Abstract

Superconducting planar terahertz (THz) metamaterials (MMs), with unit cells of different sizes, are fabricated on 200 nm-thick niobium nitride (NbN) films deposited on MgO substrates. They are characterized using THz time domain spectroscopy over a temperature range from 8.1 K to 300 K, crossing the critical temperature of NbN films. As the gap frequency (fg = 2Δ0/h, where Δ0 is the energy gap at 0 K and h is the Plank constant) of NbN is 1.18 THz, the experimentally observed THz spectra span a frequency range from below fg to above it. We have found that, as the resonance frequency approaches fg, the relative tuning range of MMs is quite wide (30%). We attribute this observation to the large change of kinetic inductance of superconducting film.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
    [CrossRef] [PubMed]
  2. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
    [CrossRef]
  3. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
    [CrossRef] [PubMed]
  4. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [CrossRef] [PubMed]
  5. H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent progress in electromagnetic metamaterial devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 99, 1–10 (2010).
  6. W. Withayachumnankul and D. Abbott, “Metamaterials in the terahertz regime,” IEEE Photon. J. 1(2), 99–118 (2009).
    [CrossRef]
  7. R. Singh, A. K. Azad, J. F. O’Hara, A. J. Taylor, and W. Zhang, “Effect of metal permittivity on resonant properties of terahertz metamaterials,” Opt. Lett. 33(13), 1506–1508 (2008).
    [CrossRef] [PubMed]
  8. R. Singh, E. Smirnova, A. J. Taylor, J. F. O’Hara, and W. Zhang, “Optically thin terahertz metamaterials,” Opt. Express 16(9), 6537–6543 (2008).
    [CrossRef] [PubMed]
  9. R. Singh, Z. Tian, J. Han, C. Rockstuhl, J. Gu, and W. Zhang, “Cryogenic temperatures as a path toward high-Q terahertz metamaterials,” Appl. Phys. Lett. 96(7), 071114 (2010).
    [CrossRef]
  10. J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010).
    [CrossRef]
  11. V. A. Fedotov, A. Tsiatmas, J. H. Shi, R. Buckingham, P. de Groot, Y. Chen, S. Wang, and N. I. Zheludev, “Temperature control of Fano resonances and transmission in superconducting metamaterials,” Opt. Express 18(9), 9015–9019 (2010).
    [CrossRef] [PubMed]
  12. B. B. Jin, C. H. Zhang, S. Engelbrecht, A. Pimenov, J. B. Wu, Q. Y. Xu, C. H. Cao, J. Chen, W. W. Xu, L. Kang, and P. H. Wu, “Low loss and magnetic field-tunable superconducting terahertz metamaterial,” Opt. Express 18(16), 17504–17509 (2010).
    [CrossRef] [PubMed]
  13. H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
    [CrossRef]
  14. D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
    [CrossRef]
  15. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2006).
    [CrossRef]
  16. H. T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
    [CrossRef] [PubMed]
  17. J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
    [CrossRef] [PubMed]
  18. L. Kang, B. B. Jin, X. Y. Liu, X. Q. Jia, J. Chen, Z. M. Ji, W. W. Xu, P. H. Wu, S. B. Mi, A. Pimenov, Y. J. Wu, and B. G. Wang, “Suppression of superconductivity in epitaxial NbN ultrathin films,” J. Appl. Phys. 109(3), 033908 (2011).
    [CrossRef]
  19. A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O’Hara, “Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators,” Appl. Phys. Lett. 92(1), 011119 (2008).
    [CrossRef]
  20. J. F. O’Hara, E. Smirnova, A. K. Azad, H. T. Chen, and A. J. Taylor, “Effects of microstructure variations on macroscopic terahertz metafilm properties,” Act. Passive Electron. Compon. 2007, 49691 (2007).
  21. T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Second Edition, (Cambridge University Press, 2004), Chap. 4.
  22. M. Tinkham, Introduction to superconductivity, (McGraw-Hill, 1980)
  23. M. J. Lancaster, Passive Microwave Device Applications of High-Temperature superconductors, (Cambridge University Press, 2006), Chap. 1.
  24. S. Hensen, G. Müller, C. T. Rieck, and K. Scharnberg, “In-plane surface impedance of epitaxial YBa2Cu3O7+Δ films: Comparison of experimental data taken at 87 GHz with d- and s-wave models of superconductivity,” Phys. Rev. B 56(10), 6237–6264 (1997).
    [CrossRef]
  25. T. Hao, C. J. Stevens, and D. J. Edwards, “Optimization of Metamaterials by Q factor,” Electron. Lett. 41(11), 653–654 (2005).
    [CrossRef]
  26. R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
    [CrossRef] [PubMed]
  27. R. Singh, C. Rockstuhl, and W. Zhang, “Strong influence of packing density in terahertz metamaterials,” Appl. Phys. Lett. 97(24), 241108 (2010).
    [CrossRef]
  28. R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H. T. Chen, “Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates,” Opt. Lett. 36(7), 1230–1232 (2011).
    [CrossRef] [PubMed]

2011 (3)

2010 (7)

V. A. Fedotov, A. Tsiatmas, J. H. Shi, R. Buckingham, P. de Groot, Y. Chen, S. Wang, and N. I. Zheludev, “Temperature control of Fano resonances and transmission in superconducting metamaterials,” Opt. Express 18(9), 9015–9019 (2010).
[CrossRef] [PubMed]

B. B. Jin, C. H. Zhang, S. Engelbrecht, A. Pimenov, J. B. Wu, Q. Y. Xu, C. H. Cao, J. Chen, W. W. Xu, L. Kang, and P. H. Wu, “Low loss and magnetic field-tunable superconducting terahertz metamaterial,” Opt. Express 18(16), 17504–17509 (2010).
[CrossRef] [PubMed]

H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent progress in electromagnetic metamaterial devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 99, 1–10 (2010).

R. Singh, C. Rockstuhl, and W. Zhang, “Strong influence of packing density in terahertz metamaterials,” Appl. Phys. Lett. 97(24), 241108 (2010).
[CrossRef]

R. Singh, Z. Tian, J. Han, C. Rockstuhl, J. Gu, and W. Zhang, “Cryogenic temperatures as a path toward high-Q terahertz metamaterials,” Appl. Phys. Lett. 96(7), 071114 (2010).
[CrossRef]

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010).
[CrossRef]

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[CrossRef]

2009 (1)

W. Withayachumnankul and D. Abbott, “Metamaterials in the terahertz regime,” IEEE Photon. J. 1(2), 99–118 (2009).
[CrossRef]

2008 (3)

2007 (3)

J. F. O’Hara, E. Smirnova, A. K. Azad, H. T. Chen, and A. J. Taylor, “Effects of microstructure variations on macroscopic terahertz metafilm properties,” Act. Passive Electron. Compon. 2007, 49691 (2007).

H. T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[CrossRef] [PubMed]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[CrossRef]

2006 (3)

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[CrossRef]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2006).
[CrossRef]

2005 (2)

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[CrossRef] [PubMed]

T. Hao, C. J. Stevens, and D. J. Edwards, “Optimization of Metamaterials by Q factor,” Electron. Lett. 41(11), 653–654 (2005).
[CrossRef]

2004 (2)

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

1997 (1)

S. Hensen, G. Müller, C. T. Rieck, and K. Scharnberg, “In-plane surface impedance of epitaxial YBa2Cu3O7+Δ films: Comparison of experimental data taken at 87 GHz with d- and s-wave models of superconductivity,” Phys. Rev. B 56(10), 6237–6264 (1997).
[CrossRef]

Abbott, D.

W. Withayachumnankul and D. Abbott, “Metamaterials in the terahertz regime,” IEEE Photon. J. 1(2), 99–118 (2009).
[CrossRef]

Al-Naib, I. A. I.

Averitt, R. D.

H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent progress in electromagnetic metamaterial devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 99, 1–10 (2010).

H. T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2006).
[CrossRef]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Azad, A. K.

R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H. T. Chen, “Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates,” Opt. Lett. 36(7), 1230–1232 (2011).
[CrossRef] [PubMed]

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[CrossRef]

R. Singh, A. K. Azad, J. F. O’Hara, A. J. Taylor, and W. Zhang, “Effect of metal permittivity on resonant properties of terahertz metamaterials,” Opt. Lett. 33(13), 1506–1508 (2008).
[CrossRef] [PubMed]

A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O’Hara, “Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators,” Appl. Phys. Lett. 92(1), 011119 (2008).
[CrossRef]

J. F. O’Hara, E. Smirnova, A. K. Azad, H. T. Chen, and A. J. Taylor, “Effects of microstructure variations on macroscopic terahertz metafilm properties,” Act. Passive Electron. Compon. 2007, 49691 (2007).

Basov, D. N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Buckingham, R.

Cao, C. H.

Cao, W.

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010).
[CrossRef]

Chen, H. T.

R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H. T. Chen, “Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates,” Opt. Lett. 36(7), 1230–1232 (2011).
[CrossRef] [PubMed]

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[CrossRef]

J. F. O’Hara, E. Smirnova, A. K. Azad, H. T. Chen, and A. J. Taylor, “Effects of microstructure variations on macroscopic terahertz metafilm properties,” Act. Passive Electron. Compon. 2007, 49691 (2007).

H. T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[CrossRef] [PubMed]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Chen, H.-T.

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010).
[CrossRef]

Chen, J.

L. Kang, B. B. Jin, X. Y. Liu, X. Q. Jia, J. Chen, Z. M. Ji, W. W. Xu, P. H. Wu, S. B. Mi, A. Pimenov, Y. J. Wu, and B. G. Wang, “Suppression of superconductivity in epitaxial NbN ultrathin films,” J. Appl. Phys. 109(3), 033908 (2011).
[CrossRef]

B. B. Jin, C. H. Zhang, S. Engelbrecht, A. Pimenov, J. B. Wu, Q. Y. Xu, C. H. Cao, J. Chen, W. W. Xu, L. Kang, and P. H. Wu, “Low loss and magnetic field-tunable superconducting terahertz metamaterial,” Opt. Express 18(16), 17504–17509 (2010).
[CrossRef] [PubMed]

Chen, Y.

de Groot, P.

Economou, E. N.

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[CrossRef] [PubMed]

Edwards, D. J.

T. Hao, C. J. Stevens, and D. J. Edwards, “Optimization of Metamaterials by Q factor,” Electron. Lett. 41(11), 653–654 (2005).
[CrossRef]

Engelbrecht, S.

Fang, N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Fedotov, V. A.

Gossard, A. C.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Gu, J.

R. Singh, Z. Tian, J. Han, C. Rockstuhl, J. Gu, and W. Zhang, “Cryogenic temperatures as a path toward high-Q terahertz metamaterials,” Appl. Phys. Lett. 96(7), 071114 (2010).
[CrossRef]

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010).
[CrossRef]

Han, J.

R. Singh, Z. Tian, J. Han, C. Rockstuhl, J. Gu, and W. Zhang, “Cryogenic temperatures as a path toward high-Q terahertz metamaterials,” Appl. Phys. Lett. 96(7), 071114 (2010).
[CrossRef]

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010).
[CrossRef]

Hao, T.

T. Hao, C. J. Stevens, and D. J. Edwards, “Optimization of Metamaterials by Q factor,” Electron. Lett. 41(11), 653–654 (2005).
[CrossRef]

He, M.

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010).
[CrossRef]

Hensen, S.

S. Hensen, G. Müller, C. T. Rieck, and K. Scharnberg, “In-plane surface impedance of epitaxial YBa2Cu3O7+Δ films: Comparison of experimental data taken at 87 GHz with d- and s-wave models of superconductivity,” Phys. Rev. B 56(10), 6237–6264 (1997).
[CrossRef]

Highstrete, C.

H. T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2006).
[CrossRef]

Ji, Z. M.

L. Kang, B. B. Jin, X. Y. Liu, X. Q. Jia, J. Chen, Z. M. Ji, W. W. Xu, P. H. Wu, S. B. Mi, A. Pimenov, Y. J. Wu, and B. G. Wang, “Suppression of superconductivity in epitaxial NbN ultrathin films,” J. Appl. Phys. 109(3), 033908 (2011).
[CrossRef]

Jia, Q. X.

R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H. T. Chen, “Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates,” Opt. Lett. 36(7), 1230–1232 (2011).
[CrossRef] [PubMed]

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[CrossRef]

Jia, X. Q.

L. Kang, B. B. Jin, X. Y. Liu, X. Q. Jia, J. Chen, Z. M. Ji, W. W. Xu, P. H. Wu, S. B. Mi, A. Pimenov, Y. J. Wu, and B. G. Wang, “Suppression of superconductivity in epitaxial NbN ultrathin films,” J. Appl. Phys. 109(3), 033908 (2011).
[CrossRef]

Jin, B. B.

L. Kang, B. B. Jin, X. Y. Liu, X. Q. Jia, J. Chen, Z. M. Ji, W. W. Xu, P. H. Wu, S. B. Mi, A. Pimenov, Y. J. Wu, and B. G. Wang, “Suppression of superconductivity in epitaxial NbN ultrathin films,” J. Appl. Phys. 109(3), 033908 (2011).
[CrossRef]

B. B. Jin, C. H. Zhang, S. Engelbrecht, A. Pimenov, J. B. Wu, Q. Y. Xu, C. H. Cao, J. Chen, W. W. Xu, L. Kang, and P. H. Wu, “Low loss and magnetic field-tunable superconducting terahertz metamaterial,” Opt. Express 18(16), 17504–17509 (2010).
[CrossRef] [PubMed]

Kafesaki, M.

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[CrossRef] [PubMed]

Kang, L.

L. Kang, B. B. Jin, X. Y. Liu, X. Q. Jia, J. Chen, Z. M. Ji, W. W. Xu, P. H. Wu, S. B. Mi, A. Pimenov, Y. J. Wu, and B. G. Wang, “Suppression of superconductivity in epitaxial NbN ultrathin films,” J. Appl. Phys. 109(3), 033908 (2011).
[CrossRef]

B. B. Jin, C. H. Zhang, S. Engelbrecht, A. Pimenov, J. B. Wu, Q. Y. Xu, C. H. Cao, J. Chen, W. W. Xu, L. Kang, and P. H. Wu, “Low loss and magnetic field-tunable superconducting terahertz metamaterial,” Opt. Express 18(16), 17504–17509 (2010).
[CrossRef] [PubMed]

Koch, M.

Koschny, Th.

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[CrossRef] [PubMed]

Lee, M.

H. T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2006).
[CrossRef]

Liu, X. Y.

L. Kang, B. B. Jin, X. Y. Liu, X. Q. Jia, J. Chen, Z. M. Ji, W. W. Xu, P. H. Wu, S. B. Mi, A. Pimenov, Y. J. Wu, and B. G. Wang, “Suppression of superconductivity in epitaxial NbN ultrathin films,” J. Appl. Phys. 109(3), 033908 (2011).
[CrossRef]

Mi, S. B.

L. Kang, B. B. Jin, X. Y. Liu, X. Q. Jia, J. Chen, Z. M. Ji, W. W. Xu, P. H. Wu, S. B. Mi, A. Pimenov, Y. J. Wu, and B. G. Wang, “Suppression of superconductivity in epitaxial NbN ultrathin films,” J. Appl. Phys. 109(3), 033908 (2011).
[CrossRef]

Mock, J. J.

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[CrossRef]

Müller, G.

S. Hensen, G. Müller, C. T. Rieck, and K. Scharnberg, “In-plane surface impedance of epitaxial YBa2Cu3O7+Δ films: Comparison of experimental data taken at 87 GHz with d- and s-wave models of superconductivity,” Phys. Rev. B 56(10), 6237–6264 (1997).
[CrossRef]

O’Hara, J. F.

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[CrossRef]

A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O’Hara, “Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators,” Appl. Phys. Lett. 92(1), 011119 (2008).
[CrossRef]

R. Singh, E. Smirnova, A. J. Taylor, J. F. O’Hara, and W. Zhang, “Optically thin terahertz metamaterials,” Opt. Express 16(9), 6537–6543 (2008).
[CrossRef] [PubMed]

R. Singh, A. K. Azad, J. F. O’Hara, A. J. Taylor, and W. Zhang, “Effect of metal permittivity on resonant properties of terahertz metamaterials,” Opt. Lett. 33(13), 1506–1508 (2008).
[CrossRef] [PubMed]

H. T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[CrossRef] [PubMed]

J. F. O’Hara, E. Smirnova, A. K. Azad, H. T. Chen, and A. J. Taylor, “Effects of microstructure variations on macroscopic terahertz metafilm properties,” Act. Passive Electron. Compon. 2007, 49691 (2007).

Padilla, W. J.

H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent progress in electromagnetic metamaterial devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 99, 1–10 (2010).

H. T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[CrossRef] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2006).
[CrossRef]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Pendry, J. B.

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[CrossRef] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

Pimenov, A.

L. Kang, B. B. Jin, X. Y. Liu, X. Q. Jia, J. Chen, Z. M. Ji, W. W. Xu, P. H. Wu, S. B. Mi, A. Pimenov, Y. J. Wu, and B. G. Wang, “Suppression of superconductivity in epitaxial NbN ultrathin films,” J. Appl. Phys. 109(3), 033908 (2011).
[CrossRef]

B. B. Jin, C. H. Zhang, S. Engelbrecht, A. Pimenov, J. B. Wu, Q. Y. Xu, C. H. Cao, J. Chen, W. W. Xu, L. Kang, and P. H. Wu, “Low loss and magnetic field-tunable superconducting terahertz metamaterial,” Opt. Express 18(16), 17504–17509 (2010).
[CrossRef] [PubMed]

Rieck, C. T.

S. Hensen, G. Müller, C. T. Rieck, and K. Scharnberg, “In-plane surface impedance of epitaxial YBa2Cu3O7+Δ films: Comparison of experimental data taken at 87 GHz with d- and s-wave models of superconductivity,” Phys. Rev. B 56(10), 6237–6264 (1997).
[CrossRef]

Rockstuhl, C.

R. Singh, C. Rockstuhl, and W. Zhang, “Strong influence of packing density in terahertz metamaterials,” Appl. Phys. Lett. 97(24), 241108 (2010).
[CrossRef]

R. Singh, Z. Tian, J. Han, C. Rockstuhl, J. Gu, and W. Zhang, “Cryogenic temperatures as a path toward high-Q terahertz metamaterials,” Appl. Phys. Lett. 96(7), 071114 (2010).
[CrossRef]

Scharnberg, K.

S. Hensen, G. Müller, C. T. Rieck, and K. Scharnberg, “In-plane surface impedance of epitaxial YBa2Cu3O7+Δ films: Comparison of experimental data taken at 87 GHz with d- and s-wave models of superconductivity,” Phys. Rev. B 56(10), 6237–6264 (1997).
[CrossRef]

Schurig, D.

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[CrossRef]

Shalaev, V. M.

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[CrossRef]

Shi, J. H.

Singh, R.

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[CrossRef] [PubMed]

R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H. T. Chen, “Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates,” Opt. Lett. 36(7), 1230–1232 (2011).
[CrossRef] [PubMed]

R. Singh, C. Rockstuhl, and W. Zhang, “Strong influence of packing density in terahertz metamaterials,” Appl. Phys. Lett. 97(24), 241108 (2010).
[CrossRef]

R. Singh, Z. Tian, J. Han, C. Rockstuhl, J. Gu, and W. Zhang, “Cryogenic temperatures as a path toward high-Q terahertz metamaterials,” Appl. Phys. Lett. 96(7), 071114 (2010).
[CrossRef]

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010).
[CrossRef]

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[CrossRef]

R. Singh, E. Smirnova, A. J. Taylor, J. F. O’Hara, and W. Zhang, “Optically thin terahertz metamaterials,” Opt. Express 16(9), 6537–6543 (2008).
[CrossRef] [PubMed]

R. Singh, A. K. Azad, J. F. O’Hara, A. J. Taylor, and W. Zhang, “Effect of metal permittivity on resonant properties of terahertz metamaterials,” Opt. Lett. 33(13), 1506–1508 (2008).
[CrossRef] [PubMed]

Smirnova, E.

A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O’Hara, “Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators,” Appl. Phys. Lett. 92(1), 011119 (2008).
[CrossRef]

R. Singh, E. Smirnova, A. J. Taylor, J. F. O’Hara, and W. Zhang, “Optically thin terahertz metamaterials,” Opt. Express 16(9), 6537–6543 (2008).
[CrossRef] [PubMed]

J. F. O’Hara, E. Smirnova, A. K. Azad, H. T. Chen, and A. J. Taylor, “Effects of microstructure variations on macroscopic terahertz metafilm properties,” Act. Passive Electron. Compon. 2007, 49691 (2007).

Smith, D. R.

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[CrossRef]

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Soukoulis, C. M.

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[CrossRef] [PubMed]

Stevens, C. J.

T. Hao, C. J. Stevens, and D. J. Edwards, “Optimization of Metamaterials by Q factor,” Electron. Lett. 41(11), 653–654 (2005).
[CrossRef]

Tao, H.

H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent progress in electromagnetic metamaterial devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 99, 1–10 (2010).

Taylor, A. J.

R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H. T. Chen, “Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates,” Opt. Lett. 36(7), 1230–1232 (2011).
[CrossRef] [PubMed]

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[CrossRef]

A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O’Hara, “Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators,” Appl. Phys. Lett. 92(1), 011119 (2008).
[CrossRef]

R. Singh, E. Smirnova, A. J. Taylor, J. F. O’Hara, and W. Zhang, “Optically thin terahertz metamaterials,” Opt. Express 16(9), 6537–6543 (2008).
[CrossRef] [PubMed]

R. Singh, A. K. Azad, J. F. O’Hara, A. J. Taylor, and W. Zhang, “Effect of metal permittivity on resonant properties of terahertz metamaterials,” Opt. Lett. 33(13), 1506–1508 (2008).
[CrossRef] [PubMed]

H. T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[CrossRef] [PubMed]

J. F. O’Hara, E. Smirnova, A. K. Azad, H. T. Chen, and A. J. Taylor, “Effects of microstructure variations on macroscopic terahertz metafilm properties,” Act. Passive Electron. Compon. 2007, 49691 (2007).

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2006).
[CrossRef]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Tian, Z.

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010).
[CrossRef]

R. Singh, Z. Tian, J. Han, C. Rockstuhl, J. Gu, and W. Zhang, “Cryogenic temperatures as a path toward high-Q terahertz metamaterials,” Appl. Phys. Lett. 96(7), 071114 (2010).
[CrossRef]

Trugman, S. A.

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[CrossRef]

Tsiatmas, A.

Vier, D. C.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Wang, B. G.

L. Kang, B. B. Jin, X. Y. Liu, X. Q. Jia, J. Chen, Z. M. Ji, W. W. Xu, P. H. Wu, S. B. Mi, A. Pimenov, Y. J. Wu, and B. G. Wang, “Suppression of superconductivity in epitaxial NbN ultrathin films,” J. Appl. Phys. 109(3), 033908 (2011).
[CrossRef]

Wang, S.

Wiltshire, M. C.

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

Withayachumnankul, W.

W. Withayachumnankul and D. Abbott, “Metamaterials in the terahertz regime,” IEEE Photon. J. 1(2), 99–118 (2009).
[CrossRef]

Wu, J. B.

Wu, P. H.

L. Kang, B. B. Jin, X. Y. Liu, X. Q. Jia, J. Chen, Z. M. Ji, W. W. Xu, P. H. Wu, S. B. Mi, A. Pimenov, Y. J. Wu, and B. G. Wang, “Suppression of superconductivity in epitaxial NbN ultrathin films,” J. Appl. Phys. 109(3), 033908 (2011).
[CrossRef]

B. B. Jin, C. H. Zhang, S. Engelbrecht, A. Pimenov, J. B. Wu, Q. Y. Xu, C. H. Cao, J. Chen, W. W. Xu, L. Kang, and P. H. Wu, “Low loss and magnetic field-tunable superconducting terahertz metamaterial,” Opt. Express 18(16), 17504–17509 (2010).
[CrossRef] [PubMed]

Wu, Y. J.

L. Kang, B. B. Jin, X. Y. Liu, X. Q. Jia, J. Chen, Z. M. Ji, W. W. Xu, P. H. Wu, S. B. Mi, A. Pimenov, Y. J. Wu, and B. G. Wang, “Suppression of superconductivity in epitaxial NbN ultrathin films,” J. Appl. Phys. 109(3), 033908 (2011).
[CrossRef]

Xing, Q.

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010).
[CrossRef]

Xu, Q. Y.

Xu, W. W.

L. Kang, B. B. Jin, X. Y. Liu, X. Q. Jia, J. Chen, Z. M. Ji, W. W. Xu, P. H. Wu, S. B. Mi, A. Pimenov, Y. J. Wu, and B. G. Wang, “Suppression of superconductivity in epitaxial NbN ultrathin films,” J. Appl. Phys. 109(3), 033908 (2011).
[CrossRef]

B. B. Jin, C. H. Zhang, S. Engelbrecht, A. Pimenov, J. B. Wu, Q. Y. Xu, C. H. Cao, J. Chen, W. W. Xu, L. Kang, and P. H. Wu, “Low loss and magnetic field-tunable superconducting terahertz metamaterial,” Opt. Express 18(16), 17504–17509 (2010).
[CrossRef] [PubMed]

Yang, H.

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[CrossRef]

Yen, T. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Zhang, C. H.

Zhang, J. W.

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010).
[CrossRef]

Zhang, W.

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[CrossRef] [PubMed]

R. Singh, C. Rockstuhl, and W. Zhang, “Strong influence of packing density in terahertz metamaterials,” Appl. Phys. Lett. 97(24), 241108 (2010).
[CrossRef]

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010).
[CrossRef]

R. Singh, Z. Tian, J. Han, C. Rockstuhl, J. Gu, and W. Zhang, “Cryogenic temperatures as a path toward high-Q terahertz metamaterials,” Appl. Phys. Lett. 96(7), 071114 (2010).
[CrossRef]

R. Singh, E. Smirnova, A. J. Taylor, J. F. O’Hara, and W. Zhang, “Optically thin terahertz metamaterials,” Opt. Express 16(9), 6537–6543 (2008).
[CrossRef] [PubMed]

R. Singh, A. K. Azad, J. F. O’Hara, A. J. Taylor, and W. Zhang, “Effect of metal permittivity on resonant properties of terahertz metamaterials,” Opt. Lett. 33(13), 1506–1508 (2008).
[CrossRef] [PubMed]

Zhang, X.

H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent progress in electromagnetic metamaterial devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 99, 1–10 (2010).

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Zheludev, N. I.

Zhou, J.

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[CrossRef] [PubMed]

Zide, J. M. O.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Act. Passive Electron. Compon. (1)

J. F. O’Hara, E. Smirnova, A. K. Azad, H. T. Chen, and A. J. Taylor, “Effects of microstructure variations on macroscopic terahertz metafilm properties,” Act. Passive Electron. Compon. 2007, 49691 (2007).

Appl. Phys. Lett. (5)

A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O’Hara, “Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators,” Appl. Phys. Lett. 92(1), 011119 (2008).
[CrossRef]

R. Singh, Z. Tian, J. Han, C. Rockstuhl, J. Gu, and W. Zhang, “Cryogenic temperatures as a path toward high-Q terahertz metamaterials,” Appl. Phys. Lett. 96(7), 071114 (2010).
[CrossRef]

J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, and W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010).
[CrossRef]

R. Singh, C. Rockstuhl, and W. Zhang, “Strong influence of packing density in terahertz metamaterials,” Appl. Phys. Lett. 97(24), 241108 (2010).
[CrossRef]

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[CrossRef]

Electron. Lett. (1)

T. Hao, C. J. Stevens, and D. J. Edwards, “Optimization of Metamaterials by Q factor,” Electron. Lett. 41(11), 653–654 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent progress in electromagnetic metamaterial devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 99, 1–10 (2010).

IEEE Photon. J. (1)

W. Withayachumnankul and D. Abbott, “Metamaterials in the terahertz regime,” IEEE Photon. J. 1(2), 99–118 (2009).
[CrossRef]

J. Appl. Phys. (1)

L. Kang, B. B. Jin, X. Y. Liu, X. Q. Jia, J. Chen, Z. M. Ji, W. W. Xu, P. H. Wu, S. B. Mi, A. Pimenov, Y. J. Wu, and B. G. Wang, “Suppression of superconductivity in epitaxial NbN ultrathin films,” J. Appl. Phys. 109(3), 033908 (2011).
[CrossRef]

Nat. Photonics (1)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[CrossRef]

Nature (1)

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. B (2)

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2006).
[CrossRef]

S. Hensen, G. Müller, C. T. Rieck, and K. Scharnberg, “In-plane surface impedance of epitaxial YBa2Cu3O7+Δ films: Comparison of experimental data taken at 87 GHz with d- and s-wave models of superconductivity,” Phys. Rev. B 56(10), 6237–6264 (1997).
[CrossRef]

Phys. Rev. Lett. (2)

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[CrossRef] [PubMed]

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[CrossRef]

Science (2)

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[CrossRef] [PubMed]

Other (3)

T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Second Edition, (Cambridge University Press, 2004), Chap. 4.

M. Tinkham, Introduction to superconductivity, (McGraw-Hill, 1980)

M. J. Lancaster, Passive Microwave Device Applications of High-Temperature superconductors, (Cambridge University Press, 2006), Chap. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) The planar geometry of single ELC structure. (b) The photo micrograph of S4, and the incident polarized electric field is parallel to the gap.

Fig. 2
Fig. 2

THz transmission spectra of S1-S4 (a) at 18 K and (b) at 8.1 K.

Fig. 3
Fig. 3

(a) The simulated (square dots) and measured (solid line) resonant minimum as a function of resonance frequency at 8.1 K. (b) The temperature dependence of resonance frequency normalized with the resonance frequency at 16 K for S1-S4

Fig. 4
Fig. 4

Transmission spectra of S5 at various temperatures. The arrow indicates the resonance frequency of S5 at 13 K.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T = ( 1 + n s 1 + n s + Z 0 / R ) 2 ,
R s = Re [ ( j ω μ 0 / σ ) coth ( d j ω μ 0 σ ) ] ,
Δ L / L L k / L g = 2.41 λ coth ( d / λ ) / t .

Metrics