Abstract

In the present work, a multiwavelength fiber laser based in the combination of a double-random mirror and a suspended-core Sagnac interferometer is presented. The double-random mirror acts by itself as a random laser, presenting a 30dB SNR, as result of multiple Rayleigh scattering events produced in the dispersion compensating fibers by the Raman amplification. The suspended-core fiber Sagnac interferometer provides the multi peak channeled spectrum, which can be tuned by changing the length of the fiber. The result of this combination is a stable multiwavelength peak laser with a minimum of ~25dB SNR, which is highly sensitive to polarization induced variations.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
    [CrossRef]
  2. H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. Math. Gen. 38(49), 10497–10535 (2005).
    [CrossRef]
  3. A. A. Fotiadi, “Random lasers - an incoherent fibre laser,” Nat. Photonics 4(4), 204–205 (2010).
    [CrossRef]
  4. A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35(7), 1100–1102 (2010).
    [CrossRef] [PubMed]
  5. A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36(2), 130–132 (2011).
    [CrossRef] [PubMed]
  6. D. H. Kim and J. U. Kang, “Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity,” Opt. Express 12(19), 4490–4495 (2004).
    [CrossRef] [PubMed]
  7. C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004).
    [CrossRef]
  8. D. Chen, S. Qin, L. Shen, H. Chi, and S. He, “An all-fiber multi-wavelength Raman laser based on a PCF Sagnac loop filter,” Microw. Opt. Technol. Lett. 48(12), 2416–2418 (2006).
    [CrossRef]
  9. A. M. R. Pinto, O. Frazao, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B 99(3), 391–395 (2010).
    [CrossRef]
  10. O. Frazão, C. Correia, J. L. Santos, and J. M. Baptista, “Raman fibre Bragg grating laser sensor with cooperative Rayleigh scattering in strain-temperature measurement,” Meas. Sci. Technol. 20(4), 045203 (2009).
    [CrossRef]
  11. A. M. R. Pinto, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Temperature Raman laser sensor based in a suspended-core Fabry-Perot cavity and cooperative Rayleigh scattering,” 21st International Conference on Optical Fiber Sensors, Proc. SPIE 7753, 77531A (2011).
  12. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
    [CrossRef]
  13. C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems, Optics and Photonics (Elsevier Academic Press, 2005).
  14. O. Frazão, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors (Basel Switzerland) 7(11), 2970–2983 (2007).
    [CrossRef]
  15. A. M. R. Pinto, O. Frazao, J. L. Santos, and M. Lopez-Amo, “Multiwavelength Raman fiber lasers using Hi-Bi photonic crystal fiber loop mirrors combined with random cavities,” J. Lightwave Technol. 29(10), 1482–1488 (2011).
    [CrossRef]
  16. A. R. Chraplyvy, “Limitations on lightwave communications imposed by optival-fiber nonlinearities,” J. Lightwave Technol. 8(10), 1548–1557 (1990).
    [CrossRef]
  17. M. Fernández-Vallejo, S. Diaz, R. A. Perez-Herrera, R. Unzu, M. A. Quintela, J. M. López-Higuera, and M. López-Amo, “Comparison of the stability of ring resonator structures for multiwavelength fiber lasers using Raman or Er-doped fiber amplification,” IEEE J. Quantum Electron. 45(12), 1551–1557 (2009).
    [CrossRef]
  18. A. M. R. Pinto, O. Frazão, J. L. Santos, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Interrogation of a suspended-core Fabry–Perot temperature sensor through a dual wavelength Raman fiber laser,” J. Lightwave Technol. 28, 3149–3155 (2010).

2011 (2)

2010 (5)

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

A. M. R. Pinto, O. Frazão, J. L. Santos, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Interrogation of a suspended-core Fabry–Perot temperature sensor through a dual wavelength Raman fiber laser,” J. Lightwave Technol. 28, 3149–3155 (2010).

A. M. R. Pinto, O. Frazao, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B 99(3), 391–395 (2010).
[CrossRef]

A. A. Fotiadi, “Random lasers - an incoherent fibre laser,” Nat. Photonics 4(4), 204–205 (2010).
[CrossRef]

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35(7), 1100–1102 (2010).
[CrossRef] [PubMed]

2009 (2)

O. Frazão, C. Correia, J. L. Santos, and J. M. Baptista, “Raman fibre Bragg grating laser sensor with cooperative Rayleigh scattering in strain-temperature measurement,” Meas. Sci. Technol. 20(4), 045203 (2009).
[CrossRef]

M. Fernández-Vallejo, S. Diaz, R. A. Perez-Herrera, R. Unzu, M. A. Quintela, J. M. López-Higuera, and M. López-Amo, “Comparison of the stability of ring resonator structures for multiwavelength fiber lasers using Raman or Er-doped fiber amplification,” IEEE J. Quantum Electron. 45(12), 1551–1557 (2009).
[CrossRef]

2008 (1)

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[CrossRef]

2007 (1)

O. Frazão, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors (Basel Switzerland) 7(11), 2970–2983 (2007).
[CrossRef]

2006 (1)

D. Chen, S. Qin, L. Shen, H. Chi, and S. He, “An all-fiber multi-wavelength Raman laser based on a PCF Sagnac loop filter,” Microw. Opt. Technol. Lett. 48(12), 2416–2418 (2006).
[CrossRef]

2005 (1)

H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. Math. Gen. 38(49), 10497–10535 (2005).
[CrossRef]

2004 (2)

D. H. Kim and J. U. Kang, “Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity,” Opt. Express 12(19), 4490–4495 (2004).
[CrossRef] [PubMed]

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004).
[CrossRef]

1990 (1)

A. R. Chraplyvy, “Limitations on lightwave communications imposed by optival-fiber nonlinearities,” J. Lightwave Technol. 8(10), 1548–1557 (1990).
[CrossRef]

Alcon-Camas, M.

Ania-Castanon, J. D.

Ania-Castañon, J. D.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

Ania-Castañón, J. D.

Babin, S. A.

Baptista, J. M.

O. Frazão, C. Correia, J. L. Santos, and J. M. Baptista, “Raman fibre Bragg grating laser sensor with cooperative Rayleigh scattering in strain-temperature measurement,” Meas. Sci. Technol. 20(4), 045203 (2009).
[CrossRef]

O. Frazão, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors (Basel Switzerland) 7(11), 2970–2983 (2007).
[CrossRef]

Cao, H.

H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. Math. Gen. 38(49), 10497–10535 (2005).
[CrossRef]

Chen, D.

D. Chen, S. Qin, L. Shen, H. Chi, and S. He, “An all-fiber multi-wavelength Raman laser based on a PCF Sagnac loop filter,” Microw. Opt. Technol. Lett. 48(12), 2416–2418 (2006).
[CrossRef]

Chi, H.

D. Chen, S. Qin, L. Shen, H. Chi, and S. He, “An all-fiber multi-wavelength Raman laser based on a PCF Sagnac loop filter,” Microw. Opt. Technol. Lett. 48(12), 2416–2418 (2006).
[CrossRef]

Chraplyvy, A. R.

A. R. Chraplyvy, “Limitations on lightwave communications imposed by optival-fiber nonlinearities,” J. Lightwave Technol. 8(10), 1548–1557 (1990).
[CrossRef]

Churkin, D. V.

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36(2), 130–132 (2011).
[CrossRef] [PubMed]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

Correia, C.

O. Frazão, C. Correia, J. L. Santos, and J. M. Baptista, “Raman fibre Bragg grating laser sensor with cooperative Rayleigh scattering in strain-temperature measurement,” Meas. Sci. Technol. 20(4), 045203 (2009).
[CrossRef]

Demokan, M. S.

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004).
[CrossRef]

Diaz, S.

M. Fernández-Vallejo, S. Diaz, R. A. Perez-Herrera, R. Unzu, M. A. Quintela, J. M. López-Higuera, and M. López-Amo, “Comparison of the stability of ring resonator structures for multiwavelength fiber lasers using Raman or Er-doped fiber amplification,” IEEE J. Quantum Electron. 45(12), 1551–1557 (2009).
[CrossRef]

El-Taher, A. E.

Fernández-Vallejo, M.

M. Fernández-Vallejo, S. Diaz, R. A. Perez-Herrera, R. Unzu, M. A. Quintela, J. M. López-Higuera, and M. López-Amo, “Comparison of the stability of ring resonator structures for multiwavelength fiber lasers using Raman or Er-doped fiber amplification,” IEEE J. Quantum Electron. 45(12), 1551–1557 (2009).
[CrossRef]

Fotiadi, A. A.

A. A. Fotiadi, “Random lasers - an incoherent fibre laser,” Nat. Photonics 4(4), 204–205 (2010).
[CrossRef]

Frazao, O.

A. M. R. Pinto, O. Frazao, J. L. Santos, and M. Lopez-Amo, “Multiwavelength Raman fiber lasers using Hi-Bi photonic crystal fiber loop mirrors combined with random cavities,” J. Lightwave Technol. 29(10), 1482–1488 (2011).
[CrossRef]

A. M. R. Pinto, O. Frazao, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B 99(3), 391–395 (2010).
[CrossRef]

Frazão, O.

A. M. R. Pinto, O. Frazão, J. L. Santos, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Interrogation of a suspended-core Fabry–Perot temperature sensor through a dual wavelength Raman fiber laser,” J. Lightwave Technol. 28, 3149–3155 (2010).

O. Frazão, C. Correia, J. L. Santos, and J. M. Baptista, “Raman fibre Bragg grating laser sensor with cooperative Rayleigh scattering in strain-temperature measurement,” Meas. Sci. Technol. 20(4), 045203 (2009).
[CrossRef]

O. Frazão, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors (Basel Switzerland) 7(11), 2970–2983 (2007).
[CrossRef]

Harper, P.

He, S.

D. Chen, S. Qin, L. Shen, H. Chi, and S. He, “An all-fiber multi-wavelength Raman laser based on a PCF Sagnac loop filter,” Microw. Opt. Technol. Lett. 48(12), 2416–2418 (2006).
[CrossRef]

Jin, W.

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004).
[CrossRef]

Kablukov, S. I.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

Kang, J. U.

Karalekas, V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

Kim, D. H.

Kobelke, J.

Lopez-Amo, M.

López-Amo, M.

M. Fernández-Vallejo, S. Diaz, R. A. Perez-Herrera, R. Unzu, M. A. Quintela, J. M. López-Higuera, and M. López-Amo, “Comparison of the stability of ring resonator structures for multiwavelength fiber lasers using Raman or Er-doped fiber amplification,” IEEE J. Quantum Electron. 45(12), 1551–1557 (2009).
[CrossRef]

López-Higuera, J. M.

M. Fernández-Vallejo, S. Diaz, R. A. Perez-Herrera, R. Unzu, M. A. Quintela, J. M. López-Higuera, and M. López-Amo, “Comparison of the stability of ring resonator structures for multiwavelength fiber lasers using Raman or Er-doped fiber amplification,” IEEE J. Quantum Electron. 45(12), 1551–1557 (2009).
[CrossRef]

Lu, C.

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004).
[CrossRef]

Perez-Herrera, R. A.

M. Fernández-Vallejo, S. Diaz, R. A. Perez-Herrera, R. Unzu, M. A. Quintela, J. M. López-Higuera, and M. López-Amo, “Comparison of the stability of ring resonator structures for multiwavelength fiber lasers using Raman or Er-doped fiber amplification,” IEEE J. Quantum Electron. 45(12), 1551–1557 (2009).
[CrossRef]

Pinto, A. M. R.

Podivilov, E. V.

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36(2), 130–132 (2011).
[CrossRef] [PubMed]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

Qin, S.

D. Chen, S. Qin, L. Shen, H. Chi, and S. He, “An all-fiber multi-wavelength Raman laser based on a PCF Sagnac loop filter,” Microw. Opt. Technol. Lett. 48(12), 2416–2418 (2006).
[CrossRef]

Quintela, M. A.

M. Fernández-Vallejo, S. Diaz, R. A. Perez-Herrera, R. Unzu, M. A. Quintela, J. M. López-Higuera, and M. López-Amo, “Comparison of the stability of ring resonator structures for multiwavelength fiber lasers using Raman or Er-doped fiber amplification,” IEEE J. Quantum Electron. 45(12), 1551–1557 (2009).
[CrossRef]

Santos, J. L.

A. M. R. Pinto, O. Frazao, J. L. Santos, and M. Lopez-Amo, “Multiwavelength Raman fiber lasers using Hi-Bi photonic crystal fiber loop mirrors combined with random cavities,” J. Lightwave Technol. 29(10), 1482–1488 (2011).
[CrossRef]

A. M. R. Pinto, O. Frazão, J. L. Santos, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Interrogation of a suspended-core Fabry–Perot temperature sensor through a dual wavelength Raman fiber laser,” J. Lightwave Technol. 28, 3149–3155 (2010).

A. M. R. Pinto, O. Frazao, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B 99(3), 391–395 (2010).
[CrossRef]

O. Frazão, C. Correia, J. L. Santos, and J. M. Baptista, “Raman fibre Bragg grating laser sensor with cooperative Rayleigh scattering in strain-temperature measurement,” Meas. Sci. Technol. 20(4), 045203 (2009).
[CrossRef]

O. Frazão, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors (Basel Switzerland) 7(11), 2970–2983 (2007).
[CrossRef]

Schuster, K.

Shen, L.

D. Chen, S. Qin, L. Shen, H. Chi, and S. He, “An all-fiber multi-wavelength Raman laser based on a PCF Sagnac loop filter,” Microw. Opt. Technol. Lett. 48(12), 2416–2418 (2006).
[CrossRef]

Turitsyn, S. K.

Unzu, R.

M. Fernández-Vallejo, S. Diaz, R. A. Perez-Herrera, R. Unzu, M. A. Quintela, J. M. López-Higuera, and M. López-Amo, “Comparison of the stability of ring resonator structures for multiwavelength fiber lasers using Raman or Er-doped fiber amplification,” IEEE J. Quantum Electron. 45(12), 1551–1557 (2009).
[CrossRef]

Wiersma, D. S.

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[CrossRef]

Yang, X.

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004).
[CrossRef]

Zhao, C.-L.

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004).
[CrossRef]

Appl. Phys. B (1)

A. M. R. Pinto, O. Frazao, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B 99(3), 391–395 (2010).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Fernández-Vallejo, S. Diaz, R. A. Perez-Herrera, R. Unzu, M. A. Quintela, J. M. López-Higuera, and M. López-Amo, “Comparison of the stability of ring resonator structures for multiwavelength fiber lasers using Raman or Er-doped fiber amplification,” IEEE J. Quantum Electron. 45(12), 1551–1557 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004).
[CrossRef]

J. Lightwave Technol. (3)

J. Phys. Math. Gen. (1)

H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. Math. Gen. 38(49), 10497–10535 (2005).
[CrossRef]

Meas. Sci. Technol. (1)

O. Frazão, C. Correia, J. L. Santos, and J. M. Baptista, “Raman fibre Bragg grating laser sensor with cooperative Rayleigh scattering in strain-temperature measurement,” Meas. Sci. Technol. 20(4), 045203 (2009).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

D. Chen, S. Qin, L. Shen, H. Chi, and S. He, “An all-fiber multi-wavelength Raman laser based on a PCF Sagnac loop filter,” Microw. Opt. Technol. Lett. 48(12), 2416–2418 (2006).
[CrossRef]

Nat. Photonics (2)

A. A. Fotiadi, “Random lasers - an incoherent fibre laser,” Nat. Photonics 4(4), 204–205 (2010).
[CrossRef]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

Nat. Phys. (1)

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Sensors (Basel Switzerland) (1)

O. Frazão, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors (Basel Switzerland) 7(11), 2970–2983 (2007).
[CrossRef]

Other (2)

C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems, Optics and Photonics (Elsevier Academic Press, 2005).

A. M. R. Pinto, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Temperature Raman laser sensor based in a suspended-core Fabry-Perot cavity and cooperative Rayleigh scattering,” 21st International Conference on Optical Fiber Sensors, Proc. SPIE 7753, 77531A (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental set up for the proposed Raman fiber laser.

Fig. 2
Fig. 2

Double-random mirror induced laser output signal for a pump power of 1.4W.

Fig. 3
Fig. 3

Transmission signal of the Sagnac interferometer used in the fiber laser.

Fig. 4
Fig. 4

Output spectrum of the proposed fiber laser for a pump power of 1.4W.

Fig. 5
Fig. 5

Polarization dependence of the output spectrum of the proposed fiber laser, for a pump power of 1.4W.

Fig. 6
Fig. 6

Output spectrum of the proposed fiber laser for two different pump powers.

Fig. 7
Fig. 7

Fiber laser’s output power vs pump power.

Fig. 8
Fig. 8

Fiber laser’s isolated peak power fluctuations.

Fig. 9
Fig. 9

Schematics sketch of the bending plates used for displacement testing in the multiwavelength fiber laser.

Fig. 10
Fig. 10

Fiber laser’s preliminary results for the output power variations with displacement. The dots represent the experimental results and dashed line the linear regression.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T = [ sin β L λ cos ( θ 1 + θ 2 ) ] 2
Δ λ = λ 2 β L

Metrics