Abstract

We present a low-loss VIS/IR-XUV beam splitter, suitable for high-power operation. The spatial separation of the VIS/IR and XUV components of a beam is achieved by the wedged top layer of a dielectric multilayer structure, onto which the beam is impinging under Brewster’s angle (for VIS/IR). With a fused silica wedge with an angle of 0.5° we achieve a separation angle of 2.2° and an IR reflectivity of 0.9995. Typical XUV reflectivities amount to 0.1–0.2. The novel element is mechanically robust, exhibiting two major advantages over free-standing Brewster plates: (i) a significant improvement of heat conduction and (ii) easier handling, in particular for high-optical-quality fabrication. The beam splitter could be used as an output coupler for intracavity-generated XUV radiation, promising a boost of the power regime of current MHz-HHG experiments. It is also suited for single-pass experiments and as a beam combiner for pump-probe experiments.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Attwood, Soft X-rays and Extreme Ultraviolet Radiation (Cambridge University Press, 1999).
  2. P. Jaegle, Coherent Sources of XUV Radiation (Springer, 2006).
  3. I. Pupeza, T. Eidam, J. Kaster, B. Bernhardt, J. Rauschenberger, E. E. Fill, Th. Udem, M. F. Kling, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of femtosecond enhancement cavities and high-power applications,” Proc. SPIE 7914, 79141I (2011).
    [CrossRef]
  4. C. Gohle, Th. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
    [CrossRef] [PubMed]
  5. R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94, 193201 (2005).
  6. I. Hartl, T. R. Schibli, A. Marcinkevicius, D. C. Yost, D. D. Hudson, M. E. Fermann, and J. Ye, “Cavity-enhanced similariton Yb-fiber laser frequency comb: 3 × 1014 W/cm2 peak intensity at 136MHz,” Opt. Lett. 32, 2870–2872 (2007).
    [CrossRef] [PubMed]
  7. A. Ozawa, J. Rauschenberger, C. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100, 253901 (2008).
    [CrossRef] [PubMed]
  8. D. C. Yost, T. R. Schibli, and J. Ye, “Efficient output coupling of intracavity high harmonic generation,” Opt. Lett. 33, 1099–1101 (2008).
    [CrossRef] [PubMed]
  9. I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, Th. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of a high repetition rate enhancement cavity,” Opt. Lett. 35, 2052–2054 (2010).
    [CrossRef] [PubMed]
  10. J. Kaster, I. Pupeza, T. Eidam, C. Jocher, E. Fill, J. Limpert, R. Holzwarth, B. Bernhardt, T. Udem, T. W. Hänsch, A. Tünnermann, and F. Krausz, “Towards MW average powers in ultrafast high-repetition-rate enhancement cavities,” High Intensity Lasers and High Field Phenomena (HILAS) Conference, paper HFB4 (2011).
  11. T. Eidam, S. Hanf, E. Seise, T. Andersen, V. T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35, 94–96 (2010).
    [CrossRef] [PubMed]
  12. P. Rußbüldt, T. Mans, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier,” Opt. Lett. 35, 4169–4171 (2010).
    [CrossRef]
  13. I. Pupeza, X. Gu, E. Fill, T. Eidam, J. Limpert, A. Tünnermann, F. Krausz, and Th. Udem, “Highly sensitive dispersion measurement of a high-power passive optical resonator using spatial-spectral interferometry,” Opt. Express 18, 26784–26195 (2010).
    [CrossRef]
  14. K. D. Moll, R. J. Jones, and J. Ye, “Nonlinear dynamics inside femtosecond enhancement cavities,” Opt. Express 13, 1672–1678 (2005).
    [CrossRef] [PubMed]
  15. R. Paschotta, “Beam quality deterioration of lasers caused by intracavity beam distortions,” Opt. Express 14, 6069–6074 (2006).
    [CrossRef] [PubMed]
  16. Y.-Y. Yang, F. Sümann, S. Zherebtsov, I. Pupeza, J. Kaster, D. Lehr, H.-J. Fuchs, E.-B. Kley, E. Fill, X.-M. Duan, Z.-S. Zhao, F. Krausz, S. L. Stebbings, and M. F. Kling, “Optimization and characterization of a highly-efficient diffraction nanograting for MHz XUV pulses,” Opt. Express 19, 1955–1962 (2011).
  17. K. D. Moll, R. J. Jones, and J. Ye, “Output coupling methods for cavity-based high-harmonic generation,” Opt. Express 14, 8189–8197 (2006).
    [CrossRef] [PubMed]
  18. A. Ozawa, A. Vernaleken, W. Schneider, I. Gotlibovych, Th. Udem, and T. W. Hänsch, “Non-collinear high harmonic generation: a promising outcoupling method for cavity-assisted XUV generation,” Opt. Express 16, 6233–6239 (2008).
    [CrossRef] [PubMed]
  19. J. Weitenberg, P. Rußbüldt, T. Eidam, and I. Pupeza, “Transverse mode tailoring in a high-finesse femtosecond enhancement cavity,” Opt. Express 19, 9551–9561 (2011).
    [CrossRef] [PubMed]
  20. I. Pupeza, J. Weitenberg, P. Rußbüldt, T. Eidam, J. Limpert, E. Fill, Th. Udem, H.-D. Hoffmann, R. Poprawe, A. Tünnermann, and F. Krausz, “Tailored transverse modes in high-finesse femtosecond enhancement cavities,” CLEO 2011, Baltimore, paper QMJ7 (2011).
  21. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1991), Vols. 1,2.
  22. G. Tempea, V. Yakovlev, B. Bacovic, F. Krausz, and K. Ferencz, “Tilted-front-interface chirped mirrors,” J. Opt. Soc. Am. B 18, 1747–1750 (2001).
    [CrossRef]
  23. G. Steinmeyer, “Brewster-angled chirped mirrors for high-fidelity dispersion compensation and bandwidths exceeding one optical octave,” Opt. Express 11, 2385–2396 (2003).
    [CrossRef] [PubMed]
  24. T. Eidam, F. Röser, O. Schmidt, J. Limpert, and A. Tünnermann, “57 W, 27 fs pulses from a fiber laser system using nonlinear compression,” Appl. Phys. B 92, 9–12 (2008).
    [CrossRef]

2011 (3)

I. Pupeza, T. Eidam, J. Kaster, B. Bernhardt, J. Rauschenberger, E. E. Fill, Th. Udem, M. F. Kling, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of femtosecond enhancement cavities and high-power applications,” Proc. SPIE 7914, 79141I (2011).
[CrossRef]

Y.-Y. Yang, F. Sümann, S. Zherebtsov, I. Pupeza, J. Kaster, D. Lehr, H.-J. Fuchs, E.-B. Kley, E. Fill, X.-M. Duan, Z.-S. Zhao, F. Krausz, S. L. Stebbings, and M. F. Kling, “Optimization and characterization of a highly-efficient diffraction nanograting for MHz XUV pulses,” Opt. Express 19, 1955–1962 (2011).

J. Weitenberg, P. Rußbüldt, T. Eidam, and I. Pupeza, “Transverse mode tailoring in a high-finesse femtosecond enhancement cavity,” Opt. Express 19, 9551–9561 (2011).
[CrossRef] [PubMed]

2010 (4)

2008 (4)

A. Ozawa, J. Rauschenberger, C. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100, 253901 (2008).
[CrossRef] [PubMed]

D. C. Yost, T. R. Schibli, and J. Ye, “Efficient output coupling of intracavity high harmonic generation,” Opt. Lett. 33, 1099–1101 (2008).
[CrossRef] [PubMed]

A. Ozawa, A. Vernaleken, W. Schneider, I. Gotlibovych, Th. Udem, and T. W. Hänsch, “Non-collinear high harmonic generation: a promising outcoupling method for cavity-assisted XUV generation,” Opt. Express 16, 6233–6239 (2008).
[CrossRef] [PubMed]

T. Eidam, F. Röser, O. Schmidt, J. Limpert, and A. Tünnermann, “57 W, 27 fs pulses from a fiber laser system using nonlinear compression,” Appl. Phys. B 92, 9–12 (2008).
[CrossRef]

2007 (1)

2006 (2)

2005 (2)

C. Gohle, Th. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[CrossRef] [PubMed]

K. D. Moll, R. J. Jones, and J. Ye, “Nonlinear dynamics inside femtosecond enhancement cavities,” Opt. Express 13, 1672–1678 (2005).
[CrossRef] [PubMed]

2003 (1)

2001 (1)

1932 (1)

R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94, 193201 (2005).

Alahmed, Z. A.

I. Pupeza, T. Eidam, J. Kaster, B. Bernhardt, J. Rauschenberger, E. E. Fill, Th. Udem, M. F. Kling, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of femtosecond enhancement cavities and high-power applications,” Proc. SPIE 7914, 79141I (2011).
[CrossRef]

I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, Th. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of a high repetition rate enhancement cavity,” Opt. Lett. 35, 2052–2054 (2010).
[CrossRef] [PubMed]

Andersen, T.

Apolonski, A.

I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, Th. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of a high repetition rate enhancement cavity,” Opt. Lett. 35, 2052–2054 (2010).
[CrossRef] [PubMed]

A. Ozawa, J. Rauschenberger, C. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100, 253901 (2008).
[CrossRef] [PubMed]

Attwood, D.

D. Attwood, Soft X-rays and Extreme Ultraviolet Radiation (Cambridge University Press, 1999).

Azzeer, A. M.

I. Pupeza, T. Eidam, J. Kaster, B. Bernhardt, J. Rauschenberger, E. E. Fill, Th. Udem, M. F. Kling, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of femtosecond enhancement cavities and high-power applications,” Proc. SPIE 7914, 79141I (2011).
[CrossRef]

I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, Th. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of a high repetition rate enhancement cavity,” Opt. Lett. 35, 2052–2054 (2010).
[CrossRef] [PubMed]

Bacovic, B.

Bernhardt, B.

I. Pupeza, T. Eidam, J. Kaster, B. Bernhardt, J. Rauschenberger, E. E. Fill, Th. Udem, M. F. Kling, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of femtosecond enhancement cavities and high-power applications,” Proc. SPIE 7914, 79141I (2011).
[CrossRef]

I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, Th. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of a high repetition rate enhancement cavity,” Opt. Lett. 35, 2052–2054 (2010).
[CrossRef] [PubMed]

Duan, X.-M.

Y.-Y. Yang, F. Sümann, S. Zherebtsov, I. Pupeza, J. Kaster, D. Lehr, H.-J. Fuchs, E.-B. Kley, E. Fill, X.-M. Duan, Z.-S. Zhao, F. Krausz, S. L. Stebbings, and M. F. Kling, “Optimization and characterization of a highly-efficient diffraction nanograting for MHz XUV pulses,” Opt. Express 19, 1955–1962 (2011).

Eidam, T.

I. Pupeza, T. Eidam, J. Kaster, B. Bernhardt, J. Rauschenberger, E. E. Fill, Th. Udem, M. F. Kling, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of femtosecond enhancement cavities and high-power applications,” Proc. SPIE 7914, 79141I (2011).
[CrossRef]

J. Weitenberg, P. Rußbüldt, T. Eidam, and I. Pupeza, “Transverse mode tailoring in a high-finesse femtosecond enhancement cavity,” Opt. Express 19, 9551–9561 (2011).
[CrossRef] [PubMed]

I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, Th. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of a high repetition rate enhancement cavity,” Opt. Lett. 35, 2052–2054 (2010).
[CrossRef] [PubMed]

T. Eidam, S. Hanf, E. Seise, T. Andersen, V. T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35, 94–96 (2010).
[CrossRef] [PubMed]

I. Pupeza, X. Gu, E. Fill, T. Eidam, J. Limpert, A. Tünnermann, F. Krausz, and Th. Udem, “Highly sensitive dispersion measurement of a high-power passive optical resonator using spatial-spectral interferometry,” Opt. Express 18, 26784–26195 (2010).
[CrossRef]

T. Eidam, F. Röser, O. Schmidt, J. Limpert, and A. Tünnermann, “57 W, 27 fs pulses from a fiber laser system using nonlinear compression,” Appl. Phys. B 92, 9–12 (2008).
[CrossRef]

I. Pupeza, J. Weitenberg, P. Rußbüldt, T. Eidam, J. Limpert, E. Fill, Th. Udem, H.-D. Hoffmann, R. Poprawe, A. Tünnermann, and F. Krausz, “Tailored transverse modes in high-finesse femtosecond enhancement cavities,” CLEO 2011, Baltimore, paper QMJ7 (2011).

Ferencz, K.

Fermann, M. E.

Fernandez, A.

A. Ozawa, J. Rauschenberger, C. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100, 253901 (2008).
[CrossRef] [PubMed]

Fill, E.

Y.-Y. Yang, F. Sümann, S. Zherebtsov, I. Pupeza, J. Kaster, D. Lehr, H.-J. Fuchs, E.-B. Kley, E. Fill, X.-M. Duan, Z.-S. Zhao, F. Krausz, S. L. Stebbings, and M. F. Kling, “Optimization and characterization of a highly-efficient diffraction nanograting for MHz XUV pulses,” Opt. Express 19, 1955–1962 (2011).

I. Pupeza, X. Gu, E. Fill, T. Eidam, J. Limpert, A. Tünnermann, F. Krausz, and Th. Udem, “Highly sensitive dispersion measurement of a high-power passive optical resonator using spatial-spectral interferometry,” Opt. Express 18, 26784–26195 (2010).
[CrossRef]

I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, Th. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of a high repetition rate enhancement cavity,” Opt. Lett. 35, 2052–2054 (2010).
[CrossRef] [PubMed]

I. Pupeza, J. Weitenberg, P. Rußbüldt, T. Eidam, J. Limpert, E. Fill, Th. Udem, H.-D. Hoffmann, R. Poprawe, A. Tünnermann, and F. Krausz, “Tailored transverse modes in high-finesse femtosecond enhancement cavities,” CLEO 2011, Baltimore, paper QMJ7 (2011).

Fill, E. E.

I. Pupeza, T. Eidam, J. Kaster, B. Bernhardt, J. Rauschenberger, E. E. Fill, Th. Udem, M. F. Kling, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of femtosecond enhancement cavities and high-power applications,” Proc. SPIE 7914, 79141I (2011).
[CrossRef]

Fuchs, H.-J.

Y.-Y. Yang, F. Sümann, S. Zherebtsov, I. Pupeza, J. Kaster, D. Lehr, H.-J. Fuchs, E.-B. Kley, E. Fill, X.-M. Duan, Z.-S. Zhao, F. Krausz, S. L. Stebbings, and M. F. Kling, “Optimization and characterization of a highly-efficient diffraction nanograting for MHz XUV pulses,” Opt. Express 19, 1955–1962 (2011).

Gabler, V. T.

Gohle, C.

A. Ozawa, J. Rauschenberger, C. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100, 253901 (2008).
[CrossRef] [PubMed]

C. Gohle, Th. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[CrossRef] [PubMed]

Gotlibovych, I.

Graf, R.

A. Ozawa, J. Rauschenberger, C. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100, 253901 (2008).
[CrossRef] [PubMed]

Gu, X.

I. Pupeza, X. Gu, E. Fill, T. Eidam, J. Limpert, A. Tünnermann, F. Krausz, and Th. Udem, “Highly sensitive dispersion measurement of a high-power passive optical resonator using spatial-spectral interferometry,” Opt. Express 18, 26784–26195 (2010).
[CrossRef]

Hanf, S.

Hänsch, T. W.

I. Pupeza, T. Eidam, J. Kaster, B. Bernhardt, J. Rauschenberger, E. E. Fill, Th. Udem, M. F. Kling, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of femtosecond enhancement cavities and high-power applications,” Proc. SPIE 7914, 79141I (2011).
[CrossRef]

I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, Th. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of a high repetition rate enhancement cavity,” Opt. Lett. 35, 2052–2054 (2010).
[CrossRef] [PubMed]

A. Ozawa, A. Vernaleken, W. Schneider, I. Gotlibovych, Th. Udem, and T. W. Hänsch, “Non-collinear high harmonic generation: a promising outcoupling method for cavity-assisted XUV generation,” Opt. Express 16, 6233–6239 (2008).
[CrossRef] [PubMed]

A. Ozawa, J. Rauschenberger, C. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100, 253901 (2008).
[CrossRef] [PubMed]

C. Gohle, Th. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[CrossRef] [PubMed]

Hartl, I.

Herrmann, M.

A. Ozawa, J. Rauschenberger, C. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100, 253901 (2008).
[CrossRef] [PubMed]

C. Gohle, Th. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[CrossRef] [PubMed]

Hoffmann, H. D.

Hoffmann, H.-D.

I. Pupeza, J. Weitenberg, P. Rußbüldt, T. Eidam, J. Limpert, E. Fill, Th. Udem, H.-D. Hoffmann, R. Poprawe, A. Tünnermann, and F. Krausz, “Tailored transverse modes in high-finesse femtosecond enhancement cavities,” CLEO 2011, Baltimore, paper QMJ7 (2011).

Holzwarth, R.

A. Ozawa, J. Rauschenberger, C. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100, 253901 (2008).
[CrossRef] [PubMed]

C. Gohle, Th. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[CrossRef] [PubMed]

Hudson, D. D.

Jaegle, P.

P. Jaegle, Coherent Sources of XUV Radiation (Springer, 2006).

Jones, R. J.

K. D. Moll, R. J. Jones, and J. Ye, “Output coupling methods for cavity-based high-harmonic generation,” Opt. Express 14, 8189–8197 (2006).
[CrossRef] [PubMed]

K. D. Moll, R. J. Jones, and J. Ye, “Nonlinear dynamics inside femtosecond enhancement cavities,” Opt. Express 13, 1672–1678 (2005).
[CrossRef] [PubMed]

R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94, 193201 (2005).

Kaster, J.

I. Pupeza, T. Eidam, J. Kaster, B. Bernhardt, J. Rauschenberger, E. E. Fill, Th. Udem, M. F. Kling, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of femtosecond enhancement cavities and high-power applications,” Proc. SPIE 7914, 79141I (2011).
[CrossRef]

Y.-Y. Yang, F. Sümann, S. Zherebtsov, I. Pupeza, J. Kaster, D. Lehr, H.-J. Fuchs, E.-B. Kley, E. Fill, X.-M. Duan, Z.-S. Zhao, F. Krausz, S. L. Stebbings, and M. F. Kling, “Optimization and characterization of a highly-efficient diffraction nanograting for MHz XUV pulses,” Opt. Express 19, 1955–1962 (2011).

Kley, E.-B.

Y.-Y. Yang, F. Sümann, S. Zherebtsov, I. Pupeza, J. Kaster, D. Lehr, H.-J. Fuchs, E.-B. Kley, E. Fill, X.-M. Duan, Z.-S. Zhao, F. Krausz, S. L. Stebbings, and M. F. Kling, “Optimization and characterization of a highly-efficient diffraction nanograting for MHz XUV pulses,” Opt. Express 19, 1955–1962 (2011).

Kling, M. F.

Y.-Y. Yang, F. Sümann, S. Zherebtsov, I. Pupeza, J. Kaster, D. Lehr, H.-J. Fuchs, E.-B. Kley, E. Fill, X.-M. Duan, Z.-S. Zhao, F. Krausz, S. L. Stebbings, and M. F. Kling, “Optimization and characterization of a highly-efficient diffraction nanograting for MHz XUV pulses,” Opt. Express 19, 1955–1962 (2011).

I. Pupeza, T. Eidam, J. Kaster, B. Bernhardt, J. Rauschenberger, E. E. Fill, Th. Udem, M. F. Kling, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of femtosecond enhancement cavities and high-power applications,” Proc. SPIE 7914, 79141I (2011).
[CrossRef]

Krausz, F.

I. Pupeza, T. Eidam, J. Kaster, B. Bernhardt, J. Rauschenberger, E. E. Fill, Th. Udem, M. F. Kling, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of femtosecond enhancement cavities and high-power applications,” Proc. SPIE 7914, 79141I (2011).
[CrossRef]

Y.-Y. Yang, F. Sümann, S. Zherebtsov, I. Pupeza, J. Kaster, D. Lehr, H.-J. Fuchs, E.-B. Kley, E. Fill, X.-M. Duan, Z.-S. Zhao, F. Krausz, S. L. Stebbings, and M. F. Kling, “Optimization and characterization of a highly-efficient diffraction nanograting for MHz XUV pulses,” Opt. Express 19, 1955–1962 (2011).

I. Pupeza, X. Gu, E. Fill, T. Eidam, J. Limpert, A. Tünnermann, F. Krausz, and Th. Udem, “Highly sensitive dispersion measurement of a high-power passive optical resonator using spatial-spectral interferometry,” Opt. Express 18, 26784–26195 (2010).
[CrossRef]

I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, Th. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of a high repetition rate enhancement cavity,” Opt. Lett. 35, 2052–2054 (2010).
[CrossRef] [PubMed]

A. Ozawa, J. Rauschenberger, C. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100, 253901 (2008).
[CrossRef] [PubMed]

C. Gohle, Th. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[CrossRef] [PubMed]

G. Tempea, V. Yakovlev, B. Bacovic, F. Krausz, and K. Ferencz, “Tilted-front-interface chirped mirrors,” J. Opt. Soc. Am. B 18, 1747–1750 (2001).
[CrossRef]

I. Pupeza, J. Weitenberg, P. Rußbüldt, T. Eidam, J. Limpert, E. Fill, Th. Udem, H.-D. Hoffmann, R. Poprawe, A. Tünnermann, and F. Krausz, “Tailored transverse modes in high-finesse femtosecond enhancement cavities,” CLEO 2011, Baltimore, paper QMJ7 (2011).

Lehr, D.

Y.-Y. Yang, F. Sümann, S. Zherebtsov, I. Pupeza, J. Kaster, D. Lehr, H.-J. Fuchs, E.-B. Kley, E. Fill, X.-M. Duan, Z.-S. Zhao, F. Krausz, S. L. Stebbings, and M. F. Kling, “Optimization and characterization of a highly-efficient diffraction nanograting for MHz XUV pulses,” Opt. Express 19, 1955–1962 (2011).

Limpert, J.

I. Pupeza, T. Eidam, J. Kaster, B. Bernhardt, J. Rauschenberger, E. E. Fill, Th. Udem, M. F. Kling, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of femtosecond enhancement cavities and high-power applications,” Proc. SPIE 7914, 79141I (2011).
[CrossRef]

I. Pupeza, X. Gu, E. Fill, T. Eidam, J. Limpert, A. Tünnermann, F. Krausz, and Th. Udem, “Highly sensitive dispersion measurement of a high-power passive optical resonator using spatial-spectral interferometry,” Opt. Express 18, 26784–26195 (2010).
[CrossRef]

I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, Th. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of a high repetition rate enhancement cavity,” Opt. Lett. 35, 2052–2054 (2010).
[CrossRef] [PubMed]

T. Eidam, S. Hanf, E. Seise, T. Andersen, V. T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35, 94–96 (2010).
[CrossRef] [PubMed]

T. Eidam, F. Röser, O. Schmidt, J. Limpert, and A. Tünnermann, “57 W, 27 fs pulses from a fiber laser system using nonlinear compression,” Appl. Phys. B 92, 9–12 (2008).
[CrossRef]

I. Pupeza, J. Weitenberg, P. Rußbüldt, T. Eidam, J. Limpert, E. Fill, Th. Udem, H.-D. Hoffmann, R. Poprawe, A. Tünnermann, and F. Krausz, “Tailored transverse modes in high-finesse femtosecond enhancement cavities,” CLEO 2011, Baltimore, paper QMJ7 (2011).

Mans, T.

Marcinkevicius, A.

Moll, K. D.

K. D. Moll, R. J. Jones, and J. Ye, “Output coupling methods for cavity-based high-harmonic generation,” Opt. Express 14, 8189–8197 (2006).
[CrossRef] [PubMed]

K. D. Moll, R. J. Jones, and J. Ye, “Nonlinear dynamics inside femtosecond enhancement cavities,” Opt. Express 13, 1672–1678 (2005).
[CrossRef] [PubMed]

R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94, 193201 (2005).

Ozawa, A.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1991), Vols. 1,2.

Paschotta, R.

Pervak, V.

A. Ozawa, J. Rauschenberger, C. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100, 253901 (2008).
[CrossRef] [PubMed]

Poprawe, R.

P. Rußbüldt, T. Mans, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier,” Opt. Lett. 35, 4169–4171 (2010).
[CrossRef]

I. Pupeza, J. Weitenberg, P. Rußbüldt, T. Eidam, J. Limpert, E. Fill, Th. Udem, H.-D. Hoffmann, R. Poprawe, A. Tünnermann, and F. Krausz, “Tailored transverse modes in high-finesse femtosecond enhancement cavities,” CLEO 2011, Baltimore, paper QMJ7 (2011).

Pupeza, I.

Y.-Y. Yang, F. Sümann, S. Zherebtsov, I. Pupeza, J. Kaster, D. Lehr, H.-J. Fuchs, E.-B. Kley, E. Fill, X.-M. Duan, Z.-S. Zhao, F. Krausz, S. L. Stebbings, and M. F. Kling, “Optimization and characterization of a highly-efficient diffraction nanograting for MHz XUV pulses,” Opt. Express 19, 1955–1962 (2011).

I. Pupeza, T. Eidam, J. Kaster, B. Bernhardt, J. Rauschenberger, E. E. Fill, Th. Udem, M. F. Kling, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of femtosecond enhancement cavities and high-power applications,” Proc. SPIE 7914, 79141I (2011).
[CrossRef]

J. Weitenberg, P. Rußbüldt, T. Eidam, and I. Pupeza, “Transverse mode tailoring in a high-finesse femtosecond enhancement cavity,” Opt. Express 19, 9551–9561 (2011).
[CrossRef] [PubMed]

I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, Th. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of a high repetition rate enhancement cavity,” Opt. Lett. 35, 2052–2054 (2010).
[CrossRef] [PubMed]

I. Pupeza, X. Gu, E. Fill, T. Eidam, J. Limpert, A. Tünnermann, F. Krausz, and Th. Udem, “Highly sensitive dispersion measurement of a high-power passive optical resonator using spatial-spectral interferometry,” Opt. Express 18, 26784–26195 (2010).
[CrossRef]

I. Pupeza, J. Weitenberg, P. Rußbüldt, T. Eidam, J. Limpert, E. Fill, Th. Udem, H.-D. Hoffmann, R. Poprawe, A. Tünnermann, and F. Krausz, “Tailored transverse modes in high-finesse femtosecond enhancement cavities,” CLEO 2011, Baltimore, paper QMJ7 (2011).

Rauschenberger, J.

I. Pupeza, T. Eidam, J. Kaster, B. Bernhardt, J. Rauschenberger, E. E. Fill, Th. Udem, M. F. Kling, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of femtosecond enhancement cavities and high-power applications,” Proc. SPIE 7914, 79141I (2011).
[CrossRef]

I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, Th. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of a high repetition rate enhancement cavity,” Opt. Lett. 35, 2052–2054 (2010).
[CrossRef] [PubMed]

A. Ozawa, J. Rauschenberger, C. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100, 253901 (2008).
[CrossRef] [PubMed]

C. Gohle, Th. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[CrossRef] [PubMed]

Röser, F.

T. Eidam, F. Röser, O. Schmidt, J. Limpert, and A. Tünnermann, “57 W, 27 fs pulses from a fiber laser system using nonlinear compression,” Appl. Phys. B 92, 9–12 (2008).
[CrossRef]

Rußbüldt, P.

J. Weitenberg, P. Rußbüldt, T. Eidam, and I. Pupeza, “Transverse mode tailoring in a high-finesse femtosecond enhancement cavity,” Opt. Express 19, 9551–9561 (2011).
[CrossRef] [PubMed]

P. Rußbüldt, T. Mans, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier,” Opt. Lett. 35, 4169–4171 (2010).
[CrossRef]

I. Pupeza, J. Weitenberg, P. Rußbüldt, T. Eidam, J. Limpert, E. Fill, Th. Udem, H.-D. Hoffmann, R. Poprawe, A. Tünnermann, and F. Krausz, “Tailored transverse modes in high-finesse femtosecond enhancement cavities,” CLEO 2011, Baltimore, paper QMJ7 (2011).

Schibli, T. R.

Schmidt, O.

T. Eidam, F. Röser, O. Schmidt, J. Limpert, and A. Tünnermann, “57 W, 27 fs pulses from a fiber laser system using nonlinear compression,” Appl. Phys. B 92, 9–12 (2008).
[CrossRef]

Schneider, W.

Schreiber, T.

Schuessler, H. A.

C. Gohle, Th. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[CrossRef] [PubMed]

Seise, E.

Stebbings, S. L.

Y.-Y. Yang, F. Sümann, S. Zherebtsov, I. Pupeza, J. Kaster, D. Lehr, H.-J. Fuchs, E.-B. Kley, E. Fill, X.-M. Duan, Z.-S. Zhao, F. Krausz, S. L. Stebbings, and M. F. Kling, “Optimization and characterization of a highly-efficient diffraction nanograting for MHz XUV pulses,” Opt. Express 19, 1955–1962 (2011).

Steinmeyer, G.

Sümann, F.

Y.-Y. Yang, F. Sümann, S. Zherebtsov, I. Pupeza, J. Kaster, D. Lehr, H.-J. Fuchs, E.-B. Kley, E. Fill, X.-M. Duan, Z.-S. Zhao, F. Krausz, S. L. Stebbings, and M. F. Kling, “Optimization and characterization of a highly-efficient diffraction nanograting for MHz XUV pulses,” Opt. Express 19, 1955–1962 (2011).

Tempea, G.

Thorpe, M. J.

R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94, 193201 (2005).

Tünnermann, A.

I. Pupeza, T. Eidam, J. Kaster, B. Bernhardt, J. Rauschenberger, E. E. Fill, Th. Udem, M. F. Kling, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of femtosecond enhancement cavities and high-power applications,” Proc. SPIE 7914, 79141I (2011).
[CrossRef]

I. Pupeza, X. Gu, E. Fill, T. Eidam, J. Limpert, A. Tünnermann, F. Krausz, and Th. Udem, “Highly sensitive dispersion measurement of a high-power passive optical resonator using spatial-spectral interferometry,” Opt. Express 18, 26784–26195 (2010).
[CrossRef]

T. Eidam, S. Hanf, E. Seise, T. Andersen, V. T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35, 94–96 (2010).
[CrossRef] [PubMed]

I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, Th. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of a high repetition rate enhancement cavity,” Opt. Lett. 35, 2052–2054 (2010).
[CrossRef] [PubMed]

T. Eidam, F. Röser, O. Schmidt, J. Limpert, and A. Tünnermann, “57 W, 27 fs pulses from a fiber laser system using nonlinear compression,” Appl. Phys. B 92, 9–12 (2008).
[CrossRef]

I. Pupeza, J. Weitenberg, P. Rußbüldt, T. Eidam, J. Limpert, E. Fill, Th. Udem, H.-D. Hoffmann, R. Poprawe, A. Tünnermann, and F. Krausz, “Tailored transverse modes in high-finesse femtosecond enhancement cavities,” CLEO 2011, Baltimore, paper QMJ7 (2011).

Udem, Th.

I. Pupeza, T. Eidam, J. Kaster, B. Bernhardt, J. Rauschenberger, E. E. Fill, Th. Udem, M. F. Kling, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of femtosecond enhancement cavities and high-power applications,” Proc. SPIE 7914, 79141I (2011).
[CrossRef]

I. Pupeza, X. Gu, E. Fill, T. Eidam, J. Limpert, A. Tünnermann, F. Krausz, and Th. Udem, “Highly sensitive dispersion measurement of a high-power passive optical resonator using spatial-spectral interferometry,” Opt. Express 18, 26784–26195 (2010).
[CrossRef]

I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, Th. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of a high repetition rate enhancement cavity,” Opt. Lett. 35, 2052–2054 (2010).
[CrossRef] [PubMed]

A. Ozawa, A. Vernaleken, W. Schneider, I. Gotlibovych, Th. Udem, and T. W. Hänsch, “Non-collinear high harmonic generation: a promising outcoupling method for cavity-assisted XUV generation,” Opt. Express 16, 6233–6239 (2008).
[CrossRef] [PubMed]

A. Ozawa, J. Rauschenberger, C. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100, 253901 (2008).
[CrossRef] [PubMed]

C. Gohle, Th. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[CrossRef] [PubMed]

I. Pupeza, J. Weitenberg, P. Rußbüldt, T. Eidam, J. Limpert, E. Fill, Th. Udem, H.-D. Hoffmann, R. Poprawe, A. Tünnermann, and F. Krausz, “Tailored transverse modes in high-finesse femtosecond enhancement cavities,” CLEO 2011, Baltimore, paper QMJ7 (2011).

Vernaleken, A.

Walker, D. R.

A. Ozawa, J. Rauschenberger, C. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100, 253901 (2008).
[CrossRef] [PubMed]

Weitenberg, J.

J. Weitenberg, P. Rußbüldt, T. Eidam, and I. Pupeza, “Transverse mode tailoring in a high-finesse femtosecond enhancement cavity,” Opt. Express 19, 9551–9561 (2011).
[CrossRef] [PubMed]

P. Rußbüldt, T. Mans, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier,” Opt. Lett. 35, 4169–4171 (2010).
[CrossRef]

I. Pupeza, J. Weitenberg, P. Rußbüldt, T. Eidam, J. Limpert, E. Fill, Th. Udem, H.-D. Hoffmann, R. Poprawe, A. Tünnermann, and F. Krausz, “Tailored transverse modes in high-finesse femtosecond enhancement cavities,” CLEO 2011, Baltimore, paper QMJ7 (2011).

Wirth, C.

Yakovlev, V.

Yang, Y.-Y.

Y.-Y. Yang, F. Sümann, S. Zherebtsov, I. Pupeza, J. Kaster, D. Lehr, H.-J. Fuchs, E.-B. Kley, E. Fill, X.-M. Duan, Z.-S. Zhao, F. Krausz, S. L. Stebbings, and M. F. Kling, “Optimization and characterization of a highly-efficient diffraction nanograting for MHz XUV pulses,” Opt. Express 19, 1955–1962 (2011).

Ye, J.

Yost, D. C.

Zhao, Z.-S.

Y.-Y. Yang, F. Sümann, S. Zherebtsov, I. Pupeza, J. Kaster, D. Lehr, H.-J. Fuchs, E.-B. Kley, E. Fill, X.-M. Duan, Z.-S. Zhao, F. Krausz, S. L. Stebbings, and M. F. Kling, “Optimization and characterization of a highly-efficient diffraction nanograting for MHz XUV pulses,” Opt. Express 19, 1955–1962 (2011).

Zherebtsov, S.

Y.-Y. Yang, F. Sümann, S. Zherebtsov, I. Pupeza, J. Kaster, D. Lehr, H.-J. Fuchs, E.-B. Kley, E. Fill, X.-M. Duan, Z.-S. Zhao, F. Krausz, S. L. Stebbings, and M. F. Kling, “Optimization and characterization of a highly-efficient diffraction nanograting for MHz XUV pulses,” Opt. Express 19, 1955–1962 (2011).

Appl. Phys. B (1)

T. Eidam, F. Röser, O. Schmidt, J. Limpert, and A. Tünnermann, “57 W, 27 fs pulses from a fiber laser system using nonlinear compression,” Appl. Phys. B 92, 9–12 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

C. Gohle, Th. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[CrossRef] [PubMed]

Opt. Express (8)

I. Pupeza, X. Gu, E. Fill, T. Eidam, J. Limpert, A. Tünnermann, F. Krausz, and Th. Udem, “Highly sensitive dispersion measurement of a high-power passive optical resonator using spatial-spectral interferometry,” Opt. Express 18, 26784–26195 (2010).
[CrossRef]

K. D. Moll, R. J. Jones, and J. Ye, “Nonlinear dynamics inside femtosecond enhancement cavities,” Opt. Express 13, 1672–1678 (2005).
[CrossRef] [PubMed]

R. Paschotta, “Beam quality deterioration of lasers caused by intracavity beam distortions,” Opt. Express 14, 6069–6074 (2006).
[CrossRef] [PubMed]

Y.-Y. Yang, F. Sümann, S. Zherebtsov, I. Pupeza, J. Kaster, D. Lehr, H.-J. Fuchs, E.-B. Kley, E. Fill, X.-M. Duan, Z.-S. Zhao, F. Krausz, S. L. Stebbings, and M. F. Kling, “Optimization and characterization of a highly-efficient diffraction nanograting for MHz XUV pulses,” Opt. Express 19, 1955–1962 (2011).

K. D. Moll, R. J. Jones, and J. Ye, “Output coupling methods for cavity-based high-harmonic generation,” Opt. Express 14, 8189–8197 (2006).
[CrossRef] [PubMed]

A. Ozawa, A. Vernaleken, W. Schneider, I. Gotlibovych, Th. Udem, and T. W. Hänsch, “Non-collinear high harmonic generation: a promising outcoupling method for cavity-assisted XUV generation,” Opt. Express 16, 6233–6239 (2008).
[CrossRef] [PubMed]

J. Weitenberg, P. Rußbüldt, T. Eidam, and I. Pupeza, “Transverse mode tailoring in a high-finesse femtosecond enhancement cavity,” Opt. Express 19, 9551–9561 (2011).
[CrossRef] [PubMed]

G. Steinmeyer, “Brewster-angled chirped mirrors for high-fidelity dispersion compensation and bandwidths exceeding one optical octave,” Opt. Express 11, 2385–2396 (2003).
[CrossRef] [PubMed]

Opt. Lett. (5)

Phys. Rev. Lett. (2)

A. Ozawa, J. Rauschenberger, C. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100, 253901 (2008).
[CrossRef] [PubMed]

R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94, 193201 (2005).

Proc. SPIE (1)

I. Pupeza, T. Eidam, J. Kaster, B. Bernhardt, J. Rauschenberger, E. E. Fill, Th. Udem, M. F. Kling, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of femtosecond enhancement cavities and high-power applications,” Proc. SPIE 7914, 79141I (2011).
[CrossRef]

Other (5)

D. Attwood, Soft X-rays and Extreme Ultraviolet Radiation (Cambridge University Press, 1999).

P. Jaegle, Coherent Sources of XUV Radiation (Springer, 2006).

J. Kaster, I. Pupeza, T. Eidam, C. Jocher, E. Fill, J. Limpert, R. Holzwarth, B. Bernhardt, T. Udem, T. W. Hänsch, A. Tünnermann, and F. Krausz, “Towards MW average powers in ultrafast high-repetition-rate enhancement cavities,” High Intensity Lasers and High Field Phenomena (HILAS) Conference, paper HFB4 (2011).

I. Pupeza, J. Weitenberg, P. Rußbüldt, T. Eidam, J. Limpert, E. Fill, Th. Udem, H.-D. Hoffmann, R. Poprawe, A. Tünnermann, and F. Krausz, “Tailored transverse modes in high-finesse femtosecond enhancement cavities,” CLEO 2011, Baltimore, paper QMJ7 (2011).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1991), Vols. 1,2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The WOMOC. FR: fundamental radiation (p-polarized), HH: high harmonics. The multilayer stack underlying the wedge is matched to the adjacent medium n 2 and for the angle of incidence ϕi .

Fig. 2
Fig. 2

Spatial separation angle δ between the FR and the HH upon reflection at the WOMOC and FR losses Rloss at the exit of the wedge due to deviation from Brewster’s angle as functions of the wedge angle α for the wedge material SiO2 (refractive index=1.47). The dotted line (red) indicates the values for the prototype presented in Section 4.

Fig. 3
Fig. 3

WOMOC implementation in a standard-design bow-tie ring cavity. Mirrors C1 and C2 are the curved mirrors with radii of curvature equal to 100 and 200 mm, respectively. All other cavity mirrors can be plane mirrors and are left out here for simplicity. High harmonics are generated collinearly with the laser in the focus.

Fig. 4
Fig. 4

Experimental demonstration of the spatial separation property of the WOMOC: reflection of a beam impinging under Brewster’s angle on the surface of the WOMOC, after a propagation of 100 mm. (a) and (b): visualization of the beam with an IR-sensitive card and sketch of beam propagation path in the WOMOC, respectively, for p-polarized light. (c) and (d): s-polarized light. Spot 1: direct reflection from the wedge surface, spot 2 beam penetrating the wedge and reflected at the multilayer, spots 3 and 4 are cause by multiple reflections inside the wedge.

Fig. 5
Fig. 5

Comparison of the evolution of the temperature increase from room temperature measured at the surface of a free-standing Brewster plate and the surface of the WOMOC. Both were illuminated with a 40-W beam under Brewster’s angle in a vacuum chamber.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ϕ B = arctan n 2 n 1 .
ϕ B = arcsin ( n 1 n 2 sin ϕ B ) .
ϕ i = ϕ B + α .
ϕ j = ϕ B + 2 α .
β = arcsin ( n 2 n 1 sin ϕ j )
= arcsin { n 2 n 1 sin [ arcsin ( n 2 n 1 sin ( arctan n 2 n 1 ) ) + 2 α ] } .
δ = β ϕ B .
d = L tan ( δ ) .
R loss = | n 2 1 ( n 2 n 1 sin ϕ j ) 2 n 1 cos ϕ j n 2 1 ( n 2 n 1 sin ϕ j ) 2 + n 1 cos ϕ j | 2 .

Metrics