) one tube held by an optical fiber abrupt taper (b) the tube attached to the fiber surface due to the strong attraction to the surface of a cleaved single-mode fiber SMF-28

Fig. 3
Fig. 3

SEM images of (a) facet of a fabricated waveguide, and (b) grating coupler.

Fig. 4
Fig. 4

(a) Calculated electric field for an SOI waveguide with a 1 μm ridge representing the resonator and a 50 nm gap between them. (b) Field intensity along the vertical axis. (c) Field intensity along the horizontal axis.

Fig. 5
Fig. 5

(a) Experimental setup of coupling between the microtube and SOI waveguides (b) SEM image of a whole tube mounted on the waveguide (left inset: SEM image of the cross section of the leg. right inset: SEM image of the free-standing part with corrugation)

Fig. 6
Fig. 6

(a) Transmission spectra of the microtube and SOI waveguide coupling under the effect of the surface tension force and vibration, (b) Q-factor measurement of the microtube under critical coupling

Fig. 7
Fig. 7

(a) Transmission spectra for different coupling positions: center (solid red), 5 µm from the center (dashed green), and 10 µm from the center (solid blue) of the free-standing part. (b) Transmission spectra for different laser power coupled through the SOI waveguide.

Fig. 8
Fig. 8

(a) Transmission spectra of the microtube with and without 1 mW 635 nm laser pump through the abrupt taper. Insets shows the major resonance wavelength shift related to the pump laser power. (b) Modulated 1544.8 nm laser output by pumping the microtube with a 1 mW 635 nm laser at 1 Hz

Metrics