Abstract

The feasibility of mid-infrared (MIR) lasing in erbium-doped gallium lanthanum sulfide (GLS) micro-disks was examined. Lasing condition at 4.5 µm signal using 800 nm pump source was simulated using rate equations, mode propagation and transfer matrix formulation. Cavity quality (Q) factors of 1.48 × 104 and 1.53 × 106 were assumed at the pump and signal wavelengths, respectively, based on state-of-the-art chalcogenide micro-disk resonator parameters. With an 80 µm disk diameter and an active erbium concentration of 2.8 × 1020 cm−3, lasing was shown to be possible with a maximum slope efficiency of 1.26 × 10−4 and associated pump threshold of 0.5 mW.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Eggleton, “Chalcogenide photonics: fabrication, devices and applications. Introduction,” Opt. Express 18(25), 26632–26634 (2010).
    [CrossRef] [PubMed]
  2. A. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184, 44–50 (1995).
    [CrossRef]
  3. A. Zakery, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
    [CrossRef]
  4. N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express 18(25), 26728–26743 (2010).
    [CrossRef] [PubMed]
  5. C. Tsay, Y. Zha, and C. B. Arnold, “Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides,” Opt. Express 18(25), 26744–26753 (2010).
    [CrossRef] [PubMed]
  6. K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-chip, integrated chalcogenide glass (ChG)-based sensors,” J. Nonlinear Opt. Phys. Mater. 19(01), 75–99 (2010).
    [CrossRef]
  7. M. Ebrahim-Zadeh and I. Sorokina, Mid-Infrared Coherent Sources and Applications (Springer, 2007).
  8. A. Kenyon, “Recent Developments in rare-earth doped materials for optoelectronics,” Prog. Quantum Electron. 26(4-5), 225–284 (2002).
    [CrossRef]
  9. A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
    [CrossRef] [PubMed]
  10. J. S. Sanghera, L. Brandon Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
    [CrossRef]
  11. J. Sanghera, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257, 6–16 (1999).
    [CrossRef]
  12. V. Nazabal, P. Němec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, and M. Frumar, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010).
    [CrossRef]
  13. J. Fick, “High photoluminescence in erbium-doped chalcogenide thin films,” J. Non-Cryst. Solids 272(2-3), 200–208 (2000).
    [CrossRef]
  14. V. Nazabal, A. M. Jurdyc, P. Němec, M. L. Brandily-Anne, L. Petit, K. Richardson, P. Vinatier, C. Bousquet, T. Cardinal, and S. Pechev, “Amorphous Tm3+ doped sulfide thin films fabricated by sputtering,” Opt. Mater. 33(2), 220–226 (2010).
    [CrossRef]
  15. J. Frantz, J. Sanghera, L. Shaw, G. Villalobos, I. Aggarwal, and D. Hewak, “Sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Mater. Lett. 60(11), 1350–1353 (2006).
    [CrossRef]
  16. T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32(7), 666–667 (1996).
    [CrossRef]
  17. T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett. 33(5), 414–416 (1997).
    [CrossRef]
  18. A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
    [CrossRef]
  19. A. K. Mairaj, A. M. Chardon, D. P. Shepherd, and D. W. Hewak, “Laser performance and spectroscopic analysis of optically written channel waveguides in neodymium-doped gallium lanthanum sulphide glass,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1381–1388 (2002).
    [CrossRef]
  20. K. Sasagawa, K. Kusawake, J. Ohta, and M. Nunoshita, “Nd-doped tellurite glass microsphere laser,” Electron. Lett. 38(22), 1355–1357 (2002).
    [CrossRef]
  21. K. Sasagawa, Z.-o. Yonezawa, R. Iwai, J. Ohta, and M. Nunoshita, “S-band Tm3+-doped tellurite glass microsphere laser via a cascade process,” Appl. Phys. Lett. 85(19), 4325–4327 (2004).
    [CrossRef]
  22. J. Wu, S. Jiang, T. Qua, M. Kuwata-Gonokami, and N. Peyghambarian, “2 μm lasing from highly thulium doped tellurite glass microsphere,” Appl. Phys. Lett. 87(21), 211118 (2005).
    [CrossRef]
  23. G. R. Elliott, G. S. Murugan, J. S. Wilkinson, M. N. Zervas, and D. W. Hewak, “Chalcogenide glass microsphere laser,” Opt. Express 18(25), 26720–26727 (2010).
    [CrossRef] [PubMed]
  24. F. Prudenzano, L. Mescia, L. A. Allegretti, M. De Sario, T. Palmisano, F. Smektala, V. Moizan, V. Nazabal, and J. Troles, “Design of Er3+-doped chalcogenide glass laser for MID-IR application,” J. Non-Cryst. Solids 355(18-21), 1145–1148 (2009).
    [CrossRef]
  25. T. Schweizer, D. Brady, and D. W. Hewak, “Fabrication and spectroscopy of erbium doped gallium lanthanum sulphide glass fibres for mid-infrared laser applications,” Opt. Express 1(4), 102–107 (1997).
    [CrossRef] [PubMed]
  26. J. Hu, N. N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow,” Opt. Express 18(2), 1469–1478 (2010).
    [CrossRef] [PubMed]
  27. H. Yayama, “Refractive index dispersion of gallium lanthanum sulfide and oxysulfide glasses,” J. Non-Cryst. Solids 239(1-3), 187–191 (1998).
    [CrossRef]
  28. H. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  29. S. Hooker, Laser Physics (Oxford University Press, 2010).
    [PubMed]
  30. K. Kadono, “Rate equation analysis and energy transfer of Er3+-doped Ga2S3–GeS2–La2S3 glasses,” J. Non-Cryst. Solids 331(1-3), 79–90 (2003).
    [CrossRef]
  31. M. Desario, L. Mescia, F. Prudenzano, F. Smektala, F. Deseveday, V. Nazabal, J. Troles, and L. Brilland, “Feasibility of Er3+-doped, Ga5Ge20Sb10S65 chalcogenide microstructured optical fiber amplifiers,” Opt. Laser Technol. 41(1), 99–106 (2009).
    [CrossRef]
  32. R. Quimby, “Multiphonon energy gap law in rare-earth doped chalcogenide glass,” J. Non-Cryst. Solids 320(1-3), 100–112 (2003).
    [CrossRef]
  33. B. M. Walsh, “Judd-Ofelt theory: principles and practices,” in Advances in Spectroscopy for Lasers and Sensing, B. Bartolo and O. Forte, eds. (Kluwer Academic Publishers, 2006), pp. 403–433.
  34. D. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134(2A), A299–A306 (1964).
    [CrossRef]
  35. J. G. Solé, L. E. Bausá, and D. Jaque, An Introduction to the Optical Spectroscopy of Inorganic Solids (John Wiley and Sons, Ltd., 2005).
  36. FIMMMWAVE: Waveguides solver (Photon Design, 34 Leopold Street, Oxford, OX41TW, U.K.).
  37. R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, “Threshold characteristics of semiconductor microdisk lasers,” Appl. Phys. Lett. 63(10), 1310–1312 (1993).
    [CrossRef]
  38. M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005).
    [CrossRef] [PubMed]
  39. Data Sheet, “Gallium lanthanum sulphide optical material—internal transmission,” ChG Southampton Ltd., University of Southampton, Highfield, Southampton, SO17 1BJ, U.K. (2010).
  40. T. Schweizer, “Rare-earth-doped gallium lanthanum sulphide glasses for mid-infrared fibre lasers,” University of Southampton, Faculty of Engineering and Applied Science, Department of Electronics and Computer Science, Doctoral Thesis (2000).
  41. C. Ye, “Spectral properties of Er3+-doped gallium lanthanum sulphide glass,” J. Non-Cryst. Solids 208(1-2), 56–63 (1996).
    [CrossRef]

2010 (9)

V. Nazabal, P. Němec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, and M. Frumar, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010).
[CrossRef]

V. Nazabal, A. M. Jurdyc, P. Němec, M. L. Brandily-Anne, L. Petit, K. Richardson, P. Vinatier, C. Bousquet, T. Cardinal, and S. Pechev, “Amorphous Tm3+ doped sulfide thin films fabricated by sputtering,” Opt. Mater. 33(2), 220–226 (2010).
[CrossRef]

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-chip, integrated chalcogenide glass (ChG)-based sensors,” J. Nonlinear Opt. Phys. Mater. 19(01), 75–99 (2010).
[CrossRef]

J. Hu, N. N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow,” Opt. Express 18(2), 1469–1478 (2010).
[CrossRef] [PubMed]

B. J. Eggleton, “Chalcogenide photonics: fabrication, devices and applications. Introduction,” Opt. Express 18(25), 26632–26634 (2010).
[CrossRef] [PubMed]

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
[CrossRef] [PubMed]

G. R. Elliott, G. S. Murugan, J. S. Wilkinson, M. N. Zervas, and D. W. Hewak, “Chalcogenide glass microsphere laser,” Opt. Express 18(25), 26720–26727 (2010).
[CrossRef] [PubMed]

N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express 18(25), 26728–26743 (2010).
[CrossRef] [PubMed]

C. Tsay, Y. Zha, and C. B. Arnold, “Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides,” Opt. Express 18(25), 26744–26753 (2010).
[CrossRef] [PubMed]

2009 (3)

M. Desario, L. Mescia, F. Prudenzano, F. Smektala, F. Deseveday, V. Nazabal, J. Troles, and L. Brilland, “Feasibility of Er3+-doped, Ga5Ge20Sb10S65 chalcogenide microstructured optical fiber amplifiers,” Opt. Laser Technol. 41(1), 99–106 (2009).
[CrossRef]

F. Prudenzano, L. Mescia, L. A. Allegretti, M. De Sario, T. Palmisano, F. Smektala, V. Moizan, V. Nazabal, and J. Troles, “Design of Er3+-doped chalcogenide glass laser for MID-IR application,” J. Non-Cryst. Solids 355(18-21), 1145–1148 (2009).
[CrossRef]

J. S. Sanghera, L. Brandon Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[CrossRef]

2006 (1)

J. Frantz, J. Sanghera, L. Shaw, G. Villalobos, I. Aggarwal, and D. Hewak, “Sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Mater. Lett. 60(11), 1350–1353 (2006).
[CrossRef]

2005 (2)

J. Wu, S. Jiang, T. Qua, M. Kuwata-Gonokami, and N. Peyghambarian, “2 μm lasing from highly thulium doped tellurite glass microsphere,” Appl. Phys. Lett. 87(21), 211118 (2005).
[CrossRef]

M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005).
[CrossRef] [PubMed]

2004 (1)

K. Sasagawa, Z.-o. Yonezawa, R. Iwai, J. Ohta, and M. Nunoshita, “S-band Tm3+-doped tellurite glass microsphere laser via a cascade process,” Appl. Phys. Lett. 85(19), 4325–4327 (2004).
[CrossRef]

2003 (3)

R. Quimby, “Multiphonon energy gap law in rare-earth doped chalcogenide glass,” J. Non-Cryst. Solids 320(1-3), 100–112 (2003).
[CrossRef]

A. Zakery, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[CrossRef]

K. Kadono, “Rate equation analysis and energy transfer of Er3+-doped Ga2S3–GeS2–La2S3 glasses,” J. Non-Cryst. Solids 331(1-3), 79–90 (2003).
[CrossRef]

2002 (4)

A. Kenyon, “Recent Developments in rare-earth doped materials for optoelectronics,” Prog. Quantum Electron. 26(4-5), 225–284 (2002).
[CrossRef]

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[CrossRef]

A. K. Mairaj, A. M. Chardon, D. P. Shepherd, and D. W. Hewak, “Laser performance and spectroscopic analysis of optically written channel waveguides in neodymium-doped gallium lanthanum sulphide glass,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1381–1388 (2002).
[CrossRef]

K. Sasagawa, K. Kusawake, J. Ohta, and M. Nunoshita, “Nd-doped tellurite glass microsphere laser,” Electron. Lett. 38(22), 1355–1357 (2002).
[CrossRef]

2000 (1)

J. Fick, “High photoluminescence in erbium-doped chalcogenide thin films,” J. Non-Cryst. Solids 272(2-3), 200–208 (2000).
[CrossRef]

1999 (1)

J. Sanghera, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257, 6–16 (1999).
[CrossRef]

1998 (1)

H. Yayama, “Refractive index dispersion of gallium lanthanum sulfide and oxysulfide glasses,” J. Non-Cryst. Solids 239(1-3), 187–191 (1998).
[CrossRef]

1997 (2)

T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett. 33(5), 414–416 (1997).
[CrossRef]

T. Schweizer, D. Brady, and D. W. Hewak, “Fabrication and spectroscopy of erbium doped gallium lanthanum sulphide glass fibres for mid-infrared laser applications,” Opt. Express 1(4), 102–107 (1997).
[CrossRef] [PubMed]

1996 (2)

C. Ye, “Spectral properties of Er3+-doped gallium lanthanum sulphide glass,” J. Non-Cryst. Solids 208(1-2), 56–63 (1996).
[CrossRef]

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32(7), 666–667 (1996).
[CrossRef]

1995 (1)

A. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184, 44–50 (1995).
[CrossRef]

1993 (1)

R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, “Threshold characteristics of semiconductor microdisk lasers,” Appl. Phys. Lett. 63(10), 1310–1312 (1993).
[CrossRef]

1964 (1)

D. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134(2A), A299–A306 (1964).
[CrossRef]

Agarwal, A.

Aggarwal, I.

J. Frantz, J. Sanghera, L. Shaw, G. Villalobos, I. Aggarwal, and D. Hewak, “Sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Mater. Lett. 60(11), 1350–1353 (2006).
[CrossRef]

Aggarwal, I. D.

J. S. Sanghera, L. Brandon Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[CrossRef]

Allegretti, L. A.

F. Prudenzano, L. Mescia, L. A. Allegretti, M. De Sario, T. Palmisano, F. Smektala, V. Moizan, V. Nazabal, and J. Troles, “Design of Er3+-doped chalcogenide glass laser for MID-IR application,” J. Non-Cryst. Solids 355(18-21), 1145–1148 (2009).
[CrossRef]

Anderson, T.

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-chip, integrated chalcogenide glass (ChG)-based sensors,” J. Nonlinear Opt. Phys. Mater. 19(01), 75–99 (2010).
[CrossRef]

Arnold, C. B.

Benson, T. M.

Borselli, M.

Bousquet, C.

V. Nazabal, A. M. Jurdyc, P. Němec, M. L. Brandily-Anne, L. Petit, K. Richardson, P. Vinatier, C. Bousquet, T. Cardinal, and S. Pechev, “Amorphous Tm3+ doped sulfide thin films fabricated by sputtering,” Opt. Mater. 33(2), 220–226 (2010).
[CrossRef]

Brady, D.

Brandily-Anne, M. L.

V. Nazabal, A. M. Jurdyc, P. Němec, M. L. Brandily-Anne, L. Petit, K. Richardson, P. Vinatier, C. Bousquet, T. Cardinal, and S. Pechev, “Amorphous Tm3+ doped sulfide thin films fabricated by sputtering,” Opt. Mater. 33(2), 220–226 (2010).
[CrossRef]

Brandon Shaw, L.

J. S. Sanghera, L. Brandon Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[CrossRef]

Brilland, L.

M. Desario, L. Mescia, F. Prudenzano, F. Smektala, F. Deseveday, V. Nazabal, J. Troles, and L. Brilland, “Feasibility of Er3+-doped, Ga5Ge20Sb10S65 chalcogenide microstructured optical fiber amplifiers,” Opt. Laser Technol. 41(1), 99–106 (2009).
[CrossRef]

Canciamilla, A.

Cardinal, T.

V. Nazabal, A. M. Jurdyc, P. Němec, M. L. Brandily-Anne, L. Petit, K. Richardson, P. Vinatier, C. Bousquet, T. Cardinal, and S. Pechev, “Amorphous Tm3+ doped sulfide thin films fabricated by sputtering,” Opt. Mater. 33(2), 220–226 (2010).
[CrossRef]

Carlie, N.

Chardon, A. M.

A. K. Mairaj, A. M. Chardon, D. P. Shepherd, and D. W. Hewak, “Laser performance and spectroscopic analysis of optically written channel waveguides in neodymium-doped gallium lanthanum sulphide glass,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1381–1388 (2002).
[CrossRef]

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[CrossRef]

Charpentier, F.

V. Nazabal, P. Němec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, and M. Frumar, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010).
[CrossRef]

Charrier, J.

V. Nazabal, P. Němec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, and M. Frumar, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010).
[CrossRef]

De Sario, M.

F. Prudenzano, L. Mescia, L. A. Allegretti, M. De Sario, T. Palmisano, F. Smektala, V. Moizan, V. Nazabal, and J. Troles, “Design of Er3+-doped chalcogenide glass laser for MID-IR application,” J. Non-Cryst. Solids 355(18-21), 1145–1148 (2009).
[CrossRef]

Desario, M.

M. Desario, L. Mescia, F. Prudenzano, F. Smektala, F. Deseveday, V. Nazabal, J. Troles, and L. Brilland, “Feasibility of Er3+-doped, Ga5Ge20Sb10S65 chalcogenide microstructured optical fiber amplifiers,” Opt. Laser Technol. 41(1), 99–106 (2009).
[CrossRef]

Deseveday, F.

M. Desario, L. Mescia, F. Prudenzano, F. Smektala, F. Deseveday, V. Nazabal, J. Troles, and L. Brilland, “Feasibility of Er3+-doped, Ga5Ge20Sb10S65 chalcogenide microstructured optical fiber amplifiers,” Opt. Laser Technol. 41(1), 99–106 (2009).
[CrossRef]

Eggleton, B. J.

Elliott, G. R.

Feng, N. N.

Fick, J.

J. Fick, “High photoluminescence in erbium-doped chalcogenide thin films,” J. Non-Cryst. Solids 272(2-3), 200–208 (2000).
[CrossRef]

Frantz, J.

J. Frantz, J. Sanghera, L. Shaw, G. Villalobos, I. Aggarwal, and D. Hewak, “Sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Mater. Lett. 60(11), 1350–1353 (2006).
[CrossRef]

Frumar, M.

V. Nazabal, P. Němec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, and M. Frumar, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010).
[CrossRef]

Furniss, D.

Guin, J. P.

V. Nazabal, P. Němec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, and M. Frumar, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010).
[CrossRef]

Hewak, D.

J. Frantz, J. Sanghera, L. Shaw, G. Villalobos, I. Aggarwal, and D. Hewak, “Sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Mater. Lett. 60(11), 1350–1353 (2006).
[CrossRef]

Hewak, D. W.

G. R. Elliott, G. S. Murugan, J. S. Wilkinson, M. N. Zervas, and D. W. Hewak, “Chalcogenide glass microsphere laser,” Opt. Express 18(25), 26720–26727 (2010).
[CrossRef] [PubMed]

A. K. Mairaj, A. M. Chardon, D. P. Shepherd, and D. W. Hewak, “Laser performance and spectroscopic analysis of optically written channel waveguides in neodymium-doped gallium lanthanum sulphide glass,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1381–1388 (2002).
[CrossRef]

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[CrossRef]

T. Schweizer, D. Brady, and D. W. Hewak, “Fabrication and spectroscopy of erbium doped gallium lanthanum sulphide glass fibres for mid-infrared laser applications,” Opt. Express 1(4), 102–107 (1997).
[CrossRef] [PubMed]

T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett. 33(5), 414–416 (1997).
[CrossRef]

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32(7), 666–667 (1996).
[CrossRef]

Hu, J.

Huber, G.

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32(7), 666–667 (1996).
[CrossRef]

Iwai, R.

K. Sasagawa, Z.-o. Yonezawa, R. Iwai, J. Ohta, and M. Nunoshita, “S-band Tm3+-doped tellurite glass microsphere laser via a cascade process,” Appl. Phys. Lett. 85(19), 4325–4327 (2004).
[CrossRef]

Jensen, T.

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32(7), 666–667 (1996).
[CrossRef]

Jiang, S.

J. Wu, S. Jiang, T. Qua, M. Kuwata-Gonokami, and N. Peyghambarian, “2 μm lasing from highly thulium doped tellurite glass microsphere,” Appl. Phys. Lett. 87(21), 211118 (2005).
[CrossRef]

Johnson, T. J.

Jurdyc, A. M.

V. Nazabal, P. Němec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, and M. Frumar, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010).
[CrossRef]

V. Nazabal, A. M. Jurdyc, P. Němec, M. L. Brandily-Anne, L. Petit, K. Richardson, P. Vinatier, C. Bousquet, T. Cardinal, and S. Pechev, “Amorphous Tm3+ doped sulfide thin films fabricated by sputtering,” Opt. Mater. 33(2), 220–226 (2010).
[CrossRef]

Kadono, K.

K. Kadono, “Rate equation analysis and energy transfer of Er3+-doped Ga2S3–GeS2–La2S3 glasses,” J. Non-Cryst. Solids 331(1-3), 79–90 (2003).
[CrossRef]

Kenyon, A.

A. Kenyon, “Recent Developments in rare-earth doped materials for optoelectronics,” Prog. Quantum Electron. 26(4-5), 225–284 (2002).
[CrossRef]

Kimerling, L.

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-chip, integrated chalcogenide glass (ChG)-based sensors,” J. Nonlinear Opt. Phys. Mater. 19(01), 75–99 (2010).
[CrossRef]

Kimerling, L. C.

Kusawake, K.

K. Sasagawa, K. Kusawake, J. Ohta, and M. Nunoshita, “Nd-doped tellurite glass microsphere laser,” Electron. Lett. 38(22), 1355–1357 (2002).
[CrossRef]

Kuwata-Gonokami, M.

J. Wu, S. Jiang, T. Qua, M. Kuwata-Gonokami, and N. Peyghambarian, “2 μm lasing from highly thulium doped tellurite glass microsphere,” Appl. Phys. Lett. 87(21), 211118 (2005).
[CrossRef]

Levi, A. F. J.

R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, “Threshold characteristics of semiconductor microdisk lasers,” Appl. Phys. Lett. 63(10), 1310–1312 (1993).
[CrossRef]

Lhermite, H.

V. Nazabal, P. Němec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, and M. Frumar, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010).
[CrossRef]

Logan, R. A.

R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, “Threshold characteristics of semiconductor microdisk lasers,” Appl. Phys. Lett. 63(10), 1310–1312 (1993).
[CrossRef]

Luzinov, I.

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-chip, integrated chalcogenide glass (ChG)-based sensors,” J. Nonlinear Opt. Phys. Mater. 19(01), 75–99 (2010).
[CrossRef]

N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express 18(25), 26728–26743 (2010).
[CrossRef] [PubMed]

Mairaj, A. K.

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[CrossRef]

A. K. Mairaj, A. M. Chardon, D. P. Shepherd, and D. W. Hewak, “Laser performance and spectroscopic analysis of optically written channel waveguides in neodymium-doped gallium lanthanum sulphide glass,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1381–1388 (2002).
[CrossRef]

McCall, S. L.

R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, “Threshold characteristics of semiconductor microdisk lasers,” Appl. Phys. Lett. 63(10), 1310–1312 (1993).
[CrossRef]

McCumber, D.

D. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134(2A), A299–A306 (1964).
[CrossRef]

Melloni, A.

Mescia, L.

M. Desario, L. Mescia, F. Prudenzano, F. Smektala, F. Deseveday, V. Nazabal, J. Troles, and L. Brilland, “Feasibility of Er3+-doped, Ga5Ge20Sb10S65 chalcogenide microstructured optical fiber amplifiers,” Opt. Laser Technol. 41(1), 99–106 (2009).
[CrossRef]

F. Prudenzano, L. Mescia, L. A. Allegretti, M. De Sario, T. Palmisano, F. Smektala, V. Moizan, V. Nazabal, and J. Troles, “Design of Er3+-doped chalcogenide glass laser for MID-IR application,” J. Non-Cryst. Solids 355(18-21), 1145–1148 (2009).
[CrossRef]

Mohideen, U.

R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, “Threshold characteristics of semiconductor microdisk lasers,” Appl. Phys. Lett. 63(10), 1310–1312 (1993).
[CrossRef]

Moizan, V.

F. Prudenzano, L. Mescia, L. A. Allegretti, M. De Sario, T. Palmisano, F. Smektala, V. Moizan, V. Nazabal, and J. Troles, “Design of Er3+-doped chalcogenide glass laser for MID-IR application,” J. Non-Cryst. Solids 355(18-21), 1145–1148 (2009).
[CrossRef]

Moore, R. C.

T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett. 33(5), 414–416 (1997).
[CrossRef]

Moreac, A.

V. Nazabal, P. Němec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, and M. Frumar, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010).
[CrossRef]

Morichetti, F.

Murugan, G. S.

Musgraves, J. D.

Nazabal, V.

V. Nazabal, P. Němec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, and M. Frumar, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010).
[CrossRef]

V. Nazabal, A. M. Jurdyc, P. Němec, M. L. Brandily-Anne, L. Petit, K. Richardson, P. Vinatier, C. Bousquet, T. Cardinal, and S. Pechev, “Amorphous Tm3+ doped sulfide thin films fabricated by sputtering,” Opt. Mater. 33(2), 220–226 (2010).
[CrossRef]

M. Desario, L. Mescia, F. Prudenzano, F. Smektala, F. Deseveday, V. Nazabal, J. Troles, and L. Brilland, “Feasibility of Er3+-doped, Ga5Ge20Sb10S65 chalcogenide microstructured optical fiber amplifiers,” Opt. Laser Technol. 41(1), 99–106 (2009).
[CrossRef]

F. Prudenzano, L. Mescia, L. A. Allegretti, M. De Sario, T. Palmisano, F. Smektala, V. Moizan, V. Nazabal, and J. Troles, “Design of Er3+-doped chalcogenide glass laser for MID-IR application,” J. Non-Cryst. Solids 355(18-21), 1145–1148 (2009).
[CrossRef]

Nemec, P.

V. Nazabal, A. M. Jurdyc, P. Němec, M. L. Brandily-Anne, L. Petit, K. Richardson, P. Vinatier, C. Bousquet, T. Cardinal, and S. Pechev, “Amorphous Tm3+ doped sulfide thin films fabricated by sputtering,” Opt. Mater. 33(2), 220–226 (2010).
[CrossRef]

V. Nazabal, P. Němec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, and M. Frumar, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010).
[CrossRef]

Nunoshita, M.

K. Sasagawa, Z.-o. Yonezawa, R. Iwai, J. Ohta, and M. Nunoshita, “S-band Tm3+-doped tellurite glass microsphere laser via a cascade process,” Appl. Phys. Lett. 85(19), 4325–4327 (2004).
[CrossRef]

K. Sasagawa, K. Kusawake, J. Ohta, and M. Nunoshita, “Nd-doped tellurite glass microsphere laser,” Electron. Lett. 38(22), 1355–1357 (2002).
[CrossRef]

Ohta, J.

K. Sasagawa, Z.-o. Yonezawa, R. Iwai, J. Ohta, and M. Nunoshita, “S-band Tm3+-doped tellurite glass microsphere laser via a cascade process,” Appl. Phys. Lett. 85(19), 4325–4327 (2004).
[CrossRef]

K. Sasagawa, K. Kusawake, J. Ohta, and M. Nunoshita, “Nd-doped tellurite glass microsphere laser,” Electron. Lett. 38(22), 1355–1357 (2002).
[CrossRef]

Painter, O.

Palmisano, T.

F. Prudenzano, L. Mescia, L. A. Allegretti, M. De Sario, T. Palmisano, F. Smektala, V. Moizan, V. Nazabal, and J. Troles, “Design of Er3+-doped chalcogenide glass laser for MID-IR application,” J. Non-Cryst. Solids 355(18-21), 1145–1148 (2009).
[CrossRef]

Payne, D. N.

T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett. 33(5), 414–416 (1997).
[CrossRef]

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32(7), 666–667 (1996).
[CrossRef]

Pearton, S. J.

R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, “Threshold characteristics of semiconductor microdisk lasers,” Appl. Phys. Lett. 63(10), 1310–1312 (1993).
[CrossRef]

Pechev, S.

V. Nazabal, A. M. Jurdyc, P. Němec, M. L. Brandily-Anne, L. Petit, K. Richardson, P. Vinatier, C. Bousquet, T. Cardinal, and S. Pechev, “Amorphous Tm3+ doped sulfide thin films fabricated by sputtering,” Opt. Mater. 33(2), 220–226 (2010).
[CrossRef]

Petit, L.

V. Nazabal, A. M. Jurdyc, P. Němec, M. L. Brandily-Anne, L. Petit, K. Richardson, P. Vinatier, C. Bousquet, T. Cardinal, and S. Pechev, “Amorphous Tm3+ doped sulfide thin films fabricated by sputtering,” Opt. Mater. 33(2), 220–226 (2010).
[CrossRef]

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-chip, integrated chalcogenide glass (ChG)-based sensors,” J. Nonlinear Opt. Phys. Mater. 19(01), 75–99 (2010).
[CrossRef]

J. Hu, N. N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow,” Opt. Express 18(2), 1469–1478 (2010).
[CrossRef] [PubMed]

Peyghambarian, N.

J. Wu, S. Jiang, T. Qua, M. Kuwata-Gonokami, and N. Peyghambarian, “2 μm lasing from highly thulium doped tellurite glass microsphere,” Appl. Phys. Lett. 87(21), 211118 (2005).
[CrossRef]

Prudenzano, F.

M. Desario, L. Mescia, F. Prudenzano, F. Smektala, F. Deseveday, V. Nazabal, J. Troles, and L. Brilland, “Feasibility of Er3+-doped, Ga5Ge20Sb10S65 chalcogenide microstructured optical fiber amplifiers,” Opt. Laser Technol. 41(1), 99–106 (2009).
[CrossRef]

F. Prudenzano, L. Mescia, L. A. Allegretti, M. De Sario, T. Palmisano, F. Smektala, V. Moizan, V. Nazabal, and J. Troles, “Design of Er3+-doped chalcogenide glass laser for MID-IR application,” J. Non-Cryst. Solids 355(18-21), 1145–1148 (2009).
[CrossRef]

Qua, T.

J. Wu, S. Jiang, T. Qua, M. Kuwata-Gonokami, and N. Peyghambarian, “2 μm lasing from highly thulium doped tellurite glass microsphere,” Appl. Phys. Lett. 87(21), 211118 (2005).
[CrossRef]

Quimby, R.

R. Quimby, “Multiphonon energy gap law in rare-earth doped chalcogenide glass,” J. Non-Cryst. Solids 320(1-3), 100–112 (2003).
[CrossRef]

Richardson, K.

N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express 18(25), 26728–26743 (2010).
[CrossRef] [PubMed]

V. Nazabal, A. M. Jurdyc, P. Němec, M. L. Brandily-Anne, L. Petit, K. Richardson, P. Vinatier, C. Bousquet, T. Cardinal, and S. Pechev, “Amorphous Tm3+ doped sulfide thin films fabricated by sputtering,” Opt. Mater. 33(2), 220–226 (2010).
[CrossRef]

J. Hu, N. N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow,” Opt. Express 18(2), 1469–1478 (2010).
[CrossRef] [PubMed]

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-chip, integrated chalcogenide glass (ChG)-based sensors,” J. Nonlinear Opt. Phys. Mater. 19(01), 75–99 (2010).
[CrossRef]

Richardson, M.

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-chip, integrated chalcogenide glass (ChG)-based sensors,” J. Nonlinear Opt. Phys. Mater. 19(01), 75–99 (2010).
[CrossRef]

Riziotis, C.

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[CrossRef]

Samson, B. N.

T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett. 33(5), 414–416 (1997).
[CrossRef]

Sanghera, J.

J. Frantz, J. Sanghera, L. Shaw, G. Villalobos, I. Aggarwal, and D. Hewak, “Sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Mater. Lett. 60(11), 1350–1353 (2006).
[CrossRef]

J. Sanghera, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257, 6–16 (1999).
[CrossRef]

Sanghera, J. S.

J. S. Sanghera, L. Brandon Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[CrossRef]

Sasagawa, K.

K. Sasagawa, Z.-o. Yonezawa, R. Iwai, J. Ohta, and M. Nunoshita, “S-band Tm3+-doped tellurite glass microsphere laser via a cascade process,” Appl. Phys. Lett. 85(19), 4325–4327 (2004).
[CrossRef]

K. Sasagawa, K. Kusawake, J. Ohta, and M. Nunoshita, “Nd-doped tellurite glass microsphere laser,” Electron. Lett. 38(22), 1355–1357 (2002).
[CrossRef]

Schweizer, T.

T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett. 33(5), 414–416 (1997).
[CrossRef]

T. Schweizer, D. Brady, and D. W. Hewak, “Fabrication and spectroscopy of erbium doped gallium lanthanum sulphide glass fibres for mid-infrared laser applications,” Opt. Express 1(4), 102–107 (1997).
[CrossRef] [PubMed]

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32(7), 666–667 (1996).
[CrossRef]

Seddon, A.

A. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184, 44–50 (1995).
[CrossRef]

Seddon, A. B.

Shaw, L.

J. Frantz, J. Sanghera, L. Shaw, G. Villalobos, I. Aggarwal, and D. Hewak, “Sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Mater. Lett. 60(11), 1350–1353 (2006).
[CrossRef]

Shepherd, D. P.

A. K. Mairaj, A. M. Chardon, D. P. Shepherd, and D. W. Hewak, “Laser performance and spectroscopic analysis of optically written channel waveguides in neodymium-doped gallium lanthanum sulphide glass,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1381–1388 (2002).
[CrossRef]

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[CrossRef]

Singh, V.

Slusher, R. E.

R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, “Threshold characteristics of semiconductor microdisk lasers,” Appl. Phys. Lett. 63(10), 1310–1312 (1993).
[CrossRef]

Smektala, F.

F. Prudenzano, L. Mescia, L. A. Allegretti, M. De Sario, T. Palmisano, F. Smektala, V. Moizan, V. Nazabal, and J. Troles, “Design of Er3+-doped chalcogenide glass laser for MID-IR application,” J. Non-Cryst. Solids 355(18-21), 1145–1148 (2009).
[CrossRef]

M. Desario, L. Mescia, F. Prudenzano, F. Smektala, F. Deseveday, V. Nazabal, J. Troles, and L. Brilland, “Feasibility of Er3+-doped, Ga5Ge20Sb10S65 chalcogenide microstructured optical fiber amplifiers,” Opt. Laser Technol. 41(1), 99–106 (2009).
[CrossRef]

Smith, P. G. R.

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[CrossRef]

Sujecki, S.

Tang, Z.

Troles, J.

F. Prudenzano, L. Mescia, L. A. Allegretti, M. De Sario, T. Palmisano, F. Smektala, V. Moizan, V. Nazabal, and J. Troles, “Design of Er3+-doped chalcogenide glass laser for MID-IR application,” J. Non-Cryst. Solids 355(18-21), 1145–1148 (2009).
[CrossRef]

M. Desario, L. Mescia, F. Prudenzano, F. Smektala, F. Deseveday, V. Nazabal, J. Troles, and L. Brilland, “Feasibility of Er3+-doped, Ga5Ge20Sb10S65 chalcogenide microstructured optical fiber amplifiers,” Opt. Laser Technol. 41(1), 99–106 (2009).
[CrossRef]

Tsay, C.

Villalobos, G.

J. Frantz, J. Sanghera, L. Shaw, G. Villalobos, I. Aggarwal, and D. Hewak, “Sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Mater. Lett. 60(11), 1350–1353 (2006).
[CrossRef]

Vinatier, P.

V. Nazabal, A. M. Jurdyc, P. Němec, M. L. Brandily-Anne, L. Petit, K. Richardson, P. Vinatier, C. Bousquet, T. Cardinal, and S. Pechev, “Amorphous Tm3+ doped sulfide thin films fabricated by sputtering,” Opt. Mater. 33(2), 220–226 (2010).
[CrossRef]

Wilkinson, J. S.

Wu, J.

J. Wu, S. Jiang, T. Qua, M. Kuwata-Gonokami, and N. Peyghambarian, “2 μm lasing from highly thulium doped tellurite glass microsphere,” Appl. Phys. Lett. 87(21), 211118 (2005).
[CrossRef]

Yayama, H.

H. Yayama, “Refractive index dispersion of gallium lanthanum sulfide and oxysulfide glasses,” J. Non-Cryst. Solids 239(1-3), 187–191 (1998).
[CrossRef]

Ye, C.

C. Ye, “Spectral properties of Er3+-doped gallium lanthanum sulphide glass,” J. Non-Cryst. Solids 208(1-2), 56–63 (1996).
[CrossRef]

Yonezawa, Z.-o.

K. Sasagawa, Z.-o. Yonezawa, R. Iwai, J. Ohta, and M. Nunoshita, “S-band Tm3+-doped tellurite glass microsphere laser via a cascade process,” Appl. Phys. Lett. 85(19), 4325–4327 (2004).
[CrossRef]

Zakery, A.

A. Zakery, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[CrossRef]

Zdyrko, B.

N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express 18(25), 26728–26743 (2010).
[CrossRef] [PubMed]

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-chip, integrated chalcogenide glass (ChG)-based sensors,” J. Nonlinear Opt. Phys. Mater. 19(01), 75–99 (2010).
[CrossRef]

Zervas, M. N.

Zha, Y.

Zhang, S.

V. Nazabal, P. Němec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, and M. Frumar, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010).
[CrossRef]

Appl. Phys. Lett. (4)

K. Sasagawa, Z.-o. Yonezawa, R. Iwai, J. Ohta, and M. Nunoshita, “S-band Tm3+-doped tellurite glass microsphere laser via a cascade process,” Appl. Phys. Lett. 85(19), 4325–4327 (2004).
[CrossRef]

J. Wu, S. Jiang, T. Qua, M. Kuwata-Gonokami, and N. Peyghambarian, “2 μm lasing from highly thulium doped tellurite glass microsphere,” Appl. Phys. Lett. 87(21), 211118 (2005).
[CrossRef]

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[CrossRef]

R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, “Threshold characteristics of semiconductor microdisk lasers,” Appl. Phys. Lett. 63(10), 1310–1312 (1993).
[CrossRef]

Electron. Lett. (3)

K. Sasagawa, K. Kusawake, J. Ohta, and M. Nunoshita, “Nd-doped tellurite glass microsphere laser,” Electron. Lett. 38(22), 1355–1357 (2002).
[CrossRef]

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32(7), 666–667 (1996).
[CrossRef]

T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett. 33(5), 414–416 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

J. S. Sanghera, L. Brandon Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[CrossRef]

A. K. Mairaj, A. M. Chardon, D. P. Shepherd, and D. W. Hewak, “Laser performance and spectroscopic analysis of optically written channel waveguides in neodymium-doped gallium lanthanum sulphide glass,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1381–1388 (2002).
[CrossRef]

J. Non-Cryst. Solids (9)

K. Kadono, “Rate equation analysis and energy transfer of Er3+-doped Ga2S3–GeS2–La2S3 glasses,” J. Non-Cryst. Solids 331(1-3), 79–90 (2003).
[CrossRef]

R. Quimby, “Multiphonon energy gap law in rare-earth doped chalcogenide glass,” J. Non-Cryst. Solids 320(1-3), 100–112 (2003).
[CrossRef]

C. Ye, “Spectral properties of Er3+-doped gallium lanthanum sulphide glass,” J. Non-Cryst. Solids 208(1-2), 56–63 (1996).
[CrossRef]

J. Sanghera, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257, 6–16 (1999).
[CrossRef]

J. Fick, “High photoluminescence in erbium-doped chalcogenide thin films,” J. Non-Cryst. Solids 272(2-3), 200–208 (2000).
[CrossRef]

A. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184, 44–50 (1995).
[CrossRef]

A. Zakery, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[CrossRef]

H. Yayama, “Refractive index dispersion of gallium lanthanum sulfide and oxysulfide glasses,” J. Non-Cryst. Solids 239(1-3), 187–191 (1998).
[CrossRef]

F. Prudenzano, L. Mescia, L. A. Allegretti, M. De Sario, T. Palmisano, F. Smektala, V. Moizan, V. Nazabal, and J. Troles, “Design of Er3+-doped chalcogenide glass laser for MID-IR application,” J. Non-Cryst. Solids 355(18-21), 1145–1148 (2009).
[CrossRef]

J. Nonlinear Opt. Phys. Mater. (1)

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-chip, integrated chalcogenide glass (ChG)-based sensors,” J. Nonlinear Opt. Phys. Mater. 19(01), 75–99 (2010).
[CrossRef]

Mater. Lett. (1)

J. Frantz, J. Sanghera, L. Shaw, G. Villalobos, I. Aggarwal, and D. Hewak, “Sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Mater. Lett. 60(11), 1350–1353 (2006).
[CrossRef]

Opt. Express (8)

T. Schweizer, D. Brady, and D. W. Hewak, “Fabrication and spectroscopy of erbium doped gallium lanthanum sulphide glass fibres for mid-infrared laser applications,” Opt. Express 1(4), 102–107 (1997).
[CrossRef] [PubMed]

M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005).
[CrossRef] [PubMed]

J. Hu, N. N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow,” Opt. Express 18(2), 1469–1478 (2010).
[CrossRef] [PubMed]

B. J. Eggleton, “Chalcogenide photonics: fabrication, devices and applications. Introduction,” Opt. Express 18(25), 26632–26634 (2010).
[CrossRef] [PubMed]

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
[CrossRef] [PubMed]

G. R. Elliott, G. S. Murugan, J. S. Wilkinson, M. N. Zervas, and D. W. Hewak, “Chalcogenide glass microsphere laser,” Opt. Express 18(25), 26720–26727 (2010).
[CrossRef] [PubMed]

N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express 18(25), 26728–26743 (2010).
[CrossRef] [PubMed]

C. Tsay, Y. Zha, and C. B. Arnold, “Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides,” Opt. Express 18(25), 26744–26753 (2010).
[CrossRef] [PubMed]

Opt. Laser Technol. (1)

M. Desario, L. Mescia, F. Prudenzano, F. Smektala, F. Deseveday, V. Nazabal, J. Troles, and L. Brilland, “Feasibility of Er3+-doped, Ga5Ge20Sb10S65 chalcogenide microstructured optical fiber amplifiers,” Opt. Laser Technol. 41(1), 99–106 (2009).
[CrossRef]

Opt. Mater. (1)

V. Nazabal, A. M. Jurdyc, P. Němec, M. L. Brandily-Anne, L. Petit, K. Richardson, P. Vinatier, C. Bousquet, T. Cardinal, and S. Pechev, “Amorphous Tm3+ doped sulfide thin films fabricated by sputtering,” Opt. Mater. 33(2), 220–226 (2010).
[CrossRef]

Phys. Rev. (1)

D. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134(2A), A299–A306 (1964).
[CrossRef]

Prog. Quantum Electron. (1)

A. Kenyon, “Recent Developments in rare-earth doped materials for optoelectronics,” Prog. Quantum Electron. 26(4-5), 225–284 (2002).
[CrossRef]

Thin Solid Films (1)

V. Nazabal, P. Němec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, and M. Frumar, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010).
[CrossRef]

Other (8)

M. Ebrahim-Zadeh and I. Sorokina, Mid-Infrared Coherent Sources and Applications (Springer, 2007).

H. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

S. Hooker, Laser Physics (Oxford University Press, 2010).
[PubMed]

J. G. Solé, L. E. Bausá, and D. Jaque, An Introduction to the Optical Spectroscopy of Inorganic Solids (John Wiley and Sons, Ltd., 2005).

FIMMMWAVE: Waveguides solver (Photon Design, 34 Leopold Street, Oxford, OX41TW, U.K.).

B. M. Walsh, “Judd-Ofelt theory: principles and practices,” in Advances in Spectroscopy for Lasers and Sensing, B. Bartolo and O. Forte, eds. (Kluwer Academic Publishers, 2006), pp. 403–433.

Data Sheet, “Gallium lanthanum sulphide optical material—internal transmission,” ChG Southampton Ltd., University of Southampton, Highfield, Southampton, SO17 1BJ, U.K. (2010).

T. Schweizer, “Rare-earth-doped gallium lanthanum sulphide glasses for mid-infrared fibre lasers,” University of Southampton, Faculty of Engineering and Applied Science, Department of Electronics and Computer Science, Doctoral Thesis (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Laser configuration consists of a micro-disk with input pump waveguide and output signal waveguide. P is the pump power and S is the signal power at the positions indicated by the subscripts, κ2 is the power coupling coefficient between the bus waveguides and the disk, and the subscripts P and S stand for the pump and signal, respectively.

Fig. 2
Fig. 2

Erbium energy levels and ion-ion interaction parameters (Cij ). 800 nm pump source excites the ions from the ground state to 4I9/2. The excited ions decay to 4I11/2 to emit 4.5 µm signal light.

Fig. 3
Fig. 3

The micro-disk material cross section showing a CaF2 substrate, and erbium-doped GLS coating layer and disk. A CaF2 substrate was considered for its low absorption in the MIR regime. As moisture can be trapped in CaF2, a GLS coating layer was sandwiched between the disk and the substrate (dimensions not drawn to scale for clarity).

Fig. 4
Fig. 4

Steady state signal gain as a function of the pump and signal intensity for erbium doped GLS with concentration of 2.8 × 1020 cm−3.

Fig. 5
Fig. 5

Intensity distribution of the signal (S) and pump (P) modes with the total mode power normalized to 1W. Polarization indicated by the subscripts. The first number is the planar index while the second is the radial index.

Fig. 6
Fig. 6

Signal mode gain obtained by exciting several pump modes with different radial orders. The gain is computed as a function of the internal signal (Si ) and pump (Pi ) modes powers.

Fig. 7
Fig. 7

Pump power accumulation as a function of the power coupling coefficient: (a) the continuous line shows the basic case with the scattering losses included (Pump Q = 1.48 × 104) (b) the dashed line shows the case with no scattering losses taken into account (Pump Q = 4.85 × 106).

Fig. 8
Fig. 8

Output signal power as a function of the pump power and the signal coupling coefficient. Lasing is only possible with signal coupling smaller than 2 × 10−3. The peak output power is obtained at signal coupling of 4 × 10−4. (a) For the case of including scattering losses, pump Q = 1.48 × 104, signal Q = 1.53 × 106 and pump coupling coefficient = 0.25, a maximum slope efficiency of 1.26 × 10−4 with threshold of 0.5 mW is obtained. (b) For the case of excluding scattering losses, pump Q = 4.8 × 106, signal Q = 6 × 106 and pump coupling coefficient = 0.0025, a maximum efficiency of 0.025 with 0.02mW threshold can be achieved.

Tables (2)

Tables Icon

Table 2 Rate Equations Parameters of Erbium-Doped GLS System

Tables Icon

Table 1 Q factors and Equivalent Absorption Coefficients for the Fundamental Pump and Signal Modes

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

P 1 P i n = κ P 2 ( 1 a P 2 ( 1 κ P 2 ) ) 2 .
S o u t = κ S 2 S 2 .
P 4 = P 1 E x p ( l 1 l 4 α P M ( l ) . d l ) .
S 2 = S 1 E x p ( l 1 l 2 α S M ( l ) + g S M ( l ) . d l ) , S 1 = S 4 = S 3 E x p ( l 3 l 4 α S M ( l ) + g S M ( l ) . d l ) .
S 3 = S 2 ( 1 κ S 2 ) .
l 3 l 4 α S M ( l ) g S M ( l ) . d l + l 1 l 2 α S M ( l ) g S M ( l ) . d l = ln ( 1 κ S 2 ) .
d N 1 d t = C 22 N 2 2 C 14 N 1 N 4 + C 33 N 3 2 C 16 N 1 N 5 + C 24 N 2 N 4 + ( σ P e σ P a ) N 1 I P ω P + i = 2 5 a i 1 N i + W 2 N 2 , d N 2 d t = 2 C 22 N 2 2 + 2 C 14 N 1 N 4 + C 16 N 1 N 5 + C 44 N 4 2 + C 24 N 2 N 4 + i = 5 3 a i 2 N i a 21 N 2 + W 3 N 3 W 2 N 2 , d N 3 d t = 2 C 33 N 3 2 σ S a N 3 I S ω S + σ S e N 4 I S ω S + i = 4 5 a i 3 N i i = 1 2 a 3 i N 3 + W 4 N 4 W 3 N 3 , d N 4 d t = C 22 N 2 2 - C 14 N 1 N 4 + C 16 N 1 N 5 - 2 C 44 N 4 2 - C 24 N 2 N 4 + ( σ S a N 3 - σ S e N 4 ) I S ω S + ( σ P a N 1 - σ P e N 4 ) I P ω P + a 54 N 5 i = 1 3 a 4 i N 4 + W 5 N 5 - W 4 N 4 , d N 5 d t = C 33 N 3 2 C 16 N 1 N 5 + C 44 N 4 2 + C 24 N 2 N 4 i = 1 4 a 5 i N 5 W 5 N 5 , i = 1 5 N i = N T o t a l .
g S = σ S e N 4 σ S a N 3
α P , E r = σ P a N 1 σ P e N 4
α e q = 2 π n g Q λ .
g S M = D i s k A r e a g S ( I S ( x , y ) , I P ( x , y ) ) × f S ( x , y ) . d x d y .
α P , E r M = D i s k A r e a α P , E r ( I S ( x , y ) , I P ( x , y ) ) × f P ( x , y ) . d x d y .

Metrics