Abstract

In a triple semiconductor quantum well structure coupled by two external fields, we investigate the influence of atomic coherence induced by external fields and decay interference on the absorption and dispersion of a weak pulsed light, and slow light can be achieved in this system. Quantum well structure behaves as “artificial atom” and its advantage of easy integration makes it has some practical applications.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Phillips and H. Wang, “Electromagnetically induced transparency due to intervalence band coherence in a GaAs quantum well,” Opt. Lett. 28(10), 831–833 (2003).
    [CrossRef] [PubMed]
  2. T. Müller, W. Parz, G. Strasser, and K. Unterrainer, “Influence of carrier-carrier interaction on time-dependent intersubband absorption in a semiconductor quantum well,” Phys. Rev. B 70(15), 155324 (2004).
    [CrossRef]
  3. J. F. Dynes, M. D. Frogley, J. Rodger, and C. C. Phillips, “Optically mediated coherent population trapping in asymmetric semiconductor quantum wells,” Phys. Rev. B 72(8), 085323 (2005).
    [CrossRef]
  4. W. X. Yang, X. X. Yang, and R. K. Lee, “Carrier-envelope-phase dependent coherence in double quantum wells,” Opt. Express 17(18), 15402–15408 (2009).
    [CrossRef] [PubMed]
  5. C. R. Lee, Y. Li, F. K. Men, C. Pao, Y. Tsai, and J. Wang, “Model for an inversionless two-color laser,” Appl. Phys. Lett. 86(20), 201112 (2005).
    [CrossRef]
  6. H. Schmidt and R. J. Ram, “All-optical wavelength converter and switch based on electromagnetically induced transparency,” Appl. Phys. Lett. 76(22), 3173–3175 (2000).
    [CrossRef]
  7. B. S. Ham, “Potential applications of dark resonance to subpicosecond optical switches in hyper-terahertz repetition rates,” Appl. Phys. Lett. 78(22), 3382–3384 (2001).
    [CrossRef]
  8. J. M. Tang, J. Levy, and M. E. Flatté, “All-electrical control of single ion spins in a semiconductor,” Phys. Rev. Lett. 97(10), 106803 (2006).
    [CrossRef] [PubMed]
  9. X. Lü and J. Wu, “Three-mode entanglement via tunneling-induced interference in a coupled triple-semiconductor quantum-well structure,” Phys. Rev. A 82(1), 012323 (2010).
    [CrossRef]
  10. A. Fountoulakis, A. Terzis, and E. Paspalakis, “Coherence phenomena due to double-dark states in a system with decay interference,” Phys. Rev. A 73(3), 033811 (2006).
    [CrossRef]
  11. S. E. Economou, R. B. Liu, L. J. Sham, and D. G. Steel, “Unified theory of consequences of spontaneous emission in a Λ system,” Phys. Rev. B 71(19), 195327 (2005).
    [CrossRef]
  12. J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Phillips, “AC stark splitting and quantum interference with intersubband transitions in quantum wells,” Phys. Rev. Lett. 94(15), 157403 (2005).
    [CrossRef] [PubMed]
  13. H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoglu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70(25), 3455–3457 (1997).
    [CrossRef]
  14. E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Transparency induced via decay interference,” Phys. Rev. Lett. 82(10), 2079–2082 (1999).
    [CrossRef]
  15. P. R. Berman, “Spontaneously generated coherence and dark states,” Phys. Rev. A 72(3), 035801 (2005).
    [CrossRef]
  16. B. K. Ridley, Quantum Processes in Semiconductors (Clarendon Press, 1988).
  17. Y. Wu, “Two-color ultraslow optical solitons via four-wave mixing in cold-atom media,” Phys. Rev. A 71(5), 053820 (2005).
    [CrossRef]
  18. Y. Wu and X. X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71(5), 053806 (2005).
    [CrossRef]
  19. S. Yelin, V. A. Sautenkov, M. Kash, G. Welch, and M. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68(6), 063801 (2003).
    [CrossRef]
  20. M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
    [CrossRef]

2010 (1)

X. Lü and J. Wu, “Three-mode entanglement via tunneling-induced interference in a coupled triple-semiconductor quantum-well structure,” Phys. Rev. A 82(1), 012323 (2010).
[CrossRef]

2009 (1)

2006 (2)

A. Fountoulakis, A. Terzis, and E. Paspalakis, “Coherence phenomena due to double-dark states in a system with decay interference,” Phys. Rev. A 73(3), 033811 (2006).
[CrossRef]

J. M. Tang, J. Levy, and M. E. Flatté, “All-electrical control of single ion spins in a semiconductor,” Phys. Rev. Lett. 97(10), 106803 (2006).
[CrossRef] [PubMed]

2005 (7)

C. R. Lee, Y. Li, F. K. Men, C. Pao, Y. Tsai, and J. Wang, “Model for an inversionless two-color laser,” Appl. Phys. Lett. 86(20), 201112 (2005).
[CrossRef]

S. E. Economou, R. B. Liu, L. J. Sham, and D. G. Steel, “Unified theory of consequences of spontaneous emission in a Λ system,” Phys. Rev. B 71(19), 195327 (2005).
[CrossRef]

J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Phillips, “AC stark splitting and quantum interference with intersubband transitions in quantum wells,” Phys. Rev. Lett. 94(15), 157403 (2005).
[CrossRef] [PubMed]

P. R. Berman, “Spontaneously generated coherence and dark states,” Phys. Rev. A 72(3), 035801 (2005).
[CrossRef]

Y. Wu, “Two-color ultraslow optical solitons via four-wave mixing in cold-atom media,” Phys. Rev. A 71(5), 053820 (2005).
[CrossRef]

Y. Wu and X. X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71(5), 053806 (2005).
[CrossRef]

J. F. Dynes, M. D. Frogley, J. Rodger, and C. C. Phillips, “Optically mediated coherent population trapping in asymmetric semiconductor quantum wells,” Phys. Rev. B 72(8), 085323 (2005).
[CrossRef]

2004 (1)

T. Müller, W. Parz, G. Strasser, and K. Unterrainer, “Influence of carrier-carrier interaction on time-dependent intersubband absorption in a semiconductor quantum well,” Phys. Rev. B 70(15), 155324 (2004).
[CrossRef]

2003 (2)

M. Phillips and H. Wang, “Electromagnetically induced transparency due to intervalence band coherence in a GaAs quantum well,” Opt. Lett. 28(10), 831–833 (2003).
[CrossRef] [PubMed]

S. Yelin, V. A. Sautenkov, M. Kash, G. Welch, and M. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68(6), 063801 (2003).
[CrossRef]

2001 (1)

B. S. Ham, “Potential applications of dark resonance to subpicosecond optical switches in hyper-terahertz repetition rates,” Appl. Phys. Lett. 78(22), 3382–3384 (2001).
[CrossRef]

2000 (1)

H. Schmidt and R. J. Ram, “All-optical wavelength converter and switch based on electromagnetically induced transparency,” Appl. Phys. Lett. 76(22), 3173–3175 (2000).
[CrossRef]

1999 (2)

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
[CrossRef]

E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Transparency induced via decay interference,” Phys. Rev. Lett. 82(10), 2079–2082 (1999).
[CrossRef]

1997 (1)

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoglu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70(25), 3455–3457 (1997).
[CrossRef]

Beck, M.

J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Phillips, “AC stark splitting and quantum interference with intersubband transitions in quantum wells,” Phys. Rev. Lett. 94(15), 157403 (2005).
[CrossRef] [PubMed]

Berman, P. R.

P. R. Berman, “Spontaneously generated coherence and dark states,” Phys. Rev. A 72(3), 035801 (2005).
[CrossRef]

Campman, K. L.

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoglu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70(25), 3455–3457 (1997).
[CrossRef]

Dynes, J. F.

J. F. Dynes, M. D. Frogley, J. Rodger, and C. C. Phillips, “Optically mediated coherent population trapping in asymmetric semiconductor quantum wells,” Phys. Rev. B 72(8), 085323 (2005).
[CrossRef]

J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Phillips, “AC stark splitting and quantum interference with intersubband transitions in quantum wells,” Phys. Rev. Lett. 94(15), 157403 (2005).
[CrossRef] [PubMed]

Economou, S. E.

S. E. Economou, R. B. Liu, L. J. Sham, and D. G. Steel, “Unified theory of consequences of spontaneous emission in a Λ system,” Phys. Rev. B 71(19), 195327 (2005).
[CrossRef]

Faist, J.

J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Phillips, “AC stark splitting and quantum interference with intersubband transitions in quantum wells,” Phys. Rev. Lett. 94(15), 157403 (2005).
[CrossRef] [PubMed]

Flatté, M. E.

J. M. Tang, J. Levy, and M. E. Flatté, “All-electrical control of single ion spins in a semiconductor,” Phys. Rev. Lett. 97(10), 106803 (2006).
[CrossRef] [PubMed]

Fleischhauer, M.

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
[CrossRef]

Fountoulakis, A.

A. Fountoulakis, A. Terzis, and E. Paspalakis, “Coherence phenomena due to double-dark states in a system with decay interference,” Phys. Rev. A 73(3), 033811 (2006).
[CrossRef]

Frogley, M. D.

J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Phillips, “AC stark splitting and quantum interference with intersubband transitions in quantum wells,” Phys. Rev. Lett. 94(15), 157403 (2005).
[CrossRef] [PubMed]

J. F. Dynes, M. D. Frogley, J. Rodger, and C. C. Phillips, “Optically mediated coherent population trapping in asymmetric semiconductor quantum wells,” Phys. Rev. B 72(8), 085323 (2005).
[CrossRef]

Gossard, A. C.

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoglu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70(25), 3455–3457 (1997).
[CrossRef]

Ham, B. S.

B. S. Ham, “Potential applications of dark resonance to subpicosecond optical switches in hyper-terahertz repetition rates,” Appl. Phys. Lett. 78(22), 3382–3384 (2001).
[CrossRef]

Imamoglu, A.

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoglu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70(25), 3455–3457 (1997).
[CrossRef]

Kash, M.

S. Yelin, V. A. Sautenkov, M. Kash, G. Welch, and M. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68(6), 063801 (2003).
[CrossRef]

Knight, P. L.

E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Transparency induced via decay interference,” Phys. Rev. Lett. 82(10), 2079–2082 (1999).
[CrossRef]

Kylstra, N. J.

E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Transparency induced via decay interference,” Phys. Rev. Lett. 82(10), 2079–2082 (1999).
[CrossRef]

Lee, C. R.

C. R. Lee, Y. Li, F. K. Men, C. Pao, Y. Tsai, and J. Wang, “Model for an inversionless two-color laser,” Appl. Phys. Lett. 86(20), 201112 (2005).
[CrossRef]

Lee, R. K.

Levy, J.

J. M. Tang, J. Levy, and M. E. Flatté, “All-electrical control of single ion spins in a semiconductor,” Phys. Rev. Lett. 97(10), 106803 (2006).
[CrossRef] [PubMed]

Li, Y.

C. R. Lee, Y. Li, F. K. Men, C. Pao, Y. Tsai, and J. Wang, “Model for an inversionless two-color laser,” Appl. Phys. Lett. 86(20), 201112 (2005).
[CrossRef]

Liu, R. B.

S. E. Economou, R. B. Liu, L. J. Sham, and D. G. Steel, “Unified theory of consequences of spontaneous emission in a Λ system,” Phys. Rev. B 71(19), 195327 (2005).
[CrossRef]

Lü, X.

X. Lü and J. Wu, “Three-mode entanglement via tunneling-induced interference in a coupled triple-semiconductor quantum-well structure,” Phys. Rev. A 82(1), 012323 (2010).
[CrossRef]

Lukin, M.

S. Yelin, V. A. Sautenkov, M. Kash, G. Welch, and M. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68(6), 063801 (2003).
[CrossRef]

Lukin, M. D.

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
[CrossRef]

Men, F. K.

C. R. Lee, Y. Li, F. K. Men, C. Pao, Y. Tsai, and J. Wang, “Model for an inversionless two-color laser,” Appl. Phys. Lett. 86(20), 201112 (2005).
[CrossRef]

Müller, T.

T. Müller, W. Parz, G. Strasser, and K. Unterrainer, “Influence of carrier-carrier interaction on time-dependent intersubband absorption in a semiconductor quantum well,” Phys. Rev. B 70(15), 155324 (2004).
[CrossRef]

Pao, C.

C. R. Lee, Y. Li, F. K. Men, C. Pao, Y. Tsai, and J. Wang, “Model for an inversionless two-color laser,” Appl. Phys. Lett. 86(20), 201112 (2005).
[CrossRef]

Parz, W.

T. Müller, W. Parz, G. Strasser, and K. Unterrainer, “Influence of carrier-carrier interaction on time-dependent intersubband absorption in a semiconductor quantum well,” Phys. Rev. B 70(15), 155324 (2004).
[CrossRef]

Paspalakis, E.

A. Fountoulakis, A. Terzis, and E. Paspalakis, “Coherence phenomena due to double-dark states in a system with decay interference,” Phys. Rev. A 73(3), 033811 (2006).
[CrossRef]

E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Transparency induced via decay interference,” Phys. Rev. Lett. 82(10), 2079–2082 (1999).
[CrossRef]

Phillips, C. C.

J. F. Dynes, M. D. Frogley, J. Rodger, and C. C. Phillips, “Optically mediated coherent population trapping in asymmetric semiconductor quantum wells,” Phys. Rev. B 72(8), 085323 (2005).
[CrossRef]

J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Phillips, “AC stark splitting and quantum interference with intersubband transitions in quantum wells,” Phys. Rev. Lett. 94(15), 157403 (2005).
[CrossRef] [PubMed]

Phillips, M.

Ram, R. J.

H. Schmidt and R. J. Ram, “All-optical wavelength converter and switch based on electromagnetically induced transparency,” Appl. Phys. Lett. 76(22), 3173–3175 (2000).
[CrossRef]

Rodger, J.

J. F. Dynes, M. D. Frogley, J. Rodger, and C. C. Phillips, “Optically mediated coherent population trapping in asymmetric semiconductor quantum wells,” Phys. Rev. B 72(8), 085323 (2005).
[CrossRef]

Sautenkov, V. A.

S. Yelin, V. A. Sautenkov, M. Kash, G. Welch, and M. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68(6), 063801 (2003).
[CrossRef]

Schmidt, H.

H. Schmidt and R. J. Ram, “All-optical wavelength converter and switch based on electromagnetically induced transparency,” Appl. Phys. Lett. 76(22), 3173–3175 (2000).
[CrossRef]

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoglu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70(25), 3455–3457 (1997).
[CrossRef]

Scully, M. O.

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
[CrossRef]

Sham, L. J.

S. E. Economou, R. B. Liu, L. J. Sham, and D. G. Steel, “Unified theory of consequences of spontaneous emission in a Λ system,” Phys. Rev. B 71(19), 195327 (2005).
[CrossRef]

Steel, D. G.

S. E. Economou, R. B. Liu, L. J. Sham, and D. G. Steel, “Unified theory of consequences of spontaneous emission in a Λ system,” Phys. Rev. B 71(19), 195327 (2005).
[CrossRef]

Strasser, G.

T. Müller, W. Parz, G. Strasser, and K. Unterrainer, “Influence of carrier-carrier interaction on time-dependent intersubband absorption in a semiconductor quantum well,” Phys. Rev. B 70(15), 155324 (2004).
[CrossRef]

Tang, J. M.

J. M. Tang, J. Levy, and M. E. Flatté, “All-electrical control of single ion spins in a semiconductor,” Phys. Rev. Lett. 97(10), 106803 (2006).
[CrossRef] [PubMed]

Terzis, A.

A. Fountoulakis, A. Terzis, and E. Paspalakis, “Coherence phenomena due to double-dark states in a system with decay interference,” Phys. Rev. A 73(3), 033811 (2006).
[CrossRef]

Tsai, Y.

C. R. Lee, Y. Li, F. K. Men, C. Pao, Y. Tsai, and J. Wang, “Model for an inversionless two-color laser,” Appl. Phys. Lett. 86(20), 201112 (2005).
[CrossRef]

Unterrainer, K.

T. Müller, W. Parz, G. Strasser, and K. Unterrainer, “Influence of carrier-carrier interaction on time-dependent intersubband absorption in a semiconductor quantum well,” Phys. Rev. B 70(15), 155324 (2004).
[CrossRef]

Wang, H.

Wang, J.

C. R. Lee, Y. Li, F. K. Men, C. Pao, Y. Tsai, and J. Wang, “Model for an inversionless two-color laser,” Appl. Phys. Lett. 86(20), 201112 (2005).
[CrossRef]

Welch, G.

S. Yelin, V. A. Sautenkov, M. Kash, G. Welch, and M. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68(6), 063801 (2003).
[CrossRef]

Wu, J.

X. Lü and J. Wu, “Three-mode entanglement via tunneling-induced interference in a coupled triple-semiconductor quantum-well structure,” Phys. Rev. A 82(1), 012323 (2010).
[CrossRef]

Wu, Y.

Y. Wu, “Two-color ultraslow optical solitons via four-wave mixing in cold-atom media,” Phys. Rev. A 71(5), 053820 (2005).
[CrossRef]

Y. Wu and X. X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71(5), 053806 (2005).
[CrossRef]

Yang, W. X.

Yang, X. X.

W. X. Yang, X. X. Yang, and R. K. Lee, “Carrier-envelope-phase dependent coherence in double quantum wells,” Opt. Express 17(18), 15402–15408 (2009).
[CrossRef] [PubMed]

Y. Wu and X. X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71(5), 053806 (2005).
[CrossRef]

Yelin, S.

S. Yelin, V. A. Sautenkov, M. Kash, G. Welch, and M. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68(6), 063801 (2003).
[CrossRef]

Yelin, S. F.

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
[CrossRef]

Appl. Phys. Lett. (4)

C. R. Lee, Y. Li, F. K. Men, C. Pao, Y. Tsai, and J. Wang, “Model for an inversionless two-color laser,” Appl. Phys. Lett. 86(20), 201112 (2005).
[CrossRef]

H. Schmidt and R. J. Ram, “All-optical wavelength converter and switch based on electromagnetically induced transparency,” Appl. Phys. Lett. 76(22), 3173–3175 (2000).
[CrossRef]

B. S. Ham, “Potential applications of dark resonance to subpicosecond optical switches in hyper-terahertz repetition rates,” Appl. Phys. Lett. 78(22), 3382–3384 (2001).
[CrossRef]

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoglu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70(25), 3455–3457 (1997).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (7)

P. R. Berman, “Spontaneously generated coherence and dark states,” Phys. Rev. A 72(3), 035801 (2005).
[CrossRef]

Y. Wu, “Two-color ultraslow optical solitons via four-wave mixing in cold-atom media,” Phys. Rev. A 71(5), 053820 (2005).
[CrossRef]

Y. Wu and X. X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71(5), 053806 (2005).
[CrossRef]

S. Yelin, V. A. Sautenkov, M. Kash, G. Welch, and M. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68(6), 063801 (2003).
[CrossRef]

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
[CrossRef]

X. Lü and J. Wu, “Three-mode entanglement via tunneling-induced interference in a coupled triple-semiconductor quantum-well structure,” Phys. Rev. A 82(1), 012323 (2010).
[CrossRef]

A. Fountoulakis, A. Terzis, and E. Paspalakis, “Coherence phenomena due to double-dark states in a system with decay interference,” Phys. Rev. A 73(3), 033811 (2006).
[CrossRef]

Phys. Rev. B (3)

S. E. Economou, R. B. Liu, L. J. Sham, and D. G. Steel, “Unified theory of consequences of spontaneous emission in a Λ system,” Phys. Rev. B 71(19), 195327 (2005).
[CrossRef]

T. Müller, W. Parz, G. Strasser, and K. Unterrainer, “Influence of carrier-carrier interaction on time-dependent intersubband absorption in a semiconductor quantum well,” Phys. Rev. B 70(15), 155324 (2004).
[CrossRef]

J. F. Dynes, M. D. Frogley, J. Rodger, and C. C. Phillips, “Optically mediated coherent population trapping in asymmetric semiconductor quantum wells,” Phys. Rev. B 72(8), 085323 (2005).
[CrossRef]

Phys. Rev. Lett. (3)

E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Transparency induced via decay interference,” Phys. Rev. Lett. 82(10), 2079–2082 (1999).
[CrossRef]

J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Phillips, “AC stark splitting and quantum interference with intersubband transitions in quantum wells,” Phys. Rev. Lett. 94(15), 157403 (2005).
[CrossRef] [PubMed]

J. M. Tang, J. Levy, and M. E. Flatté, “All-electrical control of single ion spins in a semiconductor,” Phys. Rev. Lett. 97(10), 106803 (2006).
[CrossRef] [PubMed]

Other (1)

B. K. Ridley, Quantum Processes in Semiconductors (Clarendon Press, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Band diagram of a triple semiconductor quantum well.

Fig. 2
Fig. 2

Curves of absorption (dashed line) and dispersion (solid line) of pulsed light. Physical parameters: κ = 0.5 γ 1 , γ 2 = γ 1 , γ 3 = 1.5 γ 1 , Ω c = 6 γ 1 , Δ c = Δ b = 0 . For (a), decay interference p = 0 , Ω b = 6 γ 1 is for black line, and Ω b = 2 γ 1 is for red line; For (b), p = 0.96 and Ω b = 2 γ 1 .

Fig. 3
Fig. 3

Curves of absorption (dashed line) and dispersion (solid line) of pulsed light. κ = 0.5 γ 1 , γ 2 = γ 1 , γ 3 = 1.5 γ 1 , Ω c = Ω b = 6 γ 1 , p = 0 . For (a), Δ b = 2 γ 1 = Δ c ; For (b), Δ b = 4 γ 1 = Δ c .

Fig. 4
Fig. 4

Curves of absorption (dashed line) and dispersion (solid line) of pulsed light. The parameters are same as Fig. 3(b) but with p = 0.6 for (a) and p = 0.96 for (b).

Fig. 5
Fig. 5

The plot of the ratio vg/c as a function of variable Δ p / γ 1 . p = 0 for dashed line, p = 0.96 for solid line, and other parameters are shown in text.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

( C ˙ 0 ( t ) C ˙ 1 ( t ) C ˙ 2 ( t ) C ˙ 3 ( t ) ) T = i V I ( C 0 ( t ) C 1 ( t ) C 2 ( t ) C 3 ( t ) ) T ,
V I = ( 0 Ω p * 0 0 Ω p Δ p i γ 1 / 2 Ω c * Ω b * 0 Ω c Δ c Δ p i γ 2 / 2 i p 23 γ 2 γ 3 / 2 0 Ω b i p 23 γ 2 γ 3 / 2 Δ b Δ p i γ 3 / 2 ) ,
Ω p z + 1 c Ω p t = i κ C 1 C 0 * ,
α 1 = ( p 23 2 γ 2 γ 3 / 4 ( Δ p + Δ b + i ω + i γ 3 / 2 ) ( Δ p + Δ c + i ω + i γ 2 / 2 ) ) Λ p ( ( Δ p i ω i γ 1 / 2 ) ( p 23 2 γ 2 γ 3 / 4 ( Δ p + Δ b + i ω + i γ 3 / 2 ) ( Δ p + Δ c + i ω + i γ 2 / 2 ) ) | Ω c | 2 ( Δ p + Δ b + i ω + i γ 3 / 2 ) + ( Ω b * Ω c Ω c * Ω b ) p 23 γ 2 γ 3 / 2 i | Ω b | 2 ( Δ p + Δ c + i ω + i γ 2 / 2 ) ) ,
Λ p z i ω c Λ p = i κ α 1 .
K ( ω ) = K ( 0 ) + K ( 0 ) ω + K ( 0 ) ω 2 / 2 + O ( ω 3 ) ,

Metrics