Abstract

Integrated polarization beam splitters based on birefringent directional couplers are demonstrated. The devices are fabricated in bulk fused silica glass by femtosecond laser writing (300 fs, 150 nJ at 500 kHz, 522 nm). The birefringence was measured from the spectral splitting of the Bragg grating resonances associated with the vertically and horizontally polarized modes. Polarization splitting directional couplers were designed and demonstrated with 0.5 dB/cm propagation losses and −19 dB and −24 dB extinction ratios for the polarization splitting.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
    [CrossRef] [PubMed]
  2. S. Eaton, W. Chen, H. Zhang, R. Iyer, J. Li, M. Ng, S. Ho, J. S. Aitchison, and P. R. Herman, “Spectral loss characterization of femtosecond laser written waveguides in glass with application to demultiplexing of 1300 and 1550 nm wavelengths,” J. Lightwave Technol. 27, 1079–1085 (2009).
    [CrossRef]
  3. H. Zhang, S. Eaton, and P. R. Herman, “Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser,” Opt. Lett. 32, 2559–2561 (2007).
    [CrossRef] [PubMed]
  4. R. Osellame, N. Chiodo, G. Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. r Killi, U. Morgner, M. Lederer, and D. Kopf, “Optical waveguide writing with a diode-pumped femtosecond oscillator,” Opt. Lett. 29, 1900–1902 (2004).
    [CrossRef] [PubMed]
  5. M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Monolithic 100 mW Yb waveguide laser fabricated using the femtosecond-laser direct-write technique,” Opt. Lett. 34, 247–249 (2009).
    [CrossRef] [PubMed]
  6. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
    [CrossRef]
  7. A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, “Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator,” Opt. Lett. 30, 1060–1062 (2005).
    [CrossRef] [PubMed]
  8. K. Suzuki, V. Sharma, J. Fujimoto, E. Ippen, and Y. Nasu, “Characterization of symmetric [3 x 3] directional couplers fabricated by direct writing with a femtosecond laser oscillator,” Opt. Express 14, 2335–2343 (2006).
    [CrossRef] [PubMed]
  9. S. Eaton, H. Zhang, M. Ng, J. Li, W. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16, 9443–9458 (2008).
    [CrossRef] [PubMed]
  10. Y. Bellouard, T. Colomb, C. Depeursinge, M. Dugan, A. Said, and P. Bado, “Nanoindentation and birefringence measurements on fused silica specimen exposed to low-energy femtosecond pulses,” Opt. Express 14, 8360–8366 (2006).
    [CrossRef] [PubMed]
  11. V. R. Bhardwaj, P. B. Corkum, D. M. Rayner, C. Hnatovsky, E. Simova, and R. S. Taylor, “Stress in femtosecond-laser-written waveguides in fused silica,” Opt. Lett. 29, 1312–1314 (2004).
    [CrossRef] [PubMed]
  12. P. Yang, G. R. Burns, J. Guo, T. S. Luk, and G. A. Vawter, “Femtosecond laser-pulse-induced birefringence in optically isotropic glass”, J. Appl. Phys. 95, 5280 (2004).
    [CrossRef]
  13. E. Bricchi, B. Klappauf, and P. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett. 29, 119–121 (2004).
    [CrossRef] [PubMed]
  14. R. Taylor, C. Hnatovsky, E. Simova, P. Rajeev, D. Rayner, and P. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett. 32, 2888–2890 (2007).
    [CrossRef] [PubMed]
  15. W. Cai, A. R. Libertun, and R. Piestun, “Polarization selective computer-generated holograms realized in glass by femtosecond laser induced nanogratings,” Opt. Express 14, 3785–3791 (2006).
    [CrossRef] [PubMed]
  16. D. Papazoglou and M. Loulakis, “Embedded birefringent computer-generated holograms fabricated by femtosecond laser pulses,” Opt. Lett. 31, 1441–1443 (2006).
    [CrossRef] [PubMed]
  17. M. Beresna and P. G. Kazansky, “Polarization diffraction grating produced by femtosecond laser nanostructuring in glass,” Opt. Lett. 35, 1662–1664 (2010).
    [CrossRef] [PubMed]
  18. L. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. Korovin, U. Peschel, S. Nolte, and A. Tunnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A 100, 1–6 (2010).
    [CrossRef]
  19. G. Marshall, A. Politi, J. Matthews, P. Dekker, M. Ams, M. Withford, and J. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express 17, 12546–12554 (2009).
    [CrossRef] [PubMed]
  20. L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).
    [CrossRef]
  21. C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 1984 (IEEE, New York, 1984), 175–179;IBM Tech. Discl. Bull. 28, 31533163 (1985).
    [PubMed]
  22. S. Betti, G. De Marchis, and E. Iannone, “Polarization modulated direct detection optical transmission systems,” J. Lightwave Technol. 10, 1985–1997 (1992).
    [CrossRef]
  23. L. Shah, A. Arai, S. Eaton, and P. R. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express 13, 1999–2006 (2005).
    [CrossRef] [PubMed]
  24. W. Chen, S. Eaton, H. Zhang, and P. R. Herman, “Broadband directional couplers fabricated in bulk glass with high repetition rate femtosecond laser pulses,” Opt. Express 16, 11470–11480 (2008).
    [CrossRef] [PubMed]
  25. R. Hereth and G. Schiffner, “Broad-band optical directional couplers and polarization splitters,” J. Lightwave Technol. 7, 925–930 (1989).
    [CrossRef]
  26. L. Zhang, C. Yang, C. Yu, T. Luo, and A. Willner, “PCF-based polarization splitters with simplified structures,” J. Lightwave Technol. 23, 3558- (2005).
    [CrossRef]
  27. Y. Yue, L. Zhang, J. Yang, R. Beausoleil, and A. Willner, “Silicon-on-insulator polarization splitter using two horizontally slotted waveguides,” Opt. Lett. 35, 1364–1366 (2010).
    [CrossRef] [PubMed]

2010 (4)

M. Beresna and P. G. Kazansky, “Polarization diffraction grating produced by femtosecond laser nanostructuring in glass,” Opt. Lett. 35, 1662–1664 (2010).
[CrossRef] [PubMed]

L. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. Korovin, U. Peschel, S. Nolte, and A. Tunnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A 100, 1–6 (2010).
[CrossRef]

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).
[CrossRef]

Y. Yue, L. Zhang, J. Yang, R. Beausoleil, and A. Willner, “Silicon-on-insulator polarization splitter using two horizontally slotted waveguides,” Opt. Lett. 35, 1364–1366 (2010).
[CrossRef] [PubMed]

2009 (3)

2008 (2)

2007 (2)

2006 (4)

2005 (3)

2004 (4)

2003 (1)

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[CrossRef]

1996 (1)

1992 (1)

S. Betti, G. De Marchis, and E. Iannone, “Polarization modulated direct detection optical transmission systems,” J. Lightwave Technol. 10, 1985–1997 (1992).
[CrossRef]

1989 (1)

R. Hereth and G. Schiffner, “Broad-band optical directional couplers and polarization splitters,” J. Lightwave Technol. 7, 925–930 (1989).
[CrossRef]

Aitchison, J. S.

Ams, M.

Arai, A.

Bado, P.

Beausoleil, R.

Bellouard, Y.

Bennett, C. H.

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 1984 (IEEE, New York, 1984), 175–179;IBM Tech. Discl. Bull. 28, 31533163 (1985).
[PubMed]

Beresna, M.

Betti, S.

S. Betti, G. De Marchis, and E. Iannone, “Polarization modulated direct detection optical transmission systems,” J. Lightwave Technol. 10, 1985–1997 (1992).
[CrossRef]

Bhardwaj, V. R.

Brassard, G.

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 1984 (IEEE, New York, 1984), 175–179;IBM Tech. Discl. Bull. 28, 31533163 (1985).
[PubMed]

Bricchi, E.

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[CrossRef]

Burns, G. R.

P. Yang, G. R. Burns, J. Guo, T. S. Luk, and G. A. Vawter, “Femtosecond laser-pulse-induced birefringence in optically isotropic glass”, J. Appl. Phys. 95, 5280 (2004).
[CrossRef]

Cai, W.

Cerullo, G.

Chen, W.

Chiodo, N.

Colomb, T.

Corkum, P.

Corkum, P. B.

Crespi, A.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).
[CrossRef]

Davis, K.

De Marchis, G.

S. Betti, G. De Marchis, and E. Iannone, “Polarization modulated direct detection optical transmission systems,” J. Lightwave Technol. 10, 1985–1997 (1992).
[CrossRef]

Dekker, P.

Depeursinge, C.

Dreisow, F.

L. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. Korovin, U. Peschel, S. Nolte, and A. Tunnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A 100, 1–6 (2010).
[CrossRef]

Dugan, M.

Eaton, S.

Fujimoto, J.

Fujimoto, J. G.

Guo, J.

P. Yang, G. R. Burns, J. Guo, T. S. Luk, and G. A. Vawter, “Femtosecond laser-pulse-induced birefringence in optically isotropic glass”, J. Appl. Phys. 95, 5280 (2004).
[CrossRef]

Heinrich, M.

L. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. Korovin, U. Peschel, S. Nolte, and A. Tunnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A 100, 1–6 (2010).
[CrossRef]

Hereth, R.

R. Hereth and G. Schiffner, “Broad-band optical directional couplers and polarization splitters,” J. Lightwave Technol. 7, 925–930 (1989).
[CrossRef]

Herman, P. R.

Hirao, K.

Hnatovsky, C.

Ho, S.

Iannone, E.

S. Betti, G. De Marchis, and E. Iannone, “Polarization modulated direct detection optical transmission systems,” J. Lightwave Technol. 10, 1985–1997 (1992).
[CrossRef]

Ippen, E.

Ippen, E. P.

Iyer, R.

Kazansky, P.

Kazansky, P. G.

Keil, R.

L. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. Korovin, U. Peschel, S. Nolte, and A. Tunnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A 100, 1–6 (2010).
[CrossRef]

Klappauf, B.

Kopf, D.

Korovin, A.

L. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. Korovin, U. Peschel, S. Nolte, and A. Tunnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A 100, 1–6 (2010).
[CrossRef]

Kowalevicz, A. M.

Lederer, M.

Li, J.

Libertun, A. R.

Loulakis, M.

Luk, T. S.

P. Yang, G. R. Burns, J. Guo, T. S. Luk, and G. A. Vawter, “Femtosecond laser-pulse-induced birefringence in optically isotropic glass”, J. Appl. Phys. 95, 5280 (2004).
[CrossRef]

Luo, T.

Marshall, G.

Marshall, G. D.

Mataloni, P.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).
[CrossRef]

Matthews, J.

Minoshima, K.

Miura, K.

Morgner, U.

Nasu, Y.

Ng, M.

Nolte, S.

L. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. Korovin, U. Peschel, S. Nolte, and A. Tunnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A 100, 1–6 (2010).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[CrossRef]

O’Brien, J.

Osellame, R.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).
[CrossRef]

R. Osellame, N. Chiodo, G. Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. r Killi, U. Morgner, M. Lederer, and D. Kopf, “Optical waveguide writing with a diode-pumped femtosecond oscillator,” Opt. Lett. 29, 1900–1902 (2004).
[CrossRef] [PubMed]

Papazoglou, D.

Peschel, U.

L. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. Korovin, U. Peschel, S. Nolte, and A. Tunnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A 100, 1–6 (2010).
[CrossRef]

Piestun, R.

Politi, A.

r Killi, A.

Rajeev, P.

Ramirez, L.

L. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. Korovin, U. Peschel, S. Nolte, and A. Tunnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A 100, 1–6 (2010).
[CrossRef]

Ramponi, R.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).
[CrossRef]

R. Osellame, N. Chiodo, G. Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. r Killi, U. Morgner, M. Lederer, and D. Kopf, “Optical waveguide writing with a diode-pumped femtosecond oscillator,” Opt. Lett. 29, 1900–1902 (2004).
[CrossRef] [PubMed]

Rayner, D.

Rayner, D. M.

Richter, S.

L. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. Korovin, U. Peschel, S. Nolte, and A. Tunnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A 100, 1–6 (2010).
[CrossRef]

Said, A.

Sansoni, L.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).
[CrossRef]

Schiffner, G.

R. Hereth and G. Schiffner, “Broad-band optical directional couplers and polarization splitters,” J. Lightwave Technol. 7, 925–930 (1989).
[CrossRef]

Sciarrino, F.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).
[CrossRef]

Shah, L.

Sharma, V.

Simova, E.

Sugimoto, N.

Suzuki, K.

Taccheo, S.

Taylor, R.

Taylor, R. S.

Tuennermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[CrossRef]

Tunnermann, A.

L. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. Korovin, U. Peschel, S. Nolte, and A. Tunnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A 100, 1–6 (2010).
[CrossRef]

Valle, G.

Vallone, G.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).
[CrossRef]

Vawter, G. A.

P. Yang, G. R. Burns, J. Guo, T. S. Luk, and G. A. Vawter, “Femtosecond laser-pulse-induced birefringence in optically isotropic glass”, J. Appl. Phys. 95, 5280 (2004).
[CrossRef]

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[CrossRef]

Willner, A.

Withford, M.

Withford, M. J.

Yang, C.

Yang, J.

Yang, P.

P. Yang, G. R. Burns, J. Guo, T. S. Luk, and G. A. Vawter, “Femtosecond laser-pulse-induced birefringence in optically isotropic glass”, J. Appl. Phys. 95, 5280 (2004).
[CrossRef]

Yu, C.

Yue, Y.

Zhang, H.

Zhang, L.

Appl. Phys. A (2)

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[CrossRef]

L. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. Korovin, U. Peschel, S. Nolte, and A. Tunnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A 100, 1–6 (2010).
[CrossRef]

J. Appl. Phys. (1)

P. Yang, G. R. Burns, J. Guo, T. S. Luk, and G. A. Vawter, “Femtosecond laser-pulse-induced birefringence in optically isotropic glass”, J. Appl. Phys. 95, 5280 (2004).
[CrossRef]

J. Lightwave Technol. (4)

Opt. Express (7)

L. Shah, A. Arai, S. Eaton, and P. R. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express 13, 1999–2006 (2005).
[CrossRef] [PubMed]

W. Chen, S. Eaton, H. Zhang, and P. R. Herman, “Broadband directional couplers fabricated in bulk glass with high repetition rate femtosecond laser pulses,” Opt. Express 16, 11470–11480 (2008).
[CrossRef] [PubMed]

W. Cai, A. R. Libertun, and R. Piestun, “Polarization selective computer-generated holograms realized in glass by femtosecond laser induced nanogratings,” Opt. Express 14, 3785–3791 (2006).
[CrossRef] [PubMed]

K. Suzuki, V. Sharma, J. Fujimoto, E. Ippen, and Y. Nasu, “Characterization of symmetric [3 x 3] directional couplers fabricated by direct writing with a femtosecond laser oscillator,” Opt. Express 14, 2335–2343 (2006).
[CrossRef] [PubMed]

S. Eaton, H. Zhang, M. Ng, J. Li, W. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16, 9443–9458 (2008).
[CrossRef] [PubMed]

Y. Bellouard, T. Colomb, C. Depeursinge, M. Dugan, A. Said, and P. Bado, “Nanoindentation and birefringence measurements on fused silica specimen exposed to low-energy femtosecond pulses,” Opt. Express 14, 8360–8366 (2006).
[CrossRef] [PubMed]

G. Marshall, A. Politi, J. Matthews, P. Dekker, M. Ams, M. Withford, and J. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express 17, 12546–12554 (2009).
[CrossRef] [PubMed]

Opt. Lett. (11)

E. Bricchi, B. Klappauf, and P. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett. 29, 119–121 (2004).
[CrossRef] [PubMed]

R. Taylor, C. Hnatovsky, E. Simova, P. Rajeev, D. Rayner, and P. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett. 32, 2888–2890 (2007).
[CrossRef] [PubMed]

A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, “Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator,” Opt. Lett. 30, 1060–1062 (2005).
[CrossRef] [PubMed]

V. R. Bhardwaj, P. B. Corkum, D. M. Rayner, C. Hnatovsky, E. Simova, and R. S. Taylor, “Stress in femtosecond-laser-written waveguides in fused silica,” Opt. Lett. 29, 1312–1314 (2004).
[CrossRef] [PubMed]

H. Zhang, S. Eaton, and P. R. Herman, “Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser,” Opt. Lett. 32, 2559–2561 (2007).
[CrossRef] [PubMed]

R. Osellame, N. Chiodo, G. Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. r Killi, U. Morgner, M. Lederer, and D. Kopf, “Optical waveguide writing with a diode-pumped femtosecond oscillator,” Opt. Lett. 29, 1900–1902 (2004).
[CrossRef] [PubMed]

M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Monolithic 100 mW Yb waveguide laser fabricated using the femtosecond-laser direct-write technique,” Opt. Lett. 34, 247–249 (2009).
[CrossRef] [PubMed]

D. Papazoglou and M. Loulakis, “Embedded birefringent computer-generated holograms fabricated by femtosecond laser pulses,” Opt. Lett. 31, 1441–1443 (2006).
[CrossRef] [PubMed]

M. Beresna and P. G. Kazansky, “Polarization diffraction grating produced by femtosecond laser nanostructuring in glass,” Opt. Lett. 35, 1662–1664 (2010).
[CrossRef] [PubMed]

Y. Yue, L. Zhang, J. Yang, R. Beausoleil, and A. Willner, “Silicon-on-insulator polarization splitter using two horizontally slotted waveguides,” Opt. Lett. 35, 1364–1366 (2010).
[CrossRef] [PubMed]

K. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).
[CrossRef]

Other (1)

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 1984 (IEEE, New York, 1984), 175–179;IBM Tech. Discl. Bull. 28, 31533163 (1985).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the polarization beam splitter. EV and EH indicate the electric field orientation of Vertical, V, and Horizontal, H, polarized light, respectively.

Fig. 2
Fig. 2

Transmission spectra of two BGWs written with parallel (along z-axis) polarization (left) and perpendicular (along x-axis) polarization (right). Vertical polarized (– blue solid line) and horizontal polarized (- - red dashed line).

Fig. 3
Fig. 3

Measured coupling ratio, r, as a function of coupling length for vertical polarized (• blue circle) and horizontal polarized (▪ red square) modes together with calculated fits (solid and dashed lines).

Fig. 4
Fig. 4

Calculated K and ϕ as a function of wavelength for vertical polarized (– blue solid line) and horizontal polarized (- - red dashed line) modes and S = 8 μm waveguide separation.

Fig. 5
Fig. 5

Splitting contrast factor, Δr, for directional couplers with 5 μm waveguide separation (left) and 8 μm waveguide separation (right).

Fig. 6
Fig. 6

Output power and mode profile as a function of the angle of polarization at 1484 nm, for the same arm as the input (P 1, • green circle) and opposite arm as the input (P 2, ▪ blue square).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

r = P 1 P 1 + P 2
r = sin 2 ( KL + ϕ )
Δ r = sin [ ( K V K H ) L + ϕ V ϕ H ] sin [ ( K V + K H ) L + ϕ V + ϕ H ]
Δ n eff = Δ λ B 2 Λ

Metrics