Abstract

Photonic-Crystal Fibers (PCF) are among the most promising concepts to achieve large mode field areas suitable for the reduction of nonlinearities in fibers. Differential mode propagation loss is the cornerstone of effective single-mode behavior in passive and core-pumped active PCFs. In this work, we explore non-hexagonal PCF designs with increased mode discrimination in comparison to the classical hexagonal PCF designs. It is shown that a pentagonal design can increase the mode discrimination and, simultaneously, also improve the beam quality of Large-Pitch Fibers with mode field diameters well beyond 100 µm.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Eidam, J. Rothhardt, F. Stutzki, F. Jansen, S. Hädrich, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, “Fiber chirped-pulse amplification system emitting 3.8 GW peak power,” Opt. Express 19(1), 255–260 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-1-255 .
    [CrossRef] [PubMed]
  2. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14(7), 2715–2720 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-7-2715 .
    [CrossRef] [PubMed]
  3. F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Opt. Lett. 36(5), 689–691 (2011).
    [CrossRef] [PubMed]
  4. M. E. Fermann, “Single-mode excitation of multimode fibers with ultrashort pulses,” Opt. Lett. 23(1), 52–54 (1998), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-23-1-52 .
    [CrossRef]
  5. D. Marcuse, “Influence of curvature on the losses of doubly clad fibers,” Appl. Opt. 21(23), 4208–4213 (1982), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-21-23-4208 .
    [CrossRef] [PubMed]
  6. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25(7), 442–444 (2000), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-25-7-442 .
    [CrossRef]
  7. C. Liu, G. Chang, N. Litchinitser, D. Guertin, N. Jacobsen, K. Tankala, and A. Galvanauskas, “Chirally coupled core fibers at 1550-nm and 1064-nm for effectively single-mode core size scaling,” Conference on Lasers and Electro-Optics (CLEO), paper CTuBB3 (2007).
  8. D. Donlagic, “In-Line higher order mode filters based on long highly uniform fiber tapers,” J. Lightwave Technol. 24(9), 3532–3539 (2006), http://www.opticsinfobase.org/JLT/abstract.cfm?URI=JLT-24-9-3532 .
    [CrossRef]
  9. T. Bhutta, J. I. Mackenzie, D. P. Shepherd, and R. J. Beach, “Spatial dopant profiles for transverse-mode selection in multimode waveguides,” J. Opt. Soc. Am. B 19(7), 1539–1543 (2002), http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-7-1539 .
    [CrossRef]
  10. A. E. Siegman, “Gain-guided, index-antiguided fiber lasers,” J. Opt. Soc. Am. B 24(8), 1677–1682 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=josab-24-8-1677 .
    [CrossRef]
  11. H. P. Uranus, “Theoretical study on the multimodeness of a commercial endlessly single-mode PCF,” Opt. Commun. 283(23), 4649–4654 (2010).
    [CrossRef]
  12. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [CrossRef] [PubMed]
  13. L. Dong, X. Peng, and J. Li, “Leakage channel optical fibers with large effective area,” J. Opt. Soc. Am. B 24(8), 1689–1697 (2007), http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-24-8-1689 .
    [CrossRef]
  14. F. Jansen, F. Stutzki, H.-J. Otto, M. Baumgartl, C. Jauregui, J. Limpert, and A. Tünnermann, “The influence of index-depressions in core-pumped Yb-doped large pitch fibers,” Opt. Express 18(26), 26834–26842 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-26-26834 .
    [CrossRef]
  15. Z. Zhu and T. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express 10(17), 853–864 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-17-853 .
    [PubMed]
  16. S. Liao, M. Gong, and H. Zhang, “Theoretical calculation of beam quality factor of large-mode-area fiber amplifiers,” Laser Phys. 19(3), 437–444 (2009).
    [CrossRef]

2011

2010

2009

S. Liao, M. Gong, and H. Zhang, “Theoretical calculation of beam quality factor of large-mode-area fiber amplifiers,” Laser Phys. 19(3), 437–444 (2009).
[CrossRef]

2007

2006

2003

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

2002

2000

1998

1982

Baumgartl, M.

Beach, R. J.

Bhutta, T.

Brown, T.

Carstens, H.

Dong, L.

Donlagic, D.

Eidam, T.

Ermeneux, S.

Fermann, M. E.

Goldberg, L.

Gong, M.

S. Liao, M. Gong, and H. Zhang, “Theoretical calculation of beam quality factor of large-mode-area fiber amplifiers,” Laser Phys. 19(3), 437–444 (2009).
[CrossRef]

Hädrich, S.

Jansen, F.

Jauregui, C.

Kliner, D. A. V.

Koplow, J. P.

Li, J.

Liao, S.

S. Liao, M. Gong, and H. Zhang, “Theoretical calculation of beam quality factor of large-mode-area fiber amplifiers,” Laser Phys. 19(3), 437–444 (2009).
[CrossRef]

Limpert, J.

Mackenzie, J. I.

Marcuse, D.

Otto, H.-J.

Peng, X.

Röser, F.

Rothhardt, J.

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Salin, F.

Schmidt, O.

Schreiber, T.

Shepherd, D. P.

Siegman, A. E.

Steinmetz, A.

Stutzki, F.

Tünnermann, A.

Uranus, H. P.

H. P. Uranus, “Theoretical study on the multimodeness of a commercial endlessly single-mode PCF,” Opt. Commun. 283(23), 4649–4654 (2010).
[CrossRef]

Yvernault, P.

Zhang, H.

S. Liao, M. Gong, and H. Zhang, “Theoretical calculation of beam quality factor of large-mode-area fiber amplifiers,” Laser Phys. 19(3), 437–444 (2009).
[CrossRef]

Zhu, Z.

Appl. Opt.

J. Lightwave Technol.

J. Opt. Soc. Am. B

Laser Phys.

S. Liao, M. Gong, and H. Zhang, “Theoretical calculation of beam quality factor of large-mode-area fiber amplifiers,” Laser Phys. 19(3), 437–444 (2009).
[CrossRef]

Opt. Commun.

H. P. Uranus, “Theoretical study on the multimodeness of a commercial endlessly single-mode PCF,” Opt. Commun. 283(23), 4649–4654 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Science

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Other

C. Liu, G. Chang, N. Litchinitser, D. Guertin, N. Jacobsen, K. Tankala, and A. Galvanauskas, “Chirally coupled core fibers at 1550-nm and 1064-nm for effectively single-mode core size scaling,” Conference on Lasers and Electro-Optics (CLEO), paper CTuBB3 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic design of a hexagonal two ring Large-Pitch Fiber with one hole missing forming the signal core.

Fig. 2
Fig. 2

Building instruction for a pentagonal two-ring LPF.

Fig. 3
Fig. 3

Simulated mode pictures of (a) square, (b) pentagonal, (c) hexagonal and (d) heptagonal designs for a FM area of 4000 µm2 and FM loss of 1 dB/m. The higher order modes are sorted from left to right in ascending propagation loss. The propagation loss is depicted for each higher order mode (disregarded HOMs have grayed and smaller text).

Fig. 4
Fig. 4

Mode discrimination between FM and first relevant HOM depending on the mode field area for a FM loss of 1 dB/m.

Fig. 5
Fig. 5

Beam quality factor of the fundamental mode depending on the mode field area for a FM loss of 1 dB/m.

Metrics