Abstract

A 218 mega-pixel synthetic aperture was collected by raster scanning a CCD detector in a digital holography imaging experiment. Frames were mosaicked together using a two-step cross-correlation registration. Phase correction using sharpness metrics were utilized to achieve diffraction-limited resolution.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Hecht, J. Colineau, and J. C. Lehureau, “Short-range synthetic aperture imaging at 633 nm by digital holography,” Appl. Opt. 41(23), 4775–4782 (2002).
    [CrossRef]
  2. J. H. Massig, “Digital off-axis holography with a synthetic aperture,” Opt. Lett. 27(24), 2179–2181 (2002).
    [CrossRef]
  3. D. Claus, “High resolution digital holographic synthetic aperture applied to deformation measurement and extended depth of field method,” Appl. Opt. 49(16), 3187–3198 (2010).
    [CrossRef] [PubMed]
  4. L. D. Weaver, J. S. Fender, and C. R. Dehainaut, “Design considerations for multiple telescope imaging arrays,” Opt. Eng. 27, 730–735 (1988).
  5. P. Nisenson, “Speckle Imaging with the PAPA Detector and the Knox-Thompson Algorithm,” in Diffraction-Limited Imaging, D. M. Alloin and J.-M. Mariotti, eds. (Kluwer Academic Publishers, 1989), pp. 157–169.
  6. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett. 33(2), 156–158 (2008).
    [CrossRef] [PubMed]
  7. R. A. Muller and A. Buffington, “Real-time correction of atmospherically degraded telescope images through image sharpening,” J. Opt. Soc. Am. 64(9), 1200–1210 (1974).
    [CrossRef]
  8. S. T. Thurman and J. R. Fienup, “Correction of anisoplanatic phase errors in digital holography,” J. Opt. Soc. Am. A 25(4), 995–999 (2008).
    [CrossRef]
  9. S. T. Thurman and J. R. Fienup, “Phase-error correction in digital holography,” J. Opt. Soc. Am. A 25(4), 983–994 (2008).
    [CrossRef]
  10. A. E. Tippie and J. R. Fienup, “Phase-error correction for multiple planes using a sharpness metric,” Opt. Lett. 34(5), 701–703 (2009).
    [CrossRef] [PubMed]
  11. U. Grenander, Abstract Inference (Wiley, New York, 1981).
  12. A. E. Tippie and J. R. Fienup, “Multiple-plane anisoplanatic phase correction in a laboratory digital holography experiment,” Opt. Lett. 35(19), 3291–3293 (2010).
    [CrossRef] [PubMed]
  13. A. Kozma and C. R. Christensen, “Effects of speckle on resolution,” J. Opt. Soc. Am. 66(11), 1257–1260 (1976).
    [CrossRef]
  14. A. J. Page, L. Ahrenberg, and T. J. Naughton, “Low memory distributed reconstruction of large digital holograms,” Opt. Express 16(3), 1990–1995 (2008).
    [CrossRef] [PubMed]

2010 (2)

2009 (1)

2008 (4)

2002 (2)

1988 (1)

L. D. Weaver, J. S. Fender, and C. R. Dehainaut, “Design considerations for multiple telescope imaging arrays,” Opt. Eng. 27, 730–735 (1988).

1976 (1)

1974 (1)

Ahrenberg, L.

Buffington, A.

Christensen, C. R.

Claus, D.

Colineau, J.

Dehainaut, C. R.

L. D. Weaver, J. S. Fender, and C. R. Dehainaut, “Design considerations for multiple telescope imaging arrays,” Opt. Eng. 27, 730–735 (1988).

Fender, J. S.

L. D. Weaver, J. S. Fender, and C. R. Dehainaut, “Design considerations for multiple telescope imaging arrays,” Opt. Eng. 27, 730–735 (1988).

Fienup, J. R.

Guizar-Sicairos, M.

Hecht, B.

Kozma, A.

Lehureau, J. C.

Massig, J. H.

Muller, R. A.

Naughton, T. J.

Page, A. J.

Thurman, S. T.

Tippie, A. E.

Weaver, L. D.

L. D. Weaver, J. S. Fender, and C. R. Dehainaut, “Design considerations for multiple telescope imaging arrays,” Opt. Eng. 27, 730–735 (1988).

Appl. Opt. (2)

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (2)

Opt. Eng. (1)

L. D. Weaver, J. S. Fender, and C. R. Dehainaut, “Design considerations for multiple telescope imaging arrays,” Opt. Eng. 27, 730–735 (1988).

Opt. Express (1)

Opt. Lett. (4)

Other (2)

P. Nisenson, “Speckle Imaging with the PAPA Detector and the Knox-Thompson Algorithm,” in Diffraction-Limited Imaging, D. M. Alloin and J.-M. Mariotti, eds. (Kluwer Academic Publishers, 1989), pp. 157–169.

U. Grenander, Abstract Inference (Wiley, New York, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup for off-axis, lensless Fourier transform digital holography synthetic aperture imaging. B/S, beamsplitter; M, mirror; SF, microscope objective plus pinshole spatial filter; Obj, microscope objective and Syn. Aper, width of synthetic aperture after raster scanning CCD.

Fig. 2
Fig. 2

Image reconstruction of (a) – (d) Single frame; (e) – (h) Initial mosaic; (i) – (l) Optimized mosaic; (m) – (p) Reference phase correction; (q) – (t) Higher order phase correction over entire FOV; (u) – (x) Higher order phase correction over ROI using M2 . Column 1 – 8700 x 6500 pixel area of entire image; Column 2 – 2550 x 2500 pixel subset of Col. 1; Column 3 – 650 x 650 pix subset of Col 2; Column 4 – 160 x 160 pixel subset of Col 3.

Fig. 3
Fig. 3

Amplitude of the mosaic of 21 x 21 (12100 by 18000 pixels) frames after initial cross-correlation of single adjacent frame and averaging overlap regions.

Fig. 4
Fig. 4

Amplitude of the entire 21 x 21 synthetic aperture (12100 by 18000 pixels) after cross-correlation registration of overlapping frame areas.

Fig. 5
Fig. 5

Higher order phase correction over the entire FOV. Colorbar units in radians.

Fig. 6
Fig. 6

Entire FOV with 600 pixel masked regions, M1 and M2 , shown in dashed squares.

Fig. 7
Fig. 7

Higher order phase correction (a) using M1 and (b) using M2. Colorbar units in radians.

Fig. 8
Fig. 8

Image reconstruction with ROI higher-order phase correction (a) – (d) using mask M1 and (e) – (h) using mask M2 . Subimages (b) and (f) are 160 pixel areas of (a) and (e), respectively and (d) and (h) are 160 pixel subsets of the central areas of (c) and (g).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I det = | R + H | 2 = | R | 2 + | H | 2 + R H * + H R *
r ( x , y ) = ( x x r ) 2 + ( y y r ) 2 + z r 2 ,
g ( ξ , η ) = F 1 { F { H e ( x , y ) exp [ i k r ( x , y ) ] } exp ( i 2 π z 1 / λ 2 f x 2 f y 2 ) } A { z ; H e ( x , y ) exp [ i k r ( x , y ) ] }
S = ξ , η I β ( ξ , η ) = ξ , η ( | g ( ξ , η ) | 2 ) β
H 1 = H exp [ i ϕ e ( x , y ) ]
H R O I = 𝚨 { z ; M n ( ξ , η ) 𝚨 [ z ; H ] }
F p q = m , n N f m , n exp [ i 2 π ( m p + n p ) / N ] .
f m n = δ m m o , n
S x r = ξ , η β [ I ( ξ , η ) ] β 1 I x r = ξ , η β I ( ξ , η ) β 1 g ( ξ , η ) g * ( ξ , η ) x r = ξ , η β I ( ξ , η ) β 1 2 Re [ g * ( ξ , η ) g ( ξ , η ) x r ] .
g ( ξ , η ) x r = 𝚨 { z ; H e ( x , y ) exp [ i k r ( x , y ) ] i k ( x x r ) r ( x , y ) } .
S x r = β I ( ξ , η ) β 1 2 Re [ 𝚨 { z ; H e ( x , y ) exp [ i k r ( x , y ) ] } * × 𝚨 { z ; H e ( x , y ) exp [ i ϕ r ( x , y ) ] i k ( x x r ) r ( x , y ) } ]

Metrics