Abstract

A tunable negative-tap photonic microwave filter using a cladding-mode coupler together with optical injection locking of large wavelength detuning is demonstrated. Continuous and precise tunability of the filter is realized by physically sliding a pair of bare fibers inside the cladding-mode coupler. Signal inversion for the negative tap is achieved by optical injection locking of a single-mode semiconductor laser. To couple light into and out of the cladding-mode coupler, a pair of matching long-period fiber gratings is employed. The large bandwidth of the gratings requires injection locking of an exceptionally large wavelength detuning that has never been demonstrated before. Experimentally, injection locking with wavelength detuning as large as 27 nm was achieved, which corresponded to locking the 36-th side mode. Microwave filtering with a free-spectral range tunable from 88.6 MHz to 1.57 GHz and a notch depth larger than 35 dB was obtained.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
    [CrossRef]
  2. R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microwave Theory Tech. 54, 832–846 (2006).
    [CrossRef]
  3. J. Capmany, B. O. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24, 201–229 (2006).
    [CrossRef]
  4. S. Sales, J. Capmany, J. Marti, and D. Pastor, “Experimental demonstration of fiber-optic delay line filters with negative coefficients,” Electron. Lett. 31, 1095–1096 (1995).
    [CrossRef]
  5. J. Capmany, J. Mora, B. Ortega, and D. Pastor, “Microwave photonic filters using low-cost sources featuring tenability, reconfigurability and negative coefficients,” Opt. Express 13, 1412–1417 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-5-1412 .
    [CrossRef] [PubMed]
  6. T. Chen, X. K. Yi, T. Huang, and R. A. Minasian, “Multiple-bipolar-tap tunable spectrum sliced microwave photonic filter,” Opt. Lett. 35, 3934–3936 (2010).
    [CrossRef] [PubMed]
  7. F. Zeng, J. Wang, and J. P. Yao, “All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings,” Opt. Lett. 30, 2203–2205 (2005).
    [CrossRef] [PubMed]
  8. J. Wang, F. Zeng, and J. P. Yao, “All-optical microwave bandpass filter with negative coefficients based on PM-IM conversion,” IEEE Photon. Technol. Lett. 17, 2176–2178 (2005).
    [CrossRef]
  9. S. P. Li, K. S. Chiang, A. Gambling, Y. Liu, L. Zhang, and I. Bennion, “A novel tunable all-optical incoherent negative-tap fiber-optic transversal filter based on a DFB laser diode and fiber Bragg gratings,” IEEE Photon. Technol. Lett. 12, 1207–1209 (2000).
    [CrossRef]
  10. S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. 46, 421–428 (2010).
    [CrossRef]
  11. D. Norton, S. Johns, C. Keefer, and R. Soref, “Tunable microwave filtering using high dispersion fiber time delays,” IEEE Photon. Technol. Lett. 6, 831–832 (1994).
    [CrossRef]
  12. E. H. W. Chan and R. A. Minasian, “Widely tunable, high-FSR, coherence-free microwave photonic notch filter,” J. Lightwave Technol. 26, 922–927 (2008).
    [CrossRef]
  13. S. Mansoori and A. Mitchell, “RF transversal filter using an AOTF,” IEEE Photon. Technol. Lett. 16, 879–881 (2004).
    [CrossRef]
  14. D. Pastor, J. Capmany, and B. Ortega, “Broad-band tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters,” IEEE Photon. Technol. Lett. 13, 726–728 (2001).
    [CrossRef]
  15. Z. Wang, K. S. Chiang, and Q. Liu, “All-fiber tunable microwave photonic filter based on a cladding-mode coupler,” IEEE Photon. Technol. Lett. 22, 1241–1243 (2010).
    [CrossRef]
  16. Z. Wang, K. S. Chiang, and Q. Liu, “Microwave photonic filter based on circulating a cladding mode in a fiber ring resonator,” Opt. Lett. 35, 769–771 (2010).
    [CrossRef] [PubMed]
  17. T. B. Simpson and J. M. Liu, “Phase and amplitude characteristics of nearly degenerate four-wave mixing in Fabry-Perot semiconductor lasers,” J. Appl. Phys. 73, 2587–2589 (1993).
    [CrossRef]
  18. S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15, 14921–14935 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-22-14921 .
    [CrossRef]
  19. E. K. Lau, H. K. Sung, and M. C. Wu, “Frequency response enhancement of optical injection-locked lasers,” IEEE J. Quantum Electron. 44, 90–99 (2008).
    [CrossRef]
  20. J. M. Luo and M. Osinski, “Stable-locking bandwidth in sidemode injection locked semiconductor lasers,” Electron. Lett. 27, 1737–1739 (1991).
    [CrossRef]
  21. Y. Hong and K. A. Shore, “Locking characteristics of a side-mode injected semiconductor laser,” IEEE J. Quantum Electron. 35, 1713–1717 (1999).
    [CrossRef]
  22. Y. Hong, K. A. Shore, J. S. Lawrence, and D. M. Kane, “Wavelength switching by positively detuned side-mode injection in semiconductor lasers,” Appl. Phys. Lett. 76, 3170–3172 (2000).
    [CrossRef]
  23. S. P. Li, K. T. Chan, and C. Y. Lou, “Wavelength switching of picosecond pulses in a self-seeded Fabry-Perot semiconductor laser with external fiber Bragg grating cavities by optical injection,” IEEE Photon. Technol. Lett. 10, 1094–1096 (1998).
    [CrossRef]
  24. X. Wang and K. T. Chan, “Tunable all-optical incoherent bipolar delay-line filter using injection-locked Fabry-Perot laser and fiber Bragg gratings,” Electron. Lett. 36, 2001–2002 (2000).
    [CrossRef]
  25. C. L. Tseng, C. K. Liu, J. J. Jou, W. Y. Lin, C. W. Shih, S. C. Lin, S. L. Lee, and G. Keiser, “Bidirectional transmission using tunable fiber lasers and injection-locked Fabry-Perot laser diodes for WDM access networks,” IEEE Photon. Technol. Lett. 20, 794–796 (2008).
    [CrossRef]
  26. M. R. Uddin and Y. H. Won, “All-optical wavelength conversion by the modulation of self-locking state of single-mode FP-LD,” IEEE Photon. Technol. Lett. 22, 290–292 (2010).
    [CrossRef]
  27. Y. Liu, K. S. Chiang, Y. J. Rao, Z. L. Ran, and T. Zhu, “Light coupling between two parallel CO2-laser written long-period fiber gratings,” Opt. Express 15, 17645–17651 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-26-17645
    [CrossRef] [PubMed]
  28. Y. Liu, H. W. Lee, K. S. Chiang, T. Zhu, and Y. J. Rao, “Glass structure changes in CO2-laser writing of long-period fiber gratings in boron-doped single-mode fibers,” J. Lightwave Technol. 27, 857–863 (2009).
    [CrossRef]
  29. K. S. Chiang, F. Y. M. Chan, and M. N. Ng, “Analysis of two parallel long-period fiber gratings,” J. Lightwave Technol. 22, 1358–1366 (2004).
    [CrossRef]

2010

S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. 46, 421–428 (2010).
[CrossRef]

M. R. Uddin and Y. H. Won, “All-optical wavelength conversion by the modulation of self-locking state of single-mode FP-LD,” IEEE Photon. Technol. Lett. 22, 290–292 (2010).
[CrossRef]

Z. Wang, K. S. Chiang, and Q. Liu, “All-fiber tunable microwave photonic filter based on a cladding-mode coupler,” IEEE Photon. Technol. Lett. 22, 1241–1243 (2010).
[CrossRef]

Z. Wang, K. S. Chiang, and Q. Liu, “Microwave photonic filter based on circulating a cladding mode in a fiber ring resonator,” Opt. Lett. 35, 769–771 (2010).
[CrossRef] [PubMed]

T. Chen, X. K. Yi, T. Huang, and R. A. Minasian, “Multiple-bipolar-tap tunable spectrum sliced microwave photonic filter,” Opt. Lett. 35, 3934–3936 (2010).
[CrossRef] [PubMed]

2009

2008

C. L. Tseng, C. K. Liu, J. J. Jou, W. Y. Lin, C. W. Shih, S. C. Lin, S. L. Lee, and G. Keiser, “Bidirectional transmission using tunable fiber lasers and injection-locked Fabry-Perot laser diodes for WDM access networks,” IEEE Photon. Technol. Lett. 20, 794–796 (2008).
[CrossRef]

E. H. W. Chan and R. A. Minasian, “Widely tunable, high-FSR, coherence-free microwave photonic notch filter,” J. Lightwave Technol. 26, 922–927 (2008).
[CrossRef]

E. K. Lau, H. K. Sung, and M. C. Wu, “Frequency response enhancement of optical injection-locked lasers,” IEEE J. Quantum Electron. 44, 90–99 (2008).
[CrossRef]

2006

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microwave Theory Tech. 54, 832–846 (2006).
[CrossRef]

J. Capmany, B. O. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24, 201–229 (2006).
[CrossRef]

2005

F. Zeng, J. Wang, and J. P. Yao, “All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings,” Opt. Lett. 30, 2203–2205 (2005).
[CrossRef] [PubMed]

J. Wang, F. Zeng, and J. P. Yao, “All-optical microwave bandpass filter with negative coefficients based on PM-IM conversion,” IEEE Photon. Technol. Lett. 17, 2176–2178 (2005).
[CrossRef]

2004

K. S. Chiang, F. Y. M. Chan, and M. N. Ng, “Analysis of two parallel long-period fiber gratings,” J. Lightwave Technol. 22, 1358–1366 (2004).
[CrossRef]

S. Mansoori and A. Mitchell, “RF transversal filter using an AOTF,” IEEE Photon. Technol. Lett. 16, 879–881 (2004).
[CrossRef]

2001

D. Pastor, J. Capmany, and B. Ortega, “Broad-band tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters,” IEEE Photon. Technol. Lett. 13, 726–728 (2001).
[CrossRef]

2000

Y. Hong, K. A. Shore, J. S. Lawrence, and D. M. Kane, “Wavelength switching by positively detuned side-mode injection in semiconductor lasers,” Appl. Phys. Lett. 76, 3170–3172 (2000).
[CrossRef]

X. Wang and K. T. Chan, “Tunable all-optical incoherent bipolar delay-line filter using injection-locked Fabry-Perot laser and fiber Bragg gratings,” Electron. Lett. 36, 2001–2002 (2000).
[CrossRef]

S. P. Li, K. S. Chiang, A. Gambling, Y. Liu, L. Zhang, and I. Bennion, “A novel tunable all-optical incoherent negative-tap fiber-optic transversal filter based on a DFB laser diode and fiber Bragg gratings,” IEEE Photon. Technol. Lett. 12, 1207–1209 (2000).
[CrossRef]

1999

Y. Hong and K. A. Shore, “Locking characteristics of a side-mode injected semiconductor laser,” IEEE J. Quantum Electron. 35, 1713–1717 (1999).
[CrossRef]

1998

S. P. Li, K. T. Chan, and C. Y. Lou, “Wavelength switching of picosecond pulses in a self-seeded Fabry-Perot semiconductor laser with external fiber Bragg grating cavities by optical injection,” IEEE Photon. Technol. Lett. 10, 1094–1096 (1998).
[CrossRef]

1995

S. Sales, J. Capmany, J. Marti, and D. Pastor, “Experimental demonstration of fiber-optic delay line filters with negative coefficients,” Electron. Lett. 31, 1095–1096 (1995).
[CrossRef]

1994

D. Norton, S. Johns, C. Keefer, and R. Soref, “Tunable microwave filtering using high dispersion fiber time delays,” IEEE Photon. Technol. Lett. 6, 831–832 (1994).
[CrossRef]

1993

T. B. Simpson and J. M. Liu, “Phase and amplitude characteristics of nearly degenerate four-wave mixing in Fabry-Perot semiconductor lasers,” J. Appl. Phys. 73, 2587–2589 (1993).
[CrossRef]

1991

J. M. Luo and M. Osinski, “Stable-locking bandwidth in sidemode injection locked semiconductor lasers,” Electron. Lett. 27, 1737–1739 (1991).
[CrossRef]

Bennion, I.

S. P. Li, K. S. Chiang, A. Gambling, Y. Liu, L. Zhang, and I. Bennion, “A novel tunable all-optical incoherent negative-tap fiber-optic transversal filter based on a DFB laser diode and fiber Bragg gratings,” IEEE Photon. Technol. Lett. 12, 1207–1209 (2000).
[CrossRef]

Capmany, J.

J. Capmany, B. O. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24, 201–229 (2006).
[CrossRef]

D. Pastor, J. Capmany, and B. Ortega, “Broad-band tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters,” IEEE Photon. Technol. Lett. 13, 726–728 (2001).
[CrossRef]

S. Sales, J. Capmany, J. Marti, and D. Pastor, “Experimental demonstration of fiber-optic delay line filters with negative coefficients,” Electron. Lett. 31, 1095–1096 (1995).
[CrossRef]

Chan, E. H. W.

Chan, F. Y. M.

Chan, K. T.

X. Wang and K. T. Chan, “Tunable all-optical incoherent bipolar delay-line filter using injection-locked Fabry-Perot laser and fiber Bragg gratings,” Electron. Lett. 36, 2001–2002 (2000).
[CrossRef]

S. P. Li, K. T. Chan, and C. Y. Lou, “Wavelength switching of picosecond pulses in a self-seeded Fabry-Perot semiconductor laser with external fiber Bragg grating cavities by optical injection,” IEEE Photon. Technol. Lett. 10, 1094–1096 (1998).
[CrossRef]

Chan, S. C.

S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. 46, 421–428 (2010).
[CrossRef]

Chen, T.

Chiang, K. S.

Z. Wang, K. S. Chiang, and Q. Liu, “Microwave photonic filter based on circulating a cladding mode in a fiber ring resonator,” Opt. Lett. 35, 769–771 (2010).
[CrossRef] [PubMed]

Z. Wang, K. S. Chiang, and Q. Liu, “All-fiber tunable microwave photonic filter based on a cladding-mode coupler,” IEEE Photon. Technol. Lett. 22, 1241–1243 (2010).
[CrossRef]

Y. Liu, H. W. Lee, K. S. Chiang, T. Zhu, and Y. J. Rao, “Glass structure changes in CO2-laser writing of long-period fiber gratings in boron-doped single-mode fibers,” J. Lightwave Technol. 27, 857–863 (2009).
[CrossRef]

K. S. Chiang, F. Y. M. Chan, and M. N. Ng, “Analysis of two parallel long-period fiber gratings,” J. Lightwave Technol. 22, 1358–1366 (2004).
[CrossRef]

S. P. Li, K. S. Chiang, A. Gambling, Y. Liu, L. Zhang, and I. Bennion, “A novel tunable all-optical incoherent negative-tap fiber-optic transversal filter based on a DFB laser diode and fiber Bragg gratings,” IEEE Photon. Technol. Lett. 12, 1207–1209 (2000).
[CrossRef]

Gambling, A.

S. P. Li, K. S. Chiang, A. Gambling, Y. Liu, L. Zhang, and I. Bennion, “A novel tunable all-optical incoherent negative-tap fiber-optic transversal filter based on a DFB laser diode and fiber Bragg gratings,” IEEE Photon. Technol. Lett. 12, 1207–1209 (2000).
[CrossRef]

Hong, Y.

Y. Hong, K. A. Shore, J. S. Lawrence, and D. M. Kane, “Wavelength switching by positively detuned side-mode injection in semiconductor lasers,” Appl. Phys. Lett. 76, 3170–3172 (2000).
[CrossRef]

Y. Hong and K. A. Shore, “Locking characteristics of a side-mode injected semiconductor laser,” IEEE J. Quantum Electron. 35, 1713–1717 (1999).
[CrossRef]

Huang, T.

Johns, S.

D. Norton, S. Johns, C. Keefer, and R. Soref, “Tunable microwave filtering using high dispersion fiber time delays,” IEEE Photon. Technol. Lett. 6, 831–832 (1994).
[CrossRef]

Jou, J. J.

C. L. Tseng, C. K. Liu, J. J. Jou, W. Y. Lin, C. W. Shih, S. C. Lin, S. L. Lee, and G. Keiser, “Bidirectional transmission using tunable fiber lasers and injection-locked Fabry-Perot laser diodes for WDM access networks,” IEEE Photon. Technol. Lett. 20, 794–796 (2008).
[CrossRef]

Kane, D. M.

Y. Hong, K. A. Shore, J. S. Lawrence, and D. M. Kane, “Wavelength switching by positively detuned side-mode injection in semiconductor lasers,” Appl. Phys. Lett. 76, 3170–3172 (2000).
[CrossRef]

Keefer, C.

D. Norton, S. Johns, C. Keefer, and R. Soref, “Tunable microwave filtering using high dispersion fiber time delays,” IEEE Photon. Technol. Lett. 6, 831–832 (1994).
[CrossRef]

Keiser, G.

C. L. Tseng, C. K. Liu, J. J. Jou, W. Y. Lin, C. W. Shih, S. C. Lin, S. L. Lee, and G. Keiser, “Bidirectional transmission using tunable fiber lasers and injection-locked Fabry-Perot laser diodes for WDM access networks,” IEEE Photon. Technol. Lett. 20, 794–796 (2008).
[CrossRef]

Lau, E. K.

E. K. Lau, H. K. Sung, and M. C. Wu, “Frequency response enhancement of optical injection-locked lasers,” IEEE J. Quantum Electron. 44, 90–99 (2008).
[CrossRef]

Lawrence, J. S.

Y. Hong, K. A. Shore, J. S. Lawrence, and D. M. Kane, “Wavelength switching by positively detuned side-mode injection in semiconductor lasers,” Appl. Phys. Lett. 76, 3170–3172 (2000).
[CrossRef]

Lee, H. W.

Lee, S. L.

C. L. Tseng, C. K. Liu, J. J. Jou, W. Y. Lin, C. W. Shih, S. C. Lin, S. L. Lee, and G. Keiser, “Bidirectional transmission using tunable fiber lasers and injection-locked Fabry-Perot laser diodes for WDM access networks,” IEEE Photon. Technol. Lett. 20, 794–796 (2008).
[CrossRef]

Li, S. P.

S. P. Li, K. S. Chiang, A. Gambling, Y. Liu, L. Zhang, and I. Bennion, “A novel tunable all-optical incoherent negative-tap fiber-optic transversal filter based on a DFB laser diode and fiber Bragg gratings,” IEEE Photon. Technol. Lett. 12, 1207–1209 (2000).
[CrossRef]

S. P. Li, K. T. Chan, and C. Y. Lou, “Wavelength switching of picosecond pulses in a self-seeded Fabry-Perot semiconductor laser with external fiber Bragg grating cavities by optical injection,” IEEE Photon. Technol. Lett. 10, 1094–1096 (1998).
[CrossRef]

Lin, S. C.

C. L. Tseng, C. K. Liu, J. J. Jou, W. Y. Lin, C. W. Shih, S. C. Lin, S. L. Lee, and G. Keiser, “Bidirectional transmission using tunable fiber lasers and injection-locked Fabry-Perot laser diodes for WDM access networks,” IEEE Photon. Technol. Lett. 20, 794–796 (2008).
[CrossRef]

Lin, W. Y.

C. L. Tseng, C. K. Liu, J. J. Jou, W. Y. Lin, C. W. Shih, S. C. Lin, S. L. Lee, and G. Keiser, “Bidirectional transmission using tunable fiber lasers and injection-locked Fabry-Perot laser diodes for WDM access networks,” IEEE Photon. Technol. Lett. 20, 794–796 (2008).
[CrossRef]

Liu, C. K.

C. L. Tseng, C. K. Liu, J. J. Jou, W. Y. Lin, C. W. Shih, S. C. Lin, S. L. Lee, and G. Keiser, “Bidirectional transmission using tunable fiber lasers and injection-locked Fabry-Perot laser diodes for WDM access networks,” IEEE Photon. Technol. Lett. 20, 794–796 (2008).
[CrossRef]

Liu, J. M.

T. B. Simpson and J. M. Liu, “Phase and amplitude characteristics of nearly degenerate four-wave mixing in Fabry-Perot semiconductor lasers,” J. Appl. Phys. 73, 2587–2589 (1993).
[CrossRef]

Liu, Q.

Z. Wang, K. S. Chiang, and Q. Liu, “All-fiber tunable microwave photonic filter based on a cladding-mode coupler,” IEEE Photon. Technol. Lett. 22, 1241–1243 (2010).
[CrossRef]

Z. Wang, K. S. Chiang, and Q. Liu, “Microwave photonic filter based on circulating a cladding mode in a fiber ring resonator,” Opt. Lett. 35, 769–771 (2010).
[CrossRef] [PubMed]

Liu, Y.

Y. Liu, H. W. Lee, K. S. Chiang, T. Zhu, and Y. J. Rao, “Glass structure changes in CO2-laser writing of long-period fiber gratings in boron-doped single-mode fibers,” J. Lightwave Technol. 27, 857–863 (2009).
[CrossRef]

S. P. Li, K. S. Chiang, A. Gambling, Y. Liu, L. Zhang, and I. Bennion, “A novel tunable all-optical incoherent negative-tap fiber-optic transversal filter based on a DFB laser diode and fiber Bragg gratings,” IEEE Photon. Technol. Lett. 12, 1207–1209 (2000).
[CrossRef]

Lou, C. Y.

S. P. Li, K. T. Chan, and C. Y. Lou, “Wavelength switching of picosecond pulses in a self-seeded Fabry-Perot semiconductor laser with external fiber Bragg grating cavities by optical injection,” IEEE Photon. Technol. Lett. 10, 1094–1096 (1998).
[CrossRef]

Luo, J. M.

J. M. Luo and M. Osinski, “Stable-locking bandwidth in sidemode injection locked semiconductor lasers,” Electron. Lett. 27, 1737–1739 (1991).
[CrossRef]

Mansoori, S.

S. Mansoori and A. Mitchell, “RF transversal filter using an AOTF,” IEEE Photon. Technol. Lett. 16, 879–881 (2004).
[CrossRef]

Marti, J.

S. Sales, J. Capmany, J. Marti, and D. Pastor, “Experimental demonstration of fiber-optic delay line filters with negative coefficients,” Electron. Lett. 31, 1095–1096 (1995).
[CrossRef]

Minasian, R. A.

Mitchell, A.

S. Mansoori and A. Mitchell, “RF transversal filter using an AOTF,” IEEE Photon. Technol. Lett. 16, 879–881 (2004).
[CrossRef]

Ng, M. N.

Norton, D.

D. Norton, S. Johns, C. Keefer, and R. Soref, “Tunable microwave filtering using high dispersion fiber time delays,” IEEE Photon. Technol. Lett. 6, 831–832 (1994).
[CrossRef]

Ortega, B.

D. Pastor, J. Capmany, and B. Ortega, “Broad-band tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters,” IEEE Photon. Technol. Lett. 13, 726–728 (2001).
[CrossRef]

Ortega, B. O.

Osinski, M.

J. M. Luo and M. Osinski, “Stable-locking bandwidth in sidemode injection locked semiconductor lasers,” Electron. Lett. 27, 1737–1739 (1991).
[CrossRef]

Pastor, D.

J. Capmany, B. O. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24, 201–229 (2006).
[CrossRef]

D. Pastor, J. Capmany, and B. Ortega, “Broad-band tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters,” IEEE Photon. Technol. Lett. 13, 726–728 (2001).
[CrossRef]

S. Sales, J. Capmany, J. Marti, and D. Pastor, “Experimental demonstration of fiber-optic delay line filters with negative coefficients,” Electron. Lett. 31, 1095–1096 (1995).
[CrossRef]

Rao, Y. J.

Sales, S.

S. Sales, J. Capmany, J. Marti, and D. Pastor, “Experimental demonstration of fiber-optic delay line filters with negative coefficients,” Electron. Lett. 31, 1095–1096 (1995).
[CrossRef]

Shih, C. W.

C. L. Tseng, C. K. Liu, J. J. Jou, W. Y. Lin, C. W. Shih, S. C. Lin, S. L. Lee, and G. Keiser, “Bidirectional transmission using tunable fiber lasers and injection-locked Fabry-Perot laser diodes for WDM access networks,” IEEE Photon. Technol. Lett. 20, 794–796 (2008).
[CrossRef]

Shore, K. A.

Y. Hong, K. A. Shore, J. S. Lawrence, and D. M. Kane, “Wavelength switching by positively detuned side-mode injection in semiconductor lasers,” Appl. Phys. Lett. 76, 3170–3172 (2000).
[CrossRef]

Y. Hong and K. A. Shore, “Locking characteristics of a side-mode injected semiconductor laser,” IEEE J. Quantum Electron. 35, 1713–1717 (1999).
[CrossRef]

Simpson, T. B.

T. B. Simpson and J. M. Liu, “Phase and amplitude characteristics of nearly degenerate four-wave mixing in Fabry-Perot semiconductor lasers,” J. Appl. Phys. 73, 2587–2589 (1993).
[CrossRef]

Soref, R.

D. Norton, S. Johns, C. Keefer, and R. Soref, “Tunable microwave filtering using high dispersion fiber time delays,” IEEE Photon. Technol. Lett. 6, 831–832 (1994).
[CrossRef]

Sung, H. K.

E. K. Lau, H. K. Sung, and M. C. Wu, “Frequency response enhancement of optical injection-locked lasers,” IEEE J. Quantum Electron. 44, 90–99 (2008).
[CrossRef]

Tseng, C. L.

C. L. Tseng, C. K. Liu, J. J. Jou, W. Y. Lin, C. W. Shih, S. C. Lin, S. L. Lee, and G. Keiser, “Bidirectional transmission using tunable fiber lasers and injection-locked Fabry-Perot laser diodes for WDM access networks,” IEEE Photon. Technol. Lett. 20, 794–796 (2008).
[CrossRef]

Uddin, M. R.

M. R. Uddin and Y. H. Won, “All-optical wavelength conversion by the modulation of self-locking state of single-mode FP-LD,” IEEE Photon. Technol. Lett. 22, 290–292 (2010).
[CrossRef]

Wang, J.

F. Zeng, J. Wang, and J. P. Yao, “All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings,” Opt. Lett. 30, 2203–2205 (2005).
[CrossRef] [PubMed]

J. Wang, F. Zeng, and J. P. Yao, “All-optical microwave bandpass filter with negative coefficients based on PM-IM conversion,” IEEE Photon. Technol. Lett. 17, 2176–2178 (2005).
[CrossRef]

Wang, X.

X. Wang and K. T. Chan, “Tunable all-optical incoherent bipolar delay-line filter using injection-locked Fabry-Perot laser and fiber Bragg gratings,” Electron. Lett. 36, 2001–2002 (2000).
[CrossRef]

Wang, Z.

Z. Wang, K. S. Chiang, and Q. Liu, “Microwave photonic filter based on circulating a cladding mode in a fiber ring resonator,” Opt. Lett. 35, 769–771 (2010).
[CrossRef] [PubMed]

Z. Wang, K. S. Chiang, and Q. Liu, “All-fiber tunable microwave photonic filter based on a cladding-mode coupler,” IEEE Photon. Technol. Lett. 22, 1241–1243 (2010).
[CrossRef]

Won, Y. H.

M. R. Uddin and Y. H. Won, “All-optical wavelength conversion by the modulation of self-locking state of single-mode FP-LD,” IEEE Photon. Technol. Lett. 22, 290–292 (2010).
[CrossRef]

Wu, M. C.

E. K. Lau, H. K. Sung, and M. C. Wu, “Frequency response enhancement of optical injection-locked lasers,” IEEE J. Quantum Electron. 44, 90–99 (2008).
[CrossRef]

Yao, J. P.

Yi, X. K.

Zeng, F.

F. Zeng, J. Wang, and J. P. Yao, “All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings,” Opt. Lett. 30, 2203–2205 (2005).
[CrossRef] [PubMed]

J. Wang, F. Zeng, and J. P. Yao, “All-optical microwave bandpass filter with negative coefficients based on PM-IM conversion,” IEEE Photon. Technol. Lett. 17, 2176–2178 (2005).
[CrossRef]

Zhang, L.

S. P. Li, K. S. Chiang, A. Gambling, Y. Liu, L. Zhang, and I. Bennion, “A novel tunable all-optical incoherent negative-tap fiber-optic transversal filter based on a DFB laser diode and fiber Bragg gratings,” IEEE Photon. Technol. Lett. 12, 1207–1209 (2000).
[CrossRef]

Zhu, T.

Appl. Phys. Lett.

Y. Hong, K. A. Shore, J. S. Lawrence, and D. M. Kane, “Wavelength switching by positively detuned side-mode injection in semiconductor lasers,” Appl. Phys. Lett. 76, 3170–3172 (2000).
[CrossRef]

Electron. Lett.

S. Sales, J. Capmany, J. Marti, and D. Pastor, “Experimental demonstration of fiber-optic delay line filters with negative coefficients,” Electron. Lett. 31, 1095–1096 (1995).
[CrossRef]

J. M. Luo and M. Osinski, “Stable-locking bandwidth in sidemode injection locked semiconductor lasers,” Electron. Lett. 27, 1737–1739 (1991).
[CrossRef]

X. Wang and K. T. Chan, “Tunable all-optical incoherent bipolar delay-line filter using injection-locked Fabry-Perot laser and fiber Bragg gratings,” Electron. Lett. 36, 2001–2002 (2000).
[CrossRef]

IEEE J. Quantum Electron.

Y. Hong and K. A. Shore, “Locking characteristics of a side-mode injected semiconductor laser,” IEEE J. Quantum Electron. 35, 1713–1717 (1999).
[CrossRef]

E. K. Lau, H. K. Sung, and M. C. Wu, “Frequency response enhancement of optical injection-locked lasers,” IEEE J. Quantum Electron. 44, 90–99 (2008).
[CrossRef]

S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. 46, 421–428 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

D. Norton, S. Johns, C. Keefer, and R. Soref, “Tunable microwave filtering using high dispersion fiber time delays,” IEEE Photon. Technol. Lett. 6, 831–832 (1994).
[CrossRef]

J. Wang, F. Zeng, and J. P. Yao, “All-optical microwave bandpass filter with negative coefficients based on PM-IM conversion,” IEEE Photon. Technol. Lett. 17, 2176–2178 (2005).
[CrossRef]

S. P. Li, K. S. Chiang, A. Gambling, Y. Liu, L. Zhang, and I. Bennion, “A novel tunable all-optical incoherent negative-tap fiber-optic transversal filter based on a DFB laser diode and fiber Bragg gratings,” IEEE Photon. Technol. Lett. 12, 1207–1209 (2000).
[CrossRef]

C. L. Tseng, C. K. Liu, J. J. Jou, W. Y. Lin, C. W. Shih, S. C. Lin, S. L. Lee, and G. Keiser, “Bidirectional transmission using tunable fiber lasers and injection-locked Fabry-Perot laser diodes for WDM access networks,” IEEE Photon. Technol. Lett. 20, 794–796 (2008).
[CrossRef]

M. R. Uddin and Y. H. Won, “All-optical wavelength conversion by the modulation of self-locking state of single-mode FP-LD,” IEEE Photon. Technol. Lett. 22, 290–292 (2010).
[CrossRef]

S. P. Li, K. T. Chan, and C. Y. Lou, “Wavelength switching of picosecond pulses in a self-seeded Fabry-Perot semiconductor laser with external fiber Bragg grating cavities by optical injection,” IEEE Photon. Technol. Lett. 10, 1094–1096 (1998).
[CrossRef]

S. Mansoori and A. Mitchell, “RF transversal filter using an AOTF,” IEEE Photon. Technol. Lett. 16, 879–881 (2004).
[CrossRef]

D. Pastor, J. Capmany, and B. Ortega, “Broad-band tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters,” IEEE Photon. Technol. Lett. 13, 726–728 (2001).
[CrossRef]

Z. Wang, K. S. Chiang, and Q. Liu, “All-fiber tunable microwave photonic filter based on a cladding-mode coupler,” IEEE Photon. Technol. Lett. 22, 1241–1243 (2010).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microwave Theory Tech. 54, 832–846 (2006).
[CrossRef]

J. Appl. Phys.

T. B. Simpson and J. M. Liu, “Phase and amplitude characteristics of nearly degenerate four-wave mixing in Fabry-Perot semiconductor lasers,” J. Appl. Phys. 73, 2587–2589 (1993).
[CrossRef]

J. Lightwave Technol.

Opt. Lett.

Other

S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15, 14921–14935 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-22-14921 .
[CrossRef]

J. Capmany, J. Mora, B. Ortega, and D. Pastor, “Microwave photonic filters using low-cost sources featuring tenability, reconfigurability and negative coefficients,” Opt. Express 13, 1412–1417 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-5-1412 .
[CrossRef] [PubMed]

Y. Liu, K. S. Chiang, Y. J. Rao, Z. L. Ran, and T. Zhu, “Light coupling between two parallel CO2-laser written long-period fiber gratings,” Opt. Express 15, 17645–17651 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-26-17645
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the tunable negative-tap photonic microwave filter. ML: master laser; SL: slave laser; MOD: amplitude modulator; EDFA: erbium-doped fiber amplifier; FC1, FC2: fiber couplers; PC: polarization control; LPFG1, LPFG2: long-period fiber gratings; PD: photodetector; VOA: variable optical attenuator. The red path transmits the noninverted signal. The blue path transmits the inverted signal. FSR is determined by the time-delay difference that can be tuned at the cladding-mode coupler.

Fig. 2
Fig. 2

Normalized transmission spectra (red and black) of the two LPFGs and the overall transmission spectrum (blue), which shows that λ i remains in the core mode while λ 0 is coupled to the cladding mode.

Fig. 3
Fig. 3

Optical spectra of the slave laser emission when the injection power was off (red) and on (black).

Fig. 4
Fig. 4

Measured (dots) and calculated (curves) frequency responses of the microwave photonic filter for FSR = (a) 97.6 MHz, 93.3 MHz, and 88.6 MHz; and (b) 1.57 GHz, 1.13 GHz, and 0.719 GHz.

Fig. 5
Fig. 5

Dependence of the FSR on the length difference ΔL eff.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

FSR = c n g Δ L eff ,

Metrics