Abstract

The single mode Fabry-Perot (FP) semiconductor lasers are investigated systematically by a rigorous time-domain theoretical model based on the transfer matrix method. Static and high-speed dynamic performances under direct modulation and strong external optical feedbacks are simulated for both symmetric and asymmetric longitudinal structures of the lasers. Comparisons with the DFB and conventional FP lasers are made to confirm its effectiveness in achieving single-mode lasing with high spectrum purity under modulation and feedback conditions. Structural optimization is also carried out with respect to the key design parameters.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. O’Brien and E. P. O’Reilly, “Theory of improved spectral purity in index patterned Fabry-Perot lasers,” Appl. Phys. Lett. 86, 201101 (2005).
    [CrossRef]
  2. J. S. Young, D. A. Kozlowski, J. M. C. England, and R. G. S. Plumb, “Spectral perturbation and mode suppression in 1.3μm Fabry-Perot lasers,” Electron. Lett. 31(4), 290–291 (1995).
    [CrossRef]
  3. B. Corbett and D. McDonald, “Single longitudinal mode ridge waveguide 1.3μm Fabry-Perot laser by modal perturbation,” Electron. Lett. 31(25), 2181–2182 (1995).
    [CrossRef]
  4. S. O’Brien, A. Amann, R. Fehse, S. Osborne, E. P. O’Reilly, and J. M. Rondinelli, “Spectral manipulation in Fabry-Perot lasers: perturbative inverse scattering approach,” J. Opt. Soc. Am. B 23, 1046–1056 (2006).
    [CrossRef]
  5. Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photon. Technol. Lett. 18(24), 2605–2607 (2006).
    [CrossRef]
  6. D. C. Byrne, J. P. Engelstaedter, W. H. Guo, Y. Q. Lu, B. Corbett, B. Roycroft, J. O'Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
    [CrossRef]
  7. G. Adolfsson, J. Bengtsson, and A. Larsson, “Spectral engineering of semiconductor Fabry-Perot laser cavities in the weakly and strongly perturbed regimes,” J. Opt. Soc. Am. B 27(1), 118–127 (2010).
    [CrossRef]
  8. C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O'Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O'Gorman, “Discrete mode lasers for communication applications,” IET Optoelectron. 3(1), 1–17 (2009).
    [CrossRef]
  9. L. M. Zhang, S. F. Yu, M. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, “Dynamic analysis of radiation and side mode suppression in second-order DFB lasers using time-domain large signal traveling wave model,” IEEE J. Quantum Electron. 30(6), 1389–1395 (1994).
    [CrossRef]
  10. D. D. Marcenac and J. E. Carroll, “Quantum-mechanical model for realistic Fabry-Perot lasers,” IEE Proc. J. 140, 157–171 (1993).
  11. D. A. Kozlowski, J. S. Young, R. G. S. Plumb, and J. M. C. England, “Time-domain modeling of mode suppression in 1.3-μm Fabry-Perot lasers,” IEEE Photon. Technol. Lett. 8(6), 755–757 (1996).
    [CrossRef]
  12. M. G. Davis and R. F. O’Dowd, “A new large-signal dynamic model for multielectrode DFB lasers based on the transfer matrix method,” IEEE Photon. Technol. Lett. 4(8), 838–840 (1992).
    [CrossRef]
  13. O. A. Lavrova and D. J. Blumenthal, “Detailed transfer matrix method-based dynamic model for multisection widely tunable GCSR lasers,” J. Lightwave Technol. 18(9), 1274–1283 (2000).
    [CrossRef]
  14. W. Li, X. Li, and W. P. Huang, “A traveling-wave model of laser diodes with consideration for thermal effects,” Opt. Quantum Electron. 36(8), 709–724 (2004).
    [CrossRef]
  15. M. Homar, J. V. Moloney, and M. S. Miguel, “Traveling wave model of a multimode Fabry-Perot laser in free running and external cavity configurations,” IEEE J. Quantum Electron. 32(3), 553–566 (1996).
    [CrossRef]
  16. D. J. Jones, L. M. Zhang, J. E. Carroll, and D. D. Marcenac, “Dynamics of monolithic passively mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 31(6), 1051–1058 (1995).
    [CrossRef]
  17. Y. P. Xi, X. Li, and W. P. Huang, “Time-domain standing-wave approach based on cold cavity modes for simulation of DFB lasers,” IEEE J. Quantum Electron. 44(10), 931–937 (2008).
    [CrossRef]

2010 (1)

2009 (2)

D. C. Byrne, J. P. Engelstaedter, W. H. Guo, Y. Q. Lu, B. Corbett, B. Roycroft, J. O'Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[CrossRef]

C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O'Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O'Gorman, “Discrete mode lasers for communication applications,” IET Optoelectron. 3(1), 1–17 (2009).
[CrossRef]

2008 (1)

Y. P. Xi, X. Li, and W. P. Huang, “Time-domain standing-wave approach based on cold cavity modes for simulation of DFB lasers,” IEEE J. Quantum Electron. 44(10), 931–937 (2008).
[CrossRef]

2006 (2)

Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photon. Technol. Lett. 18(24), 2605–2607 (2006).
[CrossRef]

S. O’Brien, A. Amann, R. Fehse, S. Osborne, E. P. O’Reilly, and J. M. Rondinelli, “Spectral manipulation in Fabry-Perot lasers: perturbative inverse scattering approach,” J. Opt. Soc. Am. B 23, 1046–1056 (2006).
[CrossRef]

2005 (1)

S. O’Brien and E. P. O’Reilly, “Theory of improved spectral purity in index patterned Fabry-Perot lasers,” Appl. Phys. Lett. 86, 201101 (2005).
[CrossRef]

2004 (1)

W. Li, X. Li, and W. P. Huang, “A traveling-wave model of laser diodes with consideration for thermal effects,” Opt. Quantum Electron. 36(8), 709–724 (2004).
[CrossRef]

2000 (1)

1996 (2)

M. Homar, J. V. Moloney, and M. S. Miguel, “Traveling wave model of a multimode Fabry-Perot laser in free running and external cavity configurations,” IEEE J. Quantum Electron. 32(3), 553–566 (1996).
[CrossRef]

D. A. Kozlowski, J. S. Young, R. G. S. Plumb, and J. M. C. England, “Time-domain modeling of mode suppression in 1.3-μm Fabry-Perot lasers,” IEEE Photon. Technol. Lett. 8(6), 755–757 (1996).
[CrossRef]

1995 (3)

D. J. Jones, L. M. Zhang, J. E. Carroll, and D. D. Marcenac, “Dynamics of monolithic passively mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 31(6), 1051–1058 (1995).
[CrossRef]

J. S. Young, D. A. Kozlowski, J. M. C. England, and R. G. S. Plumb, “Spectral perturbation and mode suppression in 1.3μm Fabry-Perot lasers,” Electron. Lett. 31(4), 290–291 (1995).
[CrossRef]

B. Corbett and D. McDonald, “Single longitudinal mode ridge waveguide 1.3μm Fabry-Perot laser by modal perturbation,” Electron. Lett. 31(25), 2181–2182 (1995).
[CrossRef]

1994 (1)

L. M. Zhang, S. F. Yu, M. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, “Dynamic analysis of radiation and side mode suppression in second-order DFB lasers using time-domain large signal traveling wave model,” IEEE J. Quantum Electron. 30(6), 1389–1395 (1994).
[CrossRef]

1993 (1)

D. D. Marcenac and J. E. Carroll, “Quantum-mechanical model for realistic Fabry-Perot lasers,” IEE Proc. J. 140, 157–171 (1993).

1992 (1)

M. G. Davis and R. F. O’Dowd, “A new large-signal dynamic model for multielectrode DFB lasers based on the transfer matrix method,” IEEE Photon. Technol. Lett. 4(8), 838–840 (1992).
[CrossRef]

Adolfsson, G.

Amann, A.

Anandarajah, P.

C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O'Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O'Gorman, “Discrete mode lasers for communication applications,” IET Optoelectron. 3(1), 1–17 (2009).
[CrossRef]

Barry, L. P.

C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O'Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O'Gorman, “Discrete mode lasers for communication applications,” IET Optoelectron. 3(1), 1–17 (2009).
[CrossRef]

Bengtsson, J.

Blumenthal, D. J.

Byrne, D.

Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photon. Technol. Lett. 18(24), 2605–2607 (2006).
[CrossRef]

Byrne, D. C.

D. C. Byrne, J. P. Engelstaedter, W. H. Guo, Y. Q. Lu, B. Corbett, B. Roycroft, J. O'Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[CrossRef]

Carroll, J. E.

D. J. Jones, L. M. Zhang, J. E. Carroll, and D. D. Marcenac, “Dynamics of monolithic passively mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 31(6), 1051–1058 (1995).
[CrossRef]

L. M. Zhang, S. F. Yu, M. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, “Dynamic analysis of radiation and side mode suppression in second-order DFB lasers using time-domain large signal traveling wave model,” IEEE J. Quantum Electron. 30(6), 1389–1395 (1994).
[CrossRef]

D. D. Marcenac and J. E. Carroll, “Quantum-mechanical model for realistic Fabry-Perot lasers,” IEE Proc. J. 140, 157–171 (1993).

Corbett, B.

D. C. Byrne, J. P. Engelstaedter, W. H. Guo, Y. Q. Lu, B. Corbett, B. Roycroft, J. O'Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[CrossRef]

Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photon. Technol. Lett. 18(24), 2605–2607 (2006).
[CrossRef]

B. Corbett and D. McDonald, “Single longitudinal mode ridge waveguide 1.3μm Fabry-Perot laser by modal perturbation,” Electron. Lett. 31(25), 2181–2182 (1995).
[CrossRef]

Davis, M. G.

M. G. Davis and R. F. O’Dowd, “A new large-signal dynamic model for multielectrode DFB lasers based on the transfer matrix method,” IEEE Photon. Technol. Lett. 4(8), 838–840 (1992).
[CrossRef]

Donegan, J. F.

D. C. Byrne, J. P. Engelstaedter, W. H. Guo, Y. Q. Lu, B. Corbett, B. Roycroft, J. O'Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[CrossRef]

Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photon. Technol. Lett. 18(24), 2605–2607 (2006).
[CrossRef]

Engelstaedter, J. P.

D. C. Byrne, J. P. Engelstaedter, W. H. Guo, Y. Q. Lu, B. Corbett, B. Roycroft, J. O'Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[CrossRef]

England, J. M. C.

D. A. Kozlowski, J. S. Young, R. G. S. Plumb, and J. M. C. England, “Time-domain modeling of mode suppression in 1.3-μm Fabry-Perot lasers,” IEEE Photon. Technol. Lett. 8(6), 755–757 (1996).
[CrossRef]

J. S. Young, D. A. Kozlowski, J. M. C. England, and R. G. S. Plumb, “Spectral perturbation and mode suppression in 1.3μm Fabry-Perot lasers,” Electron. Lett. 31(4), 290–291 (1995).
[CrossRef]

Fehse, R.

Guo, W. H.

D. C. Byrne, J. P. Engelstaedter, W. H. Guo, Y. Q. Lu, B. Corbett, B. Roycroft, J. O'Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[CrossRef]

Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photon. Technol. Lett. 18(24), 2605–2607 (2006).
[CrossRef]

Herbert, C.

C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O'Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O'Gorman, “Discrete mode lasers for communication applications,” IET Optoelectron. 3(1), 1–17 (2009).
[CrossRef]

Homar, M.

M. Homar, J. V. Moloney, and M. S. Miguel, “Traveling wave model of a multimode Fabry-Perot laser in free running and external cavity configurations,” IEEE J. Quantum Electron. 32(3), 553–566 (1996).
[CrossRef]

Huang, W. P.

Y. P. Xi, X. Li, and W. P. Huang, “Time-domain standing-wave approach based on cold cavity modes for simulation of DFB lasers,” IEEE J. Quantum Electron. 44(10), 931–937 (2008).
[CrossRef]

W. Li, X. Li, and W. P. Huang, “A traveling-wave model of laser diodes with consideration for thermal effects,” Opt. Quantum Electron. 36(8), 709–724 (2004).
[CrossRef]

Jones, D.

C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O'Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O'Gorman, “Discrete mode lasers for communication applications,” IET Optoelectron. 3(1), 1–17 (2009).
[CrossRef]

Jones, D. J.

D. J. Jones, L. M. Zhang, J. E. Carroll, and D. D. Marcenac, “Dynamics of monolithic passively mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 31(6), 1051–1058 (1995).
[CrossRef]

Kaszubowska-Anandarajah, A.

C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O'Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O'Gorman, “Discrete mode lasers for communication applications,” IET Optoelectron. 3(1), 1–17 (2009).
[CrossRef]

Kelly, B.

C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O'Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O'Gorman, “Discrete mode lasers for communication applications,” IET Optoelectron. 3(1), 1–17 (2009).
[CrossRef]

Kozlowski, D. A.

D. A. Kozlowski, J. S. Young, R. G. S. Plumb, and J. M. C. England, “Time-domain modeling of mode suppression in 1.3-μm Fabry-Perot lasers,” IEEE Photon. Technol. Lett. 8(6), 755–757 (1996).
[CrossRef]

J. S. Young, D. A. Kozlowski, J. M. C. England, and R. G. S. Plumb, “Spectral perturbation and mode suppression in 1.3μm Fabry-Perot lasers,” Electron. Lett. 31(4), 290–291 (1995).
[CrossRef]

Lambkin, P.

Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photon. Technol. Lett. 18(24), 2605–2607 (2006).
[CrossRef]

Larsson, A.

Lavrova, O. A.

Li, W.

W. Li, X. Li, and W. P. Huang, “A traveling-wave model of laser diodes with consideration for thermal effects,” Opt. Quantum Electron. 36(8), 709–724 (2004).
[CrossRef]

Li, X.

Y. P. Xi, X. Li, and W. P. Huang, “Time-domain standing-wave approach based on cold cavity modes for simulation of DFB lasers,” IEEE J. Quantum Electron. 44(10), 931–937 (2008).
[CrossRef]

W. Li, X. Li, and W. P. Huang, “A traveling-wave model of laser diodes with consideration for thermal effects,” Opt. Quantum Electron. 36(8), 709–724 (2004).
[CrossRef]

Lu, Q. Y.

Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photon. Technol. Lett. 18(24), 2605–2607 (2006).
[CrossRef]

Lu, Y. Q.

D. C. Byrne, J. P. Engelstaedter, W. H. Guo, Y. Q. Lu, B. Corbett, B. Roycroft, J. O'Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[CrossRef]

Marcenac, D. D.

D. J. Jones, L. M. Zhang, J. E. Carroll, and D. D. Marcenac, “Dynamics of monolithic passively mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 31(6), 1051–1058 (1995).
[CrossRef]

L. M. Zhang, S. F. Yu, M. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, “Dynamic analysis of radiation and side mode suppression in second-order DFB lasers using time-domain large signal traveling wave model,” IEEE J. Quantum Electron. 30(6), 1389–1395 (1994).
[CrossRef]

D. D. Marcenac and J. E. Carroll, “Quantum-mechanical model for realistic Fabry-Perot lasers,” IEE Proc. J. 140, 157–171 (1993).

McDonald, D.

B. Corbett and D. McDonald, “Single longitudinal mode ridge waveguide 1.3μm Fabry-Perot laser by modal perturbation,” Electron. Lett. 31(25), 2181–2182 (1995).
[CrossRef]

Miguel, M. S.

M. Homar, J. V. Moloney, and M. S. Miguel, “Traveling wave model of a multimode Fabry-Perot laser in free running and external cavity configurations,” IEEE J. Quantum Electron. 32(3), 553–566 (1996).
[CrossRef]

Moloney, J. V.

M. Homar, J. V. Moloney, and M. S. Miguel, “Traveling wave model of a multimode Fabry-Perot laser in free running and external cavity configurations,” IEEE J. Quantum Electron. 32(3), 553–566 (1996).
[CrossRef]

Nowell, M.

L. M. Zhang, S. F. Yu, M. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, “Dynamic analysis of radiation and side mode suppression in second-order DFB lasers using time-domain large signal traveling wave model,” IEEE J. Quantum Electron. 30(6), 1389–1395 (1994).
[CrossRef]

O’Brien, S.

O’Dowd, R. F.

M. G. Davis and R. F. O’Dowd, “A new large-signal dynamic model for multielectrode DFB lasers based on the transfer matrix method,” IEEE Photon. Technol. Lett. 4(8), 838–840 (1992).
[CrossRef]

O’Reilly, E. P.

O'Callaghan, J.

D. C. Byrne, J. P. Engelstaedter, W. H. Guo, Y. Q. Lu, B. Corbett, B. Roycroft, J. O'Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[CrossRef]

O'Carroll, J.

C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O'Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O'Gorman, “Discrete mode lasers for communication applications,” IET Optoelectron. 3(1), 1–17 (2009).
[CrossRef]

O'Gorman, J.

C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O'Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O'Gorman, “Discrete mode lasers for communication applications,” IET Optoelectron. 3(1), 1–17 (2009).
[CrossRef]

Osborne, S.

Perry, P.

C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O'Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O'Gorman, “Discrete mode lasers for communication applications,” IET Optoelectron. 3(1), 1–17 (2009).
[CrossRef]

Peters, F. H.

D. C. Byrne, J. P. Engelstaedter, W. H. Guo, Y. Q. Lu, B. Corbett, B. Roycroft, J. O'Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[CrossRef]

Phelan, R.

C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O'Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O'Gorman, “Discrete mode lasers for communication applications,” IET Optoelectron. 3(1), 1–17 (2009).
[CrossRef]

Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photon. Technol. Lett. 18(24), 2605–2607 (2006).
[CrossRef]

Plumb, R. G. S.

D. A. Kozlowski, J. S. Young, R. G. S. Plumb, and J. M. C. England, “Time-domain modeling of mode suppression in 1.3-μm Fabry-Perot lasers,” IEEE Photon. Technol. Lett. 8(6), 755–757 (1996).
[CrossRef]

J. S. Young, D. A. Kozlowski, J. M. C. England, and R. G. S. Plumb, “Spectral perturbation and mode suppression in 1.3μm Fabry-Perot lasers,” Electron. Lett. 31(4), 290–291 (1995).
[CrossRef]

L. M. Zhang, S. F. Yu, M. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, “Dynamic analysis of radiation and side mode suppression in second-order DFB lasers using time-domain large signal traveling wave model,” IEEE J. Quantum Electron. 30(6), 1389–1395 (1994).
[CrossRef]

Rensing, M.

C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O'Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O'Gorman, “Discrete mode lasers for communication applications,” IET Optoelectron. 3(1), 1–17 (2009).
[CrossRef]

Rondinelli, J. M.

Roycroft, B.

D. C. Byrne, J. P. Engelstaedter, W. H. Guo, Y. Q. Lu, B. Corbett, B. Roycroft, J. O'Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[CrossRef]

Xi, Y. P.

Y. P. Xi, X. Li, and W. P. Huang, “Time-domain standing-wave approach based on cold cavity modes for simulation of DFB lasers,” IEEE J. Quantum Electron. 44(10), 931–937 (2008).
[CrossRef]

Young, J. S.

D. A. Kozlowski, J. S. Young, R. G. S. Plumb, and J. M. C. England, “Time-domain modeling of mode suppression in 1.3-μm Fabry-Perot lasers,” IEEE Photon. Technol. Lett. 8(6), 755–757 (1996).
[CrossRef]

J. S. Young, D. A. Kozlowski, J. M. C. England, and R. G. S. Plumb, “Spectral perturbation and mode suppression in 1.3μm Fabry-Perot lasers,” Electron. Lett. 31(4), 290–291 (1995).
[CrossRef]

Yu, S. F.

L. M. Zhang, S. F. Yu, M. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, “Dynamic analysis of radiation and side mode suppression in second-order DFB lasers using time-domain large signal traveling wave model,” IEEE J. Quantum Electron. 30(6), 1389–1395 (1994).
[CrossRef]

Zhang, L. M.

D. J. Jones, L. M. Zhang, J. E. Carroll, and D. D. Marcenac, “Dynamics of monolithic passively mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 31(6), 1051–1058 (1995).
[CrossRef]

L. M. Zhang, S. F. Yu, M. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, “Dynamic analysis of radiation and side mode suppression in second-order DFB lasers using time-domain large signal traveling wave model,” IEEE J. Quantum Electron. 30(6), 1389–1395 (1994).
[CrossRef]

Appl. Phys. Lett. (1)

S. O’Brien and E. P. O’Reilly, “Theory of improved spectral purity in index patterned Fabry-Perot lasers,” Appl. Phys. Lett. 86, 201101 (2005).
[CrossRef]

Electron. Lett. (2)

J. S. Young, D. A. Kozlowski, J. M. C. England, and R. G. S. Plumb, “Spectral perturbation and mode suppression in 1.3μm Fabry-Perot lasers,” Electron. Lett. 31(4), 290–291 (1995).
[CrossRef]

B. Corbett and D. McDonald, “Single longitudinal mode ridge waveguide 1.3μm Fabry-Perot laser by modal perturbation,” Electron. Lett. 31(25), 2181–2182 (1995).
[CrossRef]

IEE Proc. J. (1)

D. D. Marcenac and J. E. Carroll, “Quantum-mechanical model for realistic Fabry-Perot lasers,” IEE Proc. J. 140, 157–171 (1993).

IEEE J. Quantum Electron. (4)

M. Homar, J. V. Moloney, and M. S. Miguel, “Traveling wave model of a multimode Fabry-Perot laser in free running and external cavity configurations,” IEEE J. Quantum Electron. 32(3), 553–566 (1996).
[CrossRef]

D. J. Jones, L. M. Zhang, J. E. Carroll, and D. D. Marcenac, “Dynamics of monolithic passively mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 31(6), 1051–1058 (1995).
[CrossRef]

Y. P. Xi, X. Li, and W. P. Huang, “Time-domain standing-wave approach based on cold cavity modes for simulation of DFB lasers,” IEEE J. Quantum Electron. 44(10), 931–937 (2008).
[CrossRef]

L. M. Zhang, S. F. Yu, M. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, “Dynamic analysis of radiation and side mode suppression in second-order DFB lasers using time-domain large signal traveling wave model,” IEEE J. Quantum Electron. 30(6), 1389–1395 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. C. Byrne, J. P. Engelstaedter, W. H. Guo, Y. Q. Lu, B. Corbett, B. Roycroft, J. O'Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Top. Quantum Electron. 15(3), 482–487 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photon. Technol. Lett. 18(24), 2605–2607 (2006).
[CrossRef]

D. A. Kozlowski, J. S. Young, R. G. S. Plumb, and J. M. C. England, “Time-domain modeling of mode suppression in 1.3-μm Fabry-Perot lasers,” IEEE Photon. Technol. Lett. 8(6), 755–757 (1996).
[CrossRef]

M. G. Davis and R. F. O’Dowd, “A new large-signal dynamic model for multielectrode DFB lasers based on the transfer matrix method,” IEEE Photon. Technol. Lett. 4(8), 838–840 (1992).
[CrossRef]

IET Optoelectron. (1)

C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O'Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O'Gorman, “Discrete mode lasers for communication applications,” IET Optoelectron. 3(1), 1–17 (2009).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Opt. Quantum Electron. (1)

W. Li, X. Li, and W. P. Huang, “A traveling-wave model of laser diodes with consideration for thermal effects,” Opt. Quantum Electron. 36(8), 709–724 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Simplified 2D sketches of (a) a single-mode edge-emitting FP laser with non-periodic slots etched on top of the FP cavity; and (b) a conventional single-mode DFB laser. z is the longitudinal propagation direction and x is the epitaxial growth direction.

Fig. 2
Fig. 2

(a) L-I curve and (b) large signal modulation of a DFB laser verified from the time-domain transfer matrix method.

Fig. 3
Fig. 3

(a) 90-slot symmetric single-mode FP laser structure (insert) and its threshold gain profile from inverse transfer matrix method; (b) corresponding spectrum calculated from TD-TMM.

Fig. 4
Fig. 4

(a) SMSR and lasing wavelength shift, and (b) L-I curve at different temperature, of the symmetric single-mode FP laser from time-domain transfer matrix method.

Fig. 5
Fig. 5

(a) Small signal analysis for single-mode FP laser at different base current conditions; (b) large signal analysis with power and wavelength shift plots at 10 Gbit/s.

Fig. 6
Fig. 6

Output power, lasing wavelength shift and spectrum for (a) single-mode FP laser under −5dB external optical feedbacks and (b) DFB laser without (upper) and with −25dB feedback (lower), at 10 GHz modulation. SMSR plot is obtained by overlapping the different spectra sampled at different time positions.

Fig. 7
Fig. 7

(a) 15-slot asymmetric single-mode FP laser structure (insert) and its threshold gain profile from inverse transfer matrix method; (b) corresponding spectrum calculated from TD-TMM.

Fig. 8
Fig. 8

Output power, lasing wavelength shift and spectrum for (a) 15-slot asymmetric single-mode FP laser, and (b) FP laser without (upper) and with −25dB feedback (lower), at 10 GHz large signal modulation, and −25dB external optical feedbacks.

Fig. 9
Fig. 9

(a) Difference between the lowest and second lowest threshold gain of single-mode FP lasers v.s. different number of slots etched; (b) SMSR calculated from TD-TMM for corresponding cases in (a) before and after feedback is applied.

Fig. 10
Fig. 10

(a) Threshold gain difference of the 15-slot asymmetric single-mode FP laser with different index-contrast slots etched; (b) SMSR calculated for corresponding cases in (a) before and after feedback is applied.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

[ E f ( t + d t , k + 1 ) E b ( t , k + 1 ) ] = [ A k ( t ) ] [ E f ( t , k ) E b ( t + d t , k ) ] = [ a 11 ( t , k ) a 12 ( t , k ) a 21 ( t , k ) a 22 ( t , k ) ] [ E f ( t , k ) E b ( t + d t , k ) ] ,
P = [ e j β l 0 0 e j β l ] .
T i j = 1 2 n j [ n j + n i n j n i n j n i n j + n i ] .
E b ( t + d t , k ) = [ E b ( t , k + 1 ) a 21 ( t , k ) E f ( t , k ) ] / a 22 ( t , k ) , E f ( t + d t , k + 1 ) = a 11 ( t , k ) E f ( t , k ) + a 12 ( t , k ) E b ( t + d t , k ) .
E f ( t + d t , 0 ) = r l E b ( t , 0 ) , E b ( t + d t , L ) = r r E f ( t , L ) .
N ( t + d t , k ) = N ( t , k ) + d t [ η J ( t , k ) e d R s p ( N ( t , k ) ) v g g ( t , k ) S ( t , k ) ] ,
n k ( N k ) = n k , t r 1 4 π d g d N ln ( N k / N t r ) α λ ,
Δ λ r e f = Δ n ¯ n t r λ r e f ,
Δ n ¯ = 1 M k Δ n k ( N k )
Δ n k = 1 4 π d g d N ln ( N k / N t r ) α λ .
det [ A t o t a l ( t ) ] = a 11 ( λ ) r l r r a 22 ( λ ) r l a 21 ( λ ) + r r a 12 ( λ ) ,
g ( λ ) = g ( λ g ) H ( λ ) ,
E f ( t + d t , k ) = A E f ( t + d t , k ) + ( 1 A ) E f ( t , k ) E b ( t + d t , k ) = A E b ( t + d t , k ) + ( 1 A ) E b ( t , k )
Δ n e f f , T = d n e f f d T Δ T .
Δ T = T [ T 0 + f ( I 2 ) + g ( I a P o u t ) ] ,
g k ( N k , S k ) = d g d N e Δ T T g ln ( e Δ T T n N k / N t r ) 1 + ε S k ,
E b ( t , L ) = r r E f ( t , L ) [ r f e e d b a c k e j ω τ ] 1 r r 2 E f ( t τ , L ) .
a 11 ( λ ) r l r r a 22 ( λ ) r l a 21 ( λ ) + r r a 12 ( λ ) = 0 ,

Metrics