Abstract

We propose here a novel and stable method for fabricating spherical micromirror by bonding a flat freestanding single-crystal-silicon (SCS) membrane with a fulcrum on a glass substrate. Smooth convex spherical surface is achieved inside the fulcrum by the bending moment generated in the circumference of the SCS membrane. The surface profiles fit well with parabolic curves within 36nm RMS error indicating a good optical performance. By modifying the diameter of the fulcrum, we also demonstrate that it is possible to fabricate micromirrors with a wide range of focal length (0.4mm-1.6mm). The fabricated micromirrors are also used as the mold for replication of micro polymeric lenses. The surface profiles of the micromirrors are transferred to the polymeric replica with a high accuracy.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. P. Herzig, Micro-optics (Taylor&Francis, 1997).
  2. S. Audran, B. Faure, B. Mortini, J. Regolini, G. Schlatter, and G. Hadziioannou, “Study of mechanisms involved in photoresist microlens formation,” Microelectron. Eng. 83(4-9), 1087–1090 (2006).
    [CrossRef]
  3. G. Wang, S. Wang, and C.-H. Chin, “Fabrication and molding of gray-scale mask based aspheric refraction micro-lens array,” JSME Int. J., Ser. C 46(4), 1598–1603 (2003).
    [CrossRef]
  4. K. Totsu and M. Esashi, “Gray-scale photolithography using maskless exposure system,” J. Vac. Sci. Technol. B 23(4), 1487–1490 (2005).
    [CrossRef]
  5. T.-W. Lin, C.-F. Chen, J.-J. Yang, and Y.-S. Liao, “A dual-directional light-control film with a high-sag and high-asymmetrical-shape microlens array fabricated by a UV imprinting process,” J. Micromech. Microeng. 18(9), 095029 (2008).
    [CrossRef]
  6. Y. Kanamori, J. Sato, T. Shimano, S. Nakamura, and K. Hane, “Polymer microstructure generated by laser stereo-lithography and its transfer to silicon substrate using reactive ion etching,” Microsyst. Technol. 13(8-10), 1411–1416 (2007).
    [CrossRef]
  7. S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, “Refractive Microlens Fabrication by Ink-Jet Process,” J. Sol-Gel Sci. Technol. 13(1/3), 177–182 (1998).
    [CrossRef]
  8. C.-T. Chen, Z.-F. Tseng, C.-L. Chiu, C.-Y. Hsu, and C.-T. Chuang, “Self-aligned hemispherical formation of microlenses from colloidal droplets on heterogeneous surfaces,” J. Micromech. Microeng. 19(2), 025002 (2009).
    [CrossRef]
  9. S. Lee, Y.-C. Jeong, and J.-K. Park, “Facile fabrication of close-packed microlens arrays using photoinduced surface relief structures as templates,” Opt. Express 15(22), 14550–14559 (2007).
    [CrossRef] [PubMed]
  10. S.- Moon, N. Lee, and S. Kang, “Fabrication of a microlens array using micro-compression molding with an electroformed mold insert,” J. Micromech. Microeng. 13(1), 98–103 (2003).
    [CrossRef]
  11. G. C. Firestone and A. Y. Yi, “Precision compression molding of glass microlenses and microlens arrays--an experimental study,” Appl. Opt. 44(29), 6115–6122 (2005).
    [CrossRef] [PubMed]
  12. P. Merz, H. J. Quenzer, H. Bernt, B. Wagner, and M. Zoberbier, “A novel micromachining technology for structuring borosilicate glass substrates,” in Proceedings of IEEE Conference on Solid State Sensors, Actuators and Microsystems (IEEE, 2003), pp.258–261.
  13. J.-T. Wu, W.-Y. Chang, and S.-Y. Yang, “Fabrication of a nano/micro hybrid lens using gas-assisted hot embossing with an anodic aluminum oxide (AAO) template,” J. Micromech. Microeng. 20(7), 075023 (2010).
    [CrossRef]
  14. L. Wu, S. Dooley, E. A. Watson, P. F. McManamon, and H. Xie, “A Tip-Tilt-Piston Micromirror Array for Optical Phased Array Applications,” J. Microelectromech. Syst. 19(6), 1450–1461 (2010).
    [CrossRef]
  15. H. M. Chu, T. Tokuda, M. Kimata, and K. Hane, “Compact Low-Voltage Operation Micromirror Based on High-Vacuum Seal Technology Using Metal Can,” J. Microelectromech. Syst. 19(4), 927–935 (2010).
    [CrossRef]
  16. Y. Hishinuma and E.-H. Yang, “Piezoelectric unimorph microactuator arrays for single-crystal silicon continuous-membrane deformable mirror,” J. Microelectromech. Syst. 15(2), 370–379 (2006).
    [CrossRef]
  17. I. W. Jung, Y.-A. Peter, E. Carr, J.-S. Wang, and O. Solgaard, “Single-Crystal-Silicon Continuous Membrane Deformable Mirror Array for Adaptive Optics in Space-Based Telescopes,” IEEE J. Sel. Top. Quantum Electron. 13(2), 162–167 (2007).
    [CrossRef]
  18. R. Hokari and K. Hane, “A varifocal convex micromirror driven by a bending moment,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1310–1316 (2009).
    [CrossRef]
  19. T.Wu, K.Hane, “High-precise spherical micromirror by bending silicon plate with metal pad,” (to be published).
  20. V. Dragoi, P. Lindner, T. Glinsner, M. Wimplinger, and S. Farrens, “Advanced Anodic Bonding Processes for MEMS Applications,” in Proceedings of Materials Research Society Symposium (Materials Research Society, 2004), 782, pp.A5.80.1–6.

2010 (3)

J.-T. Wu, W.-Y. Chang, and S.-Y. Yang, “Fabrication of a nano/micro hybrid lens using gas-assisted hot embossing with an anodic aluminum oxide (AAO) template,” J. Micromech. Microeng. 20(7), 075023 (2010).
[CrossRef]

L. Wu, S. Dooley, E. A. Watson, P. F. McManamon, and H. Xie, “A Tip-Tilt-Piston Micromirror Array for Optical Phased Array Applications,” J. Microelectromech. Syst. 19(6), 1450–1461 (2010).
[CrossRef]

H. M. Chu, T. Tokuda, M. Kimata, and K. Hane, “Compact Low-Voltage Operation Micromirror Based on High-Vacuum Seal Technology Using Metal Can,” J. Microelectromech. Syst. 19(4), 927–935 (2010).
[CrossRef]

2009 (2)

R. Hokari and K. Hane, “A varifocal convex micromirror driven by a bending moment,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1310–1316 (2009).
[CrossRef]

C.-T. Chen, Z.-F. Tseng, C.-L. Chiu, C.-Y. Hsu, and C.-T. Chuang, “Self-aligned hemispherical formation of microlenses from colloidal droplets on heterogeneous surfaces,” J. Micromech. Microeng. 19(2), 025002 (2009).
[CrossRef]

2008 (1)

T.-W. Lin, C.-F. Chen, J.-J. Yang, and Y.-S. Liao, “A dual-directional light-control film with a high-sag and high-asymmetrical-shape microlens array fabricated by a UV imprinting process,” J. Micromech. Microeng. 18(9), 095029 (2008).
[CrossRef]

2007 (3)

Y. Kanamori, J. Sato, T. Shimano, S. Nakamura, and K. Hane, “Polymer microstructure generated by laser stereo-lithography and its transfer to silicon substrate using reactive ion etching,” Microsyst. Technol. 13(8-10), 1411–1416 (2007).
[CrossRef]

S. Lee, Y.-C. Jeong, and J.-K. Park, “Facile fabrication of close-packed microlens arrays using photoinduced surface relief structures as templates,” Opt. Express 15(22), 14550–14559 (2007).
[CrossRef] [PubMed]

I. W. Jung, Y.-A. Peter, E. Carr, J.-S. Wang, and O. Solgaard, “Single-Crystal-Silicon Continuous Membrane Deformable Mirror Array for Adaptive Optics in Space-Based Telescopes,” IEEE J. Sel. Top. Quantum Electron. 13(2), 162–167 (2007).
[CrossRef]

2006 (2)

Y. Hishinuma and E.-H. Yang, “Piezoelectric unimorph microactuator arrays for single-crystal silicon continuous-membrane deformable mirror,” J. Microelectromech. Syst. 15(2), 370–379 (2006).
[CrossRef]

S. Audran, B. Faure, B. Mortini, J. Regolini, G. Schlatter, and G. Hadziioannou, “Study of mechanisms involved in photoresist microlens formation,” Microelectron. Eng. 83(4-9), 1087–1090 (2006).
[CrossRef]

2005 (2)

K. Totsu and M. Esashi, “Gray-scale photolithography using maskless exposure system,” J. Vac. Sci. Technol. B 23(4), 1487–1490 (2005).
[CrossRef]

G. C. Firestone and A. Y. Yi, “Precision compression molding of glass microlenses and microlens arrays--an experimental study,” Appl. Opt. 44(29), 6115–6122 (2005).
[CrossRef] [PubMed]

2003 (2)

S.- Moon, N. Lee, and S. Kang, “Fabrication of a microlens array using micro-compression molding with an electroformed mold insert,” J. Micromech. Microeng. 13(1), 98–103 (2003).
[CrossRef]

G. Wang, S. Wang, and C.-H. Chin, “Fabrication and molding of gray-scale mask based aspheric refraction micro-lens array,” JSME Int. J., Ser. C 46(4), 1598–1603 (2003).
[CrossRef]

1998 (1)

S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, “Refractive Microlens Fabrication by Ink-Jet Process,” J. Sol-Gel Sci. Technol. 13(1/3), 177–182 (1998).
[CrossRef]

Aegerter, M. A.

S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, “Refractive Microlens Fabrication by Ink-Jet Process,” J. Sol-Gel Sci. Technol. 13(1/3), 177–182 (1998).
[CrossRef]

Audran, S.

S. Audran, B. Faure, B. Mortini, J. Regolini, G. Schlatter, and G. Hadziioannou, “Study of mechanisms involved in photoresist microlens formation,” Microelectron. Eng. 83(4-9), 1087–1090 (2006).
[CrossRef]

Biehl, S.

S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, “Refractive Microlens Fabrication by Ink-Jet Process,” J. Sol-Gel Sci. Technol. 13(1/3), 177–182 (1998).
[CrossRef]

Carr, E.

I. W. Jung, Y.-A. Peter, E. Carr, J.-S. Wang, and O. Solgaard, “Single-Crystal-Silicon Continuous Membrane Deformable Mirror Array for Adaptive Optics in Space-Based Telescopes,” IEEE J. Sel. Top. Quantum Electron. 13(2), 162–167 (2007).
[CrossRef]

Chang, W.-Y.

J.-T. Wu, W.-Y. Chang, and S.-Y. Yang, “Fabrication of a nano/micro hybrid lens using gas-assisted hot embossing with an anodic aluminum oxide (AAO) template,” J. Micromech. Microeng. 20(7), 075023 (2010).
[CrossRef]

Chen, C.-F.

T.-W. Lin, C.-F. Chen, J.-J. Yang, and Y.-S. Liao, “A dual-directional light-control film with a high-sag and high-asymmetrical-shape microlens array fabricated by a UV imprinting process,” J. Micromech. Microeng. 18(9), 095029 (2008).
[CrossRef]

Chen, C.-T.

C.-T. Chen, Z.-F. Tseng, C.-L. Chiu, C.-Y. Hsu, and C.-T. Chuang, “Self-aligned hemispherical formation of microlenses from colloidal droplets on heterogeneous surfaces,” J. Micromech. Microeng. 19(2), 025002 (2009).
[CrossRef]

Chin, C.-H.

G. Wang, S. Wang, and C.-H. Chin, “Fabrication and molding of gray-scale mask based aspheric refraction micro-lens array,” JSME Int. J., Ser. C 46(4), 1598–1603 (2003).
[CrossRef]

Chiu, C.-L.

C.-T. Chen, Z.-F. Tseng, C.-L. Chiu, C.-Y. Hsu, and C.-T. Chuang, “Self-aligned hemispherical formation of microlenses from colloidal droplets on heterogeneous surfaces,” J. Micromech. Microeng. 19(2), 025002 (2009).
[CrossRef]

Chu, H. M.

H. M. Chu, T. Tokuda, M. Kimata, and K. Hane, “Compact Low-Voltage Operation Micromirror Based on High-Vacuum Seal Technology Using Metal Can,” J. Microelectromech. Syst. 19(4), 927–935 (2010).
[CrossRef]

Chuang, C.-T.

C.-T. Chen, Z.-F. Tseng, C.-L. Chiu, C.-Y. Hsu, and C.-T. Chuang, “Self-aligned hemispherical formation of microlenses from colloidal droplets on heterogeneous surfaces,” J. Micromech. Microeng. 19(2), 025002 (2009).
[CrossRef]

Danzebrink, R.

S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, “Refractive Microlens Fabrication by Ink-Jet Process,” J. Sol-Gel Sci. Technol. 13(1/3), 177–182 (1998).
[CrossRef]

Dooley, S.

L. Wu, S. Dooley, E. A. Watson, P. F. McManamon, and H. Xie, “A Tip-Tilt-Piston Micromirror Array for Optical Phased Array Applications,” J. Microelectromech. Syst. 19(6), 1450–1461 (2010).
[CrossRef]

Esashi, M.

K. Totsu and M. Esashi, “Gray-scale photolithography using maskless exposure system,” J. Vac. Sci. Technol. B 23(4), 1487–1490 (2005).
[CrossRef]

Faure, B.

S. Audran, B. Faure, B. Mortini, J. Regolini, G. Schlatter, and G. Hadziioannou, “Study of mechanisms involved in photoresist microlens formation,” Microelectron. Eng. 83(4-9), 1087–1090 (2006).
[CrossRef]

Firestone, G. C.

Hadziioannou, G.

S. Audran, B. Faure, B. Mortini, J. Regolini, G. Schlatter, and G. Hadziioannou, “Study of mechanisms involved in photoresist microlens formation,” Microelectron. Eng. 83(4-9), 1087–1090 (2006).
[CrossRef]

Hane, K.

H. M. Chu, T. Tokuda, M. Kimata, and K. Hane, “Compact Low-Voltage Operation Micromirror Based on High-Vacuum Seal Technology Using Metal Can,” J. Microelectromech. Syst. 19(4), 927–935 (2010).
[CrossRef]

R. Hokari and K. Hane, “A varifocal convex micromirror driven by a bending moment,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1310–1316 (2009).
[CrossRef]

Y. Kanamori, J. Sato, T. Shimano, S. Nakamura, and K. Hane, “Polymer microstructure generated by laser stereo-lithography and its transfer to silicon substrate using reactive ion etching,” Microsyst. Technol. 13(8-10), 1411–1416 (2007).
[CrossRef]

Hishinuma, Y.

Y. Hishinuma and E.-H. Yang, “Piezoelectric unimorph microactuator arrays for single-crystal silicon continuous-membrane deformable mirror,” J. Microelectromech. Syst. 15(2), 370–379 (2006).
[CrossRef]

Hokari, R.

R. Hokari and K. Hane, “A varifocal convex micromirror driven by a bending moment,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1310–1316 (2009).
[CrossRef]

Hsu, C.-Y.

C.-T. Chen, Z.-F. Tseng, C.-L. Chiu, C.-Y. Hsu, and C.-T. Chuang, “Self-aligned hemispherical formation of microlenses from colloidal droplets on heterogeneous surfaces,” J. Micromech. Microeng. 19(2), 025002 (2009).
[CrossRef]

Jeong, Y.-C.

Jung, I. W.

I. W. Jung, Y.-A. Peter, E. Carr, J.-S. Wang, and O. Solgaard, “Single-Crystal-Silicon Continuous Membrane Deformable Mirror Array for Adaptive Optics in Space-Based Telescopes,” IEEE J. Sel. Top. Quantum Electron. 13(2), 162–167 (2007).
[CrossRef]

Kanamori, Y.

Y. Kanamori, J. Sato, T. Shimano, S. Nakamura, and K. Hane, “Polymer microstructure generated by laser stereo-lithography and its transfer to silicon substrate using reactive ion etching,” Microsyst. Technol. 13(8-10), 1411–1416 (2007).
[CrossRef]

Kang, S.

S.- Moon, N. Lee, and S. Kang, “Fabrication of a microlens array using micro-compression molding with an electroformed mold insert,” J. Micromech. Microeng. 13(1), 98–103 (2003).
[CrossRef]

Kimata, M.

H. M. Chu, T. Tokuda, M. Kimata, and K. Hane, “Compact Low-Voltage Operation Micromirror Based on High-Vacuum Seal Technology Using Metal Can,” J. Microelectromech. Syst. 19(4), 927–935 (2010).
[CrossRef]

Lee, N.

S.- Moon, N. Lee, and S. Kang, “Fabrication of a microlens array using micro-compression molding with an electroformed mold insert,” J. Micromech. Microeng. 13(1), 98–103 (2003).
[CrossRef]

Lee, S.

Liao, Y.-S.

T.-W. Lin, C.-F. Chen, J.-J. Yang, and Y.-S. Liao, “A dual-directional light-control film with a high-sag and high-asymmetrical-shape microlens array fabricated by a UV imprinting process,” J. Micromech. Microeng. 18(9), 095029 (2008).
[CrossRef]

Lin, T.-W.

T.-W. Lin, C.-F. Chen, J.-J. Yang, and Y.-S. Liao, “A dual-directional light-control film with a high-sag and high-asymmetrical-shape microlens array fabricated by a UV imprinting process,” J. Micromech. Microeng. 18(9), 095029 (2008).
[CrossRef]

McManamon, P. F.

L. Wu, S. Dooley, E. A. Watson, P. F. McManamon, and H. Xie, “A Tip-Tilt-Piston Micromirror Array for Optical Phased Array Applications,” J. Microelectromech. Syst. 19(6), 1450–1461 (2010).
[CrossRef]

Moon, S.-

S.- Moon, N. Lee, and S. Kang, “Fabrication of a microlens array using micro-compression molding with an electroformed mold insert,” J. Micromech. Microeng. 13(1), 98–103 (2003).
[CrossRef]

Mortini, B.

S. Audran, B. Faure, B. Mortini, J. Regolini, G. Schlatter, and G. Hadziioannou, “Study of mechanisms involved in photoresist microlens formation,” Microelectron. Eng. 83(4-9), 1087–1090 (2006).
[CrossRef]

Nakamura, S.

Y. Kanamori, J. Sato, T. Shimano, S. Nakamura, and K. Hane, “Polymer microstructure generated by laser stereo-lithography and its transfer to silicon substrate using reactive ion etching,” Microsyst. Technol. 13(8-10), 1411–1416 (2007).
[CrossRef]

Oliveira, P.

S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, “Refractive Microlens Fabrication by Ink-Jet Process,” J. Sol-Gel Sci. Technol. 13(1/3), 177–182 (1998).
[CrossRef]

Park, J.-K.

Peter, Y.-A.

I. W. Jung, Y.-A. Peter, E. Carr, J.-S. Wang, and O. Solgaard, “Single-Crystal-Silicon Continuous Membrane Deformable Mirror Array for Adaptive Optics in Space-Based Telescopes,” IEEE J. Sel. Top. Quantum Electron. 13(2), 162–167 (2007).
[CrossRef]

Regolini, J.

S. Audran, B. Faure, B. Mortini, J. Regolini, G. Schlatter, and G. Hadziioannou, “Study of mechanisms involved in photoresist microlens formation,” Microelectron. Eng. 83(4-9), 1087–1090 (2006).
[CrossRef]

Sato, J.

Y. Kanamori, J. Sato, T. Shimano, S. Nakamura, and K. Hane, “Polymer microstructure generated by laser stereo-lithography and its transfer to silicon substrate using reactive ion etching,” Microsyst. Technol. 13(8-10), 1411–1416 (2007).
[CrossRef]

Schlatter, G.

S. Audran, B. Faure, B. Mortini, J. Regolini, G. Schlatter, and G. Hadziioannou, “Study of mechanisms involved in photoresist microlens formation,” Microelectron. Eng. 83(4-9), 1087–1090 (2006).
[CrossRef]

Shimano, T.

Y. Kanamori, J. Sato, T. Shimano, S. Nakamura, and K. Hane, “Polymer microstructure generated by laser stereo-lithography and its transfer to silicon substrate using reactive ion etching,” Microsyst. Technol. 13(8-10), 1411–1416 (2007).
[CrossRef]

Solgaard, O.

I. W. Jung, Y.-A. Peter, E. Carr, J.-S. Wang, and O. Solgaard, “Single-Crystal-Silicon Continuous Membrane Deformable Mirror Array for Adaptive Optics in Space-Based Telescopes,” IEEE J. Sel. Top. Quantum Electron. 13(2), 162–167 (2007).
[CrossRef]

Tokuda, T.

H. M. Chu, T. Tokuda, M. Kimata, and K. Hane, “Compact Low-Voltage Operation Micromirror Based on High-Vacuum Seal Technology Using Metal Can,” J. Microelectromech. Syst. 19(4), 927–935 (2010).
[CrossRef]

Totsu, K.

K. Totsu and M. Esashi, “Gray-scale photolithography using maskless exposure system,” J. Vac. Sci. Technol. B 23(4), 1487–1490 (2005).
[CrossRef]

Tseng, Z.-F.

C.-T. Chen, Z.-F. Tseng, C.-L. Chiu, C.-Y. Hsu, and C.-T. Chuang, “Self-aligned hemispherical formation of microlenses from colloidal droplets on heterogeneous surfaces,” J. Micromech. Microeng. 19(2), 025002 (2009).
[CrossRef]

Wang, G.

G. Wang, S. Wang, and C.-H. Chin, “Fabrication and molding of gray-scale mask based aspheric refraction micro-lens array,” JSME Int. J., Ser. C 46(4), 1598–1603 (2003).
[CrossRef]

Wang, J.-S.

I. W. Jung, Y.-A. Peter, E. Carr, J.-S. Wang, and O. Solgaard, “Single-Crystal-Silicon Continuous Membrane Deformable Mirror Array for Adaptive Optics in Space-Based Telescopes,” IEEE J. Sel. Top. Quantum Electron. 13(2), 162–167 (2007).
[CrossRef]

Wang, S.

G. Wang, S. Wang, and C.-H. Chin, “Fabrication and molding of gray-scale mask based aspheric refraction micro-lens array,” JSME Int. J., Ser. C 46(4), 1598–1603 (2003).
[CrossRef]

Watson, E. A.

L. Wu, S. Dooley, E. A. Watson, P. F. McManamon, and H. Xie, “A Tip-Tilt-Piston Micromirror Array for Optical Phased Array Applications,” J. Microelectromech. Syst. 19(6), 1450–1461 (2010).
[CrossRef]

Wu, J.-T.

J.-T. Wu, W.-Y. Chang, and S.-Y. Yang, “Fabrication of a nano/micro hybrid lens using gas-assisted hot embossing with an anodic aluminum oxide (AAO) template,” J. Micromech. Microeng. 20(7), 075023 (2010).
[CrossRef]

Wu, L.

L. Wu, S. Dooley, E. A. Watson, P. F. McManamon, and H. Xie, “A Tip-Tilt-Piston Micromirror Array for Optical Phased Array Applications,” J. Microelectromech. Syst. 19(6), 1450–1461 (2010).
[CrossRef]

Xie, H.

L. Wu, S. Dooley, E. A. Watson, P. F. McManamon, and H. Xie, “A Tip-Tilt-Piston Micromirror Array for Optical Phased Array Applications,” J. Microelectromech. Syst. 19(6), 1450–1461 (2010).
[CrossRef]

Yang, E.-H.

Y. Hishinuma and E.-H. Yang, “Piezoelectric unimorph microactuator arrays for single-crystal silicon continuous-membrane deformable mirror,” J. Microelectromech. Syst. 15(2), 370–379 (2006).
[CrossRef]

Yang, J.-J.

T.-W. Lin, C.-F. Chen, J.-J. Yang, and Y.-S. Liao, “A dual-directional light-control film with a high-sag and high-asymmetrical-shape microlens array fabricated by a UV imprinting process,” J. Micromech. Microeng. 18(9), 095029 (2008).
[CrossRef]

Yang, S.-Y.

J.-T. Wu, W.-Y. Chang, and S.-Y. Yang, “Fabrication of a nano/micro hybrid lens using gas-assisted hot embossing with an anodic aluminum oxide (AAO) template,” J. Micromech. Microeng. 20(7), 075023 (2010).
[CrossRef]

Yi, A. Y.

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (2)

I. W. Jung, Y.-A. Peter, E. Carr, J.-S. Wang, and O. Solgaard, “Single-Crystal-Silicon Continuous Membrane Deformable Mirror Array for Adaptive Optics in Space-Based Telescopes,” IEEE J. Sel. Top. Quantum Electron. 13(2), 162–167 (2007).
[CrossRef]

R. Hokari and K. Hane, “A varifocal convex micromirror driven by a bending moment,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1310–1316 (2009).
[CrossRef]

J. Microelectromech. Syst. (3)

L. Wu, S. Dooley, E. A. Watson, P. F. McManamon, and H. Xie, “A Tip-Tilt-Piston Micromirror Array for Optical Phased Array Applications,” J. Microelectromech. Syst. 19(6), 1450–1461 (2010).
[CrossRef]

H. M. Chu, T. Tokuda, M. Kimata, and K. Hane, “Compact Low-Voltage Operation Micromirror Based on High-Vacuum Seal Technology Using Metal Can,” J. Microelectromech. Syst. 19(4), 927–935 (2010).
[CrossRef]

Y. Hishinuma and E.-H. Yang, “Piezoelectric unimorph microactuator arrays for single-crystal silicon continuous-membrane deformable mirror,” J. Microelectromech. Syst. 15(2), 370–379 (2006).
[CrossRef]

J. Micromech. Microeng. (4)

J.-T. Wu, W.-Y. Chang, and S.-Y. Yang, “Fabrication of a nano/micro hybrid lens using gas-assisted hot embossing with an anodic aluminum oxide (AAO) template,” J. Micromech. Microeng. 20(7), 075023 (2010).
[CrossRef]

S.- Moon, N. Lee, and S. Kang, “Fabrication of a microlens array using micro-compression molding with an electroformed mold insert,” J. Micromech. Microeng. 13(1), 98–103 (2003).
[CrossRef]

T.-W. Lin, C.-F. Chen, J.-J. Yang, and Y.-S. Liao, “A dual-directional light-control film with a high-sag and high-asymmetrical-shape microlens array fabricated by a UV imprinting process,” J. Micromech. Microeng. 18(9), 095029 (2008).
[CrossRef]

C.-T. Chen, Z.-F. Tseng, C.-L. Chiu, C.-Y. Hsu, and C.-T. Chuang, “Self-aligned hemispherical formation of microlenses from colloidal droplets on heterogeneous surfaces,” J. Micromech. Microeng. 19(2), 025002 (2009).
[CrossRef]

J. Sol-Gel Sci. Technol. (1)

S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, “Refractive Microlens Fabrication by Ink-Jet Process,” J. Sol-Gel Sci. Technol. 13(1/3), 177–182 (1998).
[CrossRef]

J. Vac. Sci. Technol. B (1)

K. Totsu and M. Esashi, “Gray-scale photolithography using maskless exposure system,” J. Vac. Sci. Technol. B 23(4), 1487–1490 (2005).
[CrossRef]

JSME Int. J., Ser. C (1)

G. Wang, S. Wang, and C.-H. Chin, “Fabrication and molding of gray-scale mask based aspheric refraction micro-lens array,” JSME Int. J., Ser. C 46(4), 1598–1603 (2003).
[CrossRef]

Microelectron. Eng. (1)

S. Audran, B. Faure, B. Mortini, J. Regolini, G. Schlatter, and G. Hadziioannou, “Study of mechanisms involved in photoresist microlens formation,” Microelectron. Eng. 83(4-9), 1087–1090 (2006).
[CrossRef]

Microsyst. Technol. (1)

Y. Kanamori, J. Sato, T. Shimano, S. Nakamura, and K. Hane, “Polymer microstructure generated by laser stereo-lithography and its transfer to silicon substrate using reactive ion etching,” Microsyst. Technol. 13(8-10), 1411–1416 (2007).
[CrossRef]

Opt. Express (1)

Other (4)

H. P. Herzig, Micro-optics (Taylor&Francis, 1997).

P. Merz, H. J. Quenzer, H. Bernt, B. Wagner, and M. Zoberbier, “A novel micromachining technology for structuring borosilicate glass substrates,” in Proceedings of IEEE Conference on Solid State Sensors, Actuators and Microsystems (IEEE, 2003), pp.258–261.

T.Wu, K.Hane, “High-precise spherical micromirror by bending silicon plate with metal pad,” (to be published).

V. Dragoi, P. Lindner, T. Glinsner, M. Wimplinger, and S. Farrens, “Advanced Anodic Bonding Processes for MEMS Applications,” in Proceedings of Materials Research Society Symposium (Materials Research Society, 2004), 782, pp.A5.80.1–6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Fabrication method of convex micromirror, (a)before bonding; (b) after bonding.

Fig. 2
Fig. 2

Theoretical calculation model.

Fig. 3
Fig. 3

Fabrication sequence chart for: (a) freestanding SCS membrane, (b) supporting fulcrum, and (c) anodic bonding.

Fig. 4
Fig. 4

Optical micrographs of the fabricated micromirrors, (a) front side, (b) back side, (c) micromirror array.

Fig. 5
Fig. 5

Measured surface profiles of the fabricated micromirror, (a) color-coded height distribution; (b) 3D color-coded height profile; (c) profile across the centre of the mirror; (d) profile inside the fulcrum and the fitted parabola.

Fig. 6
Fig. 6

Focal length as a function of fulcrum radius.

Fig. 7
Fig. 7

Polymeric replica and the surface profile, (a) optical micrograph of the polymeric microlens; (b) profile across the centre of the microlens; (c) profile inside the fulcrum and the fitted parabola.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

M c = d ( 2 a + d ) 2 ( a + d ) W ,
M = { W [ | x | 2 a 2 + 2 a d + d 2 2 ( a + d ) ]    ,( a   | x | a + d ) W d 2 2 ( a + d )                     , ( | x | a ) .
d 2 y d x 2 = M E I ,
{ θ | x = ± ( a + d ) = 0 θ | x = 0 = 0
{ y | x = ± ( a + d ) = 0 y | x = ± a = h ,
y = { h 4 d 3 ( 4 a + d ) [ 4 ( a + d ) | x | 3 3 h ( 4 a 2 + 4 a d + d 2 ) | x | 2 +                      12 a 2 ( a + d ) | x | 2 h ( a + d ) 2 ( 2 a 2 a d d 2 ) ] ,   ( a   | x | a + d ) 3 h ( 4 a + d ) d [ x 2 a 2 1 3 ( 4 a + d ) d ] ,                                    ( | x | a ) .
f = d 3 h a + d 2 12 h .
σ max = | M | t / 2 I = 3 E h t d ( 4 a + d ) ,
α = π a 2 ( 2 a + s ) 2 .
f = 5.19 a + 181.48  (μm ) .
σ max = 3 E h t d ( 4 a + d ) < σ 0 ,

Metrics