Abstract

We introduce an image upscaling method that reduces bit errors caused by Nyquist apertures. Nyquist apertures used for higher storage densities generate optical aberrations and degrade the quality of the image that is recorded on the medium. Here, to correct the bit errors caused by the Nyquist aperture, an image upscaling method is used to restore the degraded image in the enhanced spatial frequency domain using its point spread function (PSF) as a restoration filter. The proposed method reduces the bit error rate (BER) significantly and hence allows higher storage densities.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2(4), 393–400 (1963).
    [CrossRef]
  2. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
    [CrossRef] [PubMed]
  3. V. Vadde, B. V. K. Vijaya Kumar, G. W. Burr, H. Coufal, J. A. Hoffnagle, and C. M. Jefferson, “A figure-of-merit for the optical aperture used in digital volume holographic data storage,” in Optical Data Storage ’98, S. Kubota, T. D. Milster, and P. J. Wehrenberg, eds., Proc. SPIE 3401, 194–200 (1998).
  4. P. Várhegyi, P. Koppa, F. Ujhelyi, and E. Lorincz, “System modeling and optimization of Fourier holographic memory,” Appl. Opt. 44(15), 3024–3031 (2005).
    [CrossRef] [PubMed]
  5. G. W. Burr, J. Ashley, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, and B. Marcus, “Modulation coding for pixel-matched holographic data storage,” Opt. Lett. 22(9), 639–641 (1997).
    [CrossRef] [PubMed]
  6. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Channel codes for digital holographic data storage,” J. Opt. Soc. Am. A 12(11), 2432–2439 (1995).
    [CrossRef]
  7. V. Vadde and B. V. Kumar, “Channel modeling and estimation for intrapage equalization in pixel-matched volume holographic data storage,” Appl. Opt. 38(20), 4374–4386 (1999).
    [CrossRef]
  8. G. W. Burr, “Holographic data storage with arbitrarily misaligned data pages,” Opt. Lett. 27(7), 542–544 (2002).
    [CrossRef]
  9. M. Ayres, A. Hoskins, and K. Curtis, “Image oversampling for page-oriented optical data storage,” Appl. Opt. 45(11), 2459–2464 (2006).
    [CrossRef] [PubMed]
  10. C. Y. Chen, C. C. Fu, and T. D. Chiueh, “Low-complexity pixel detection for images with misalignment and interpixel interference in holographic data storage,” Appl. Opt. 47(36), 6784–6795 (2008).
    [CrossRef] [PubMed]
  11. K. Anderson and K. Curtis, “Polytopic multiplexing,” Opt. Lett. 29(12), 1402–1404 (2004).
    [CrossRef] [PubMed]
  12. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice Hall, 2002), Chap. 5.

2008 (1)

2006 (1)

2005 (1)

2004 (1)

2002 (1)

1999 (1)

1997 (1)

1995 (1)

1994 (1)

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
[CrossRef] [PubMed]

1963 (1)

Anderson, K.

Ashley, J.

Ayres, M.

Bashaw, M. C.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Channel codes for digital holographic data storage,” J. Opt. Soc. Am. A 12(11), 2432–2439 (1995).
[CrossRef]

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
[CrossRef] [PubMed]

Burr, G. W.

Chen, C. Y.

Chiueh, T. D.

Coufal, H.

Curtis, K.

Fu, C. C.

Grygier, R. K.

Heanue, J. F.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Channel codes for digital holographic data storage,” J. Opt. Soc. Am. A 12(11), 2432–2439 (1995).
[CrossRef]

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
[CrossRef] [PubMed]

Hesselink, L.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Channel codes for digital holographic data storage,” J. Opt. Soc. Am. A 12(11), 2432–2439 (1995).
[CrossRef]

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
[CrossRef] [PubMed]

Hoffnagle, J. A.

Hoskins, A.

Jefferson, C. M.

Koppa, P.

Kumar, B. V.

Lorincz, E.

Marcus, B.

Ujhelyi, F.

Vadde, V.

van Heerden, P. J.

Várhegyi, P.

Appl. Opt. (5)

J. Opt. Soc. Am. A (1)

Opt. Lett. (3)

Science (1)

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
[CrossRef] [PubMed]

Other (2)

V. Vadde, B. V. K. Vijaya Kumar, G. W. Burr, H. Coufal, J. A. Hoffnagle, and C. M. Jefferson, “A figure-of-merit for the optical aperture used in digital volume holographic data storage,” in Optical Data Storage ’98, S. Kubota, T. D. Milster, and P. J. Wehrenberg, eds., Proc. SPIE 3401, 194–200 (1998).

R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice Hall, 2002), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Conventional image reconstruction process.

Fig. 2
Fig. 2

CMOS images, PSFs at the CMOS, and storage densities for the Nyquist factors.

Fig. 3
Fig. 3

Experimental setup.

Fig. 4
Fig. 4

Proposed image reconstruction process.

Fig. 5
Fig. 5

PSF and restoration filter for the 2× resized image. (The images are magnified for clarity).

Fig. 6
Fig. 6

Enhanced spatial frequency domain for the 2× resized image.

Fig. 7
Fig. 7

Image restoration and upscaling process.

Fig. 8
Fig. 8

Image comparison of the conventional and upscaling methods. (The images are magnified for clarity).

Fig. 9
Fig. 9

Enhanced BER and SNR from the proposed method (simulation).

Fig. 10
Fig. 10

Image comparison of the conventional and upscaling methods. (The images are magnified for clarity).

Fig. 11
Fig. 11

Enhanced BER and SNR from the proposed method (experiment).

Tables (1)

Tables Icon

Table 1 Bit error Rate

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

D = γ λ f δ ,
B E R = n u m b e r o f e r r o r p i x e l s t o t a l n u m b e r o f p i x e l s ,
S N R = 10 log 10 μ 1 μ 0 σ 1 2 + σ 0 2 ,
F ^ ( u , v ) = [ H * ( u , v ) | H ( u , v ) | 2 + γ | P ( u , v ) | 2 ] G ( u , v ) ,
P = ( 0 1 0 1 4 1 0 1 0 ) .

Metrics