Abstract

We present a study on the effects of inert ion implantation of Silicon-On-Insulator (SOI) racetrack resonators. Selective ion implantation was used to create deep-level defects within a portion of the resonator. The resonant wavelength and round-trip loss were deduced for a range of sequential post-implantation annealing temperatures from 100 to 300 °C. As the devices were annealed there was a concomitant change in the resonance wavelength, consistent with an increase in refractive index following implantation and recovery toward the pre-implanted value. A total shift in resonance wavelength of ~2.9 nm was achieved, equivalent to a 0.02 increase in refractive index. The excess loss upon implantation increased to 301 dB/cm and was reduced to 35 dB/cm following thermal annealing. In addition to providing valuable data for those incorporating defects within resonant structures, we suggest that these results present a method for permanent tuning (or trimming) of ring resonator characteristics.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Pavesi, and G. Guillot, “Optical Interconnects: The Silicon Approach,”,Vol. 119 Springer Series in Optical Sciences, (Springer-Verlag 2006).
  2. N. M. Wright, D. J. Thomson, K. L. Litvinenko, W. R. Headley, A. J. Smith, A. P. Knights, J. H. B. Deane, F. Y. Gardes, G. Z. Mashanovich, R. Gwilliam, and G. T. Reed, “Free carrier lifetime modification for silicon waveguide based devices,” Opt. Express 16(24), 19779–19784 (2008).
    [CrossRef] [PubMed]
  3. M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, and T. M. Lyszczarz, “Silicon waveguide infrared photodiodes with > 35 GHz bandwidth and phototransistors with 50 AW−1 response,” Opt. Express 17(7), 5193–5204 (2009).
    [CrossRef] [PubMed]
  4. J. K. Doylend, P. E. Jessop, and A. P. Knights, “Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection,” Opt. Express 18(14), 14671–14678 (2010).
    [CrossRef] [PubMed]
  5. D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, A. P. Knights, and P. E. Jessop, “Defect-enhanced Silicon-on-insulator Waveguide Resonant Photodetector With High Sensitivity at 1.55 µm,” IEEE Photon. Technol. Lett. 22(20), 1530 (2010).
    [CrossRef]
  6. K. Preston, Y. H. D. Lee, M. Zhang, and M. Lipson, “Waveguide-integrated telecom-wavelength photodiode in deposited silicon,” Opt. Lett. 36(1), 52–54 (2011).
    [CrossRef] [PubMed]
  7. I. Kiyat, A. Aydinli, and N. Dagli, “Low-Power Thermooptical Tuning of SOI Resonator Switch,” IEEE Photon. Technol. Lett. 18(2), 364–366 (2006).
    [CrossRef]
  8. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zender modulator,” Opt. Express 15(25),17106–17113 (2007).
    [CrossRef] [PubMed]
  9. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thompson, “Silicon Optical Modulators,” Nat. Photonics 4(8), 518–526 (2010).
    [CrossRef]
  10. R. A. Soref and B. R. Bennett, “Electrooptical Effects in Silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
    [CrossRef]
  11. Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express 14(20), 9431–9435 (2006).
    [CrossRef] [PubMed]
  12. C. W. White, J. Narayan, and R. T. Young, “Laser Annealing of Ion-Implanted Semiconductors,” Science 204(4392), 461–468 (1979).
    [CrossRef] [PubMed]
  13. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bientsman, and D. Van Thourhout, “Nanophotonic Waveguides in Silicon-on-Insulator Fabricated with CMOS Technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
    [CrossRef]
  14. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourout, P. Bientsman, and R. Baets, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45(No. 8A), 6071 (2006).
    [CrossRef]
  15. L. Pelaz, L. A. Marqués, and J. Barbolla, “Ion-beam-induced amorphization and recrystallization in silicon,” J. Appl. Phys. 96(11), 5947 (2004).
    [CrossRef]
  16. P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Coleman, “Optical attenuation in defect engineered silicon rib waveguides,” J. Appl. Phys. 99(7), 073101 (2006).
    [CrossRef]
  17. J. K. Doylend, “Defect-mediated photodetectors for silicon photonic circuits” PhD. Thesis, McMaster University (2010).
  18. T. Baehr-Jones, M. Hochberg, C. Walker, E. Chan, D. Koshinz, W. Krug, and A. Scherer, “Analysis of the tuning sensitivity of silicon-on-insulator optical ring resonators,” J. Lightwave Technol. 23(12), 4215 (2005).
    [CrossRef]
  19. F. Y. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J. M. Fedeli, P. Dumon, L. Vivien, T. F. Krauss, G. T. Reed, and J. Martí, “High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode,” Opt. Express 17(24), 21986–21991 (2009).
    [CrossRef] [PubMed]
  20. N. Rouger, L. Chrostowski, and R. Vafaei, “Temperature effects on silicon-on-insulator (SOI) racetrack resonators: A coupled analytic and 2-D finite difference approach,” J. Lightwave Technol. 28(9), 1380–1391 (2010).
    [CrossRef]

2011 (1)

2010 (4)

J. K. Doylend, P. E. Jessop, and A. P. Knights, “Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection,” Opt. Express 18(14), 14671–14678 (2010).
[CrossRef] [PubMed]

D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, A. P. Knights, and P. E. Jessop, “Defect-enhanced Silicon-on-insulator Waveguide Resonant Photodetector With High Sensitivity at 1.55 µm,” IEEE Photon. Technol. Lett. 22(20), 1530 (2010).
[CrossRef]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thompson, “Silicon Optical Modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

N. Rouger, L. Chrostowski, and R. Vafaei, “Temperature effects on silicon-on-insulator (SOI) racetrack resonators: A coupled analytic and 2-D finite difference approach,” J. Lightwave Technol. 28(9), 1380–1391 (2010).
[CrossRef]

2009 (2)

2008 (1)

2007 (1)

2006 (4)

Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express 14(20), 9431–9435 (2006).
[CrossRef] [PubMed]

I. Kiyat, A. Aydinli, and N. Dagli, “Low-Power Thermooptical Tuning of SOI Resonator Switch,” IEEE Photon. Technol. Lett. 18(2), 364–366 (2006).
[CrossRef]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourout, P. Bientsman, and R. Baets, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45(No. 8A), 6071 (2006).
[CrossRef]

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Coleman, “Optical attenuation in defect engineered silicon rib waveguides,” J. Appl. Phys. 99(7), 073101 (2006).
[CrossRef]

2005 (2)

2004 (1)

L. Pelaz, L. A. Marqués, and J. Barbolla, “Ion-beam-induced amorphization and recrystallization in silicon,” J. Appl. Phys. 96(11), 5947 (2004).
[CrossRef]

1987 (1)

R. A. Soref and B. R. Bennett, “Electrooptical Effects in Silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

1979 (1)

C. W. White, J. Narayan, and R. T. Young, “Laser Annealing of Ion-Implanted Semiconductors,” Science 204(4392), 461–468 (1979).
[CrossRef] [PubMed]

Aydinli, A.

I. Kiyat, A. Aydinli, and N. Dagli, “Low-Power Thermooptical Tuning of SOI Resonator Switch,” IEEE Photon. Technol. Lett. 18(2), 364–366 (2006).
[CrossRef]

Ayre, M.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourout, P. Bientsman, and R. Baets, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45(No. 8A), 6071 (2006).
[CrossRef]

Baehr-Jones, T.

Baets, R.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourout, P. Bientsman, and R. Baets, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45(No. 8A), 6071 (2006).
[CrossRef]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bientsman, and D. Van Thourhout, “Nanophotonic Waveguides in Silicon-on-Insulator Fabricated with CMOS Technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
[CrossRef]

Barbolla, J.

L. Pelaz, L. A. Marqués, and J. Barbolla, “Ion-beam-induced amorphization and recrystallization in silicon,” J. Appl. Phys. 96(11), 5947 (2004).
[CrossRef]

Beckx, S.

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electrooptical Effects in Silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Bientsman, P.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourout, P. Bientsman, and R. Baets, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45(No. 8A), 6071 (2006).
[CrossRef]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bientsman, and D. Van Thourhout, “Nanophotonic Waveguides in Silicon-on-Insulator Fabricated with CMOS Technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
[CrossRef]

Bogaerts, W.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourout, P. Bientsman, and R. Baets, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45(No. 8A), 6071 (2006).
[CrossRef]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bientsman, and D. Van Thourhout, “Nanophotonic Waveguides in Silicon-on-Insulator Fabricated with CMOS Technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
[CrossRef]

Brimont, A.

Chan, E.

Chrostowski, L.

Coleman, P. G.

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Coleman, “Optical attenuation in defect engineered silicon rib waveguides,” J. Appl. Phys. 99(7), 073101 (2006).
[CrossRef]

Dagli, N.

I. Kiyat, A. Aydinli, and N. Dagli, “Low-Power Thermooptical Tuning of SOI Resonator Switch,” IEEE Photon. Technol. Lett. 18(2), 364–366 (2006).
[CrossRef]

De La Rue, R. M.

D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, A. P. Knights, and P. E. Jessop, “Defect-enhanced Silicon-on-insulator Waveguide Resonant Photodetector With High Sensitivity at 1.55 µm,” IEEE Photon. Technol. Lett. 22(20), 1530 (2010).
[CrossRef]

Deane, J. H. B.

Dong, F.

Doylend, J. K.

J. K. Doylend, P. E. Jessop, and A. P. Knights, “Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection,” Opt. Express 18(14), 14671–14678 (2010).
[CrossRef] [PubMed]

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Coleman, “Optical attenuation in defect engineered silicon rib waveguides,” J. Appl. Phys. 99(7), 073101 (2006).
[CrossRef]

Dumon, P.

Fedeli, J. M.

Foster, P. J.

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Coleman, “Optical attenuation in defect engineered silicon rib waveguides,” J. Appl. Phys. 99(7), 073101 (2006).
[CrossRef]

Gardes, F. Y.

Geis, M. W.

Green, W. M. J.

Grein, M. E.

Gwilliam, R.

Headley, W. R.

Hochberg, M.

Jessop, P. E.

D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, A. P. Knights, and P. E. Jessop, “Defect-enhanced Silicon-on-insulator Waveguide Resonant Photodetector With High Sensitivity at 1.55 µm,” IEEE Photon. Technol. Lett. 22(20), 1530 (2010).
[CrossRef]

J. K. Doylend, P. E. Jessop, and A. P. Knights, “Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection,” Opt. Express 18(14), 14671–14678 (2010).
[CrossRef] [PubMed]

Kiyat, I.

I. Kiyat, A. Aydinli, and N. Dagli, “Low-Power Thermooptical Tuning of SOI Resonator Switch,” IEEE Photon. Technol. Lett. 18(2), 364–366 (2006).
[CrossRef]

Knights, A. P.

D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, A. P. Knights, and P. E. Jessop, “Defect-enhanced Silicon-on-insulator Waveguide Resonant Photodetector With High Sensitivity at 1.55 µm,” IEEE Photon. Technol. Lett. 22(20), 1530 (2010).
[CrossRef]

J. K. Doylend, P. E. Jessop, and A. P. Knights, “Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection,” Opt. Express 18(14), 14671–14678 (2010).
[CrossRef] [PubMed]

N. M. Wright, D. J. Thomson, K. L. Litvinenko, W. R. Headley, A. J. Smith, A. P. Knights, J. H. B. Deane, F. Y. Gardes, G. Z. Mashanovich, R. Gwilliam, and G. T. Reed, “Free carrier lifetime modification for silicon waveguide based devices,” Opt. Express 16(24), 19779–19784 (2008).
[CrossRef] [PubMed]

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Coleman, “Optical attenuation in defect engineered silicon rib waveguides,” J. Appl. Phys. 99(7), 073101 (2006).
[CrossRef]

Koshinz, D.

Krauss, T. F.

Krug, W.

Lee, Y. H. D.

Lennon, D. M.

Lipson, M.

Litvinenko, K. L.

Logan, D. F.

D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, A. P. Knights, and P. E. Jessop, “Defect-enhanced Silicon-on-insulator Waveguide Resonant Photodetector With High Sensitivity at 1.55 µm,” IEEE Photon. Technol. Lett. 22(20), 1530 (2010).
[CrossRef]

Luyssaert, B.

Lyszczarz, T. M.

Marqués, L. A.

L. Pelaz, L. A. Marqués, and J. Barbolla, “Ion-beam-induced amorphization and recrystallization in silicon,” J. Appl. Phys. 96(11), 5947 (2004).
[CrossRef]

Marris-Morini, D.

Martí, J.

Mascher, P.

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Coleman, “Optical attenuation in defect engineered silicon rib waveguides,” J. Appl. Phys. 99(7), 073101 (2006).
[CrossRef]

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thompson, “Silicon Optical Modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Mashanovich, G. Z.

Narayan, J.

C. W. White, J. Narayan, and R. T. Young, “Laser Annealing of Ion-Implanted Semiconductors,” Science 204(4392), 461–468 (1979).
[CrossRef] [PubMed]

O’Faolain, L.

Pelaz, L.

L. Pelaz, L. A. Marqués, and J. Barbolla, “Ion-beam-induced amorphization and recrystallization in silicon,” J. Appl. Phys. 96(11), 5947 (2004).
[CrossRef]

Preston, K.

Rasigade, G.

Reed, G. T.

Rooks, M. J.

Rouger, N.

Sanchis, P.

Scherer, A.

Schmidt, B.

Sekaric, L.

Shakya, J.

Smith, A. J.

Soref, R. A.

R. A. Soref and B. R. Bennett, “Electrooptical Effects in Silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Sorel, M.

D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, A. P. Knights, and P. E. Jessop, “Defect-enhanced Silicon-on-insulator Waveguide Resonant Photodetector With High Sensitivity at 1.55 µm,” IEEE Photon. Technol. Lett. 22(20), 1530 (2010).
[CrossRef]

Spector, S. J.

Taillaert, D.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourout, P. Bientsman, and R. Baets, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45(No. 8A), 6071 (2006).
[CrossRef]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bientsman, and D. Van Thourhout, “Nanophotonic Waveguides in Silicon-on-Insulator Fabricated with CMOS Technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
[CrossRef]

Thompson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thompson, “Silicon Optical Modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Thomson, D. J.

Vafaei, R.

Van Campenhout, J.

Van Laere, F.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourout, P. Bientsman, and R. Baets, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45(No. 8A), 6071 (2006).
[CrossRef]

Van Thourhout, D.

Van Thourout, D.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourout, P. Bientsman, and R. Baets, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45(No. 8A), 6071 (2006).
[CrossRef]

Velha, P.

D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, A. P. Knights, and P. E. Jessop, “Defect-enhanced Silicon-on-insulator Waveguide Resonant Photodetector With High Sensitivity at 1.55 µm,” IEEE Photon. Technol. Lett. 22(20), 1530 (2010).
[CrossRef]

Vivien, L.

Vlasov, Y. A.

Walker, C.

White, C. W.

C. W. White, J. Narayan, and R. T. Young, “Laser Annealing of Ion-Implanted Semiconductors,” Science 204(4392), 461–468 (1979).
[CrossRef] [PubMed]

Wiaux, V.

Wright, N. M.

Xu, Q.

Yoon, J. U.

Young, R. T.

C. W. White, J. Narayan, and R. T. Young, “Laser Annealing of Ion-Implanted Semiconductors,” Science 204(4392), 461–468 (1979).
[CrossRef] [PubMed]

Zhang, M.

IEEE J. Quantum Electron. (1)

R. A. Soref and B. R. Bennett, “Electrooptical Effects in Silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, A. P. Knights, and P. E. Jessop, “Defect-enhanced Silicon-on-insulator Waveguide Resonant Photodetector With High Sensitivity at 1.55 µm,” IEEE Photon. Technol. Lett. 22(20), 1530 (2010).
[CrossRef]

I. Kiyat, A. Aydinli, and N. Dagli, “Low-Power Thermooptical Tuning of SOI Resonator Switch,” IEEE Photon. Technol. Lett. 18(2), 364–366 (2006).
[CrossRef]

J. Appl. Phys. (2)

L. Pelaz, L. A. Marqués, and J. Barbolla, “Ion-beam-induced amorphization and recrystallization in silicon,” J. Appl. Phys. 96(11), 5947 (2004).
[CrossRef]

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. G. Coleman, “Optical attenuation in defect engineered silicon rib waveguides,” J. Appl. Phys. 99(7), 073101 (2006).
[CrossRef]

J. Lightwave Technol. (3)

Jpn. J. Appl. Phys. (1)

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourout, P. Bientsman, and R. Baets, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Jpn. J. Appl. Phys. 45(No. 8A), 6071 (2006).
[CrossRef]

Nat. Photonics (1)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thompson, “Silicon Optical Modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Science (1)

C. W. White, J. Narayan, and R. T. Young, “Laser Annealing of Ion-Implanted Semiconductors,” Science 204(4392), 461–468 (1979).
[CrossRef] [PubMed]

Other (2)

L. Pavesi, and G. Guillot, “Optical Interconnects: The Silicon Approach,”,Vol. 119 Springer Series in Optical Sciences, (Springer-Verlag 2006).

J. K. Doylend, “Defect-mediated photodetectors for silicon photonic circuits” PhD. Thesis, McMaster University (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) SEM image of a racetrack resonator (b) The ion implantation photomask overlaid on the racetrack design. The implantation windows avoid the couplers and bus waveguides. (SEM image taken at the Canadian Center for Electron Microscopy)

Fig. 2
Fig. 2

Resonance shifting for device A/3E14-Boron. The trend of this result is representative of other devices, including those that received silicon. As the annealing temperature is increased the resonance peaks shift to lower wavelengths and the Q-factor increases.

Fig. 3
Fig. 3

Resonance shift (relative to the implanted state), as a function of annealing: (a) three identical devices, were implanted with different doses of silicon at 700 keV; (b) the total optical loss of the race-tracks. Note: Marker size is indicative of the uncertainty.

Fig. 4
Fig. 4

Quality Factor and resonance shift (relative to the implanted state) versus annealing temperature for resonator (a) A/1.5E14-Si and (b) B/1.25E12-Si

Fig. 5
Fig. 5

a) The change in the waveguide effective index as a function of the change in the silicon index of refraction for a 450 x 220 nm waveguide at 1563 nm; b) The mode profile in the in-plane direction, at the centre of the waveguide (at a height of 110 nm), for different silicon indices. n Si = 3.48 (red) and 3.47 (blue), n SiO2 = 1.444. 450 x 220 nm waveguide. This waveguide has an ng (1563 nm) = 4.55.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

P i n P o u t = γ t 2 + A 2 t 2 2 A t 2 cos δ 1 + A 2 t 4 2 A t 2 cos δ
m π = 2 n L λ m
d λ d n = L m = λ n
m π = 2 n e f f L λ m
F S R = λ 2 L n g , n g = n e f f λ d n e f f d λ
n e f f = n g + λ d n e f f d λ + Δ n S i d n e f f d n S i
n g + λ 0 d n e f f d λ λ 0 = n g + ( λ 0 + Δ λ ) d n e f f d λ + Δ n S i d n e f f d n S i λ 0 + Δ λ
Δ λ λ = Δ n S i n g d n e f f d n S i
Δ λ λ 0 = Δ n e f f n g

Metrics