Abstract

The attenuator for the wavelength at 1550 nm is fabricated by using the capillary effect to infiltrate liquid crystal (LC) E7 into hollow waveguides (HWGs) on silicon substrate with SiO2 cladding layer. The length of the waveguide is 0.4 cm. The device can be operated with relatively low driving voltage below 5 Vpp with the distance between two electrodes to be 9 μm. The light attenuation of the device can be over 30 dB. The performance of the device is independent of the polarization states of the input light.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluid. Nanofluid. 4(1-2), 3–16 (2008).
    [CrossRef] [PubMed]
  2. A. R. Hawkins and H. Schmidt, “Optofluidic waveguides: II. fabrication and structures,” Microfluid. Nanofluid. 4(1-2), 17–32 (2008).
    [CrossRef]
  3. A. Datta, I. Y. Eom, A. Dhar, P. Kuban, R. Manor, I. Ahmad, S. Gangopadhyay, T. Dallas, M. Holtz, H. Temkin, and P. K. Dasgupta, “Microfabrication and characterization of teflon AF-coated liquid core waveguide channels in silicon,” IEEE Sens. J. 3(6), 788–795 (2003).
    [CrossRef]
  4. A. D’Alessandro, B. D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron. 42(10), 1084–1090 (2006).
    [CrossRef]
  5. D. Donisi, B. Bellini, R. Beccherelli, R. Asquini, G. Gilardi, M. Trotta, and A. d’Alessandro, “Switchable liquid-crystal optical channel waveguide on silicon,” IEEE J. Quantum Electron. 46(5), 762–768 (2010).
    [CrossRef]
  6. W. Risk, H. Kim, R. Miller, H. Temkin, and S. Gangopadhyay, “Optical waveguides with an aqueous core and a low-index nanoporous cladding,” Opt. Express 12(26), 6446–6455 (2004).
    [CrossRef] [PubMed]
  7. D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
    [CrossRef] [PubMed]
  8. J. B. Shellan, P. Agmon, P. Yeh, and A. Yariv, “Statistical analysis of Bragg reflectors,” J. Opt. Soc. Am. 68(1), 18 (1978).
    [CrossRef]
  9. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13 (1986).
    [CrossRef]
  10. D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, “Integrated optical waveguides with liquid cores,” Appl. Phys. Lett. 85(16), 3477 (2004).
    [CrossRef]
  11. H. Schmidt, D. Yin, J. P. Barber, and A. R. Hawkins, “Hollow-core waveguides and 2-D waveguide arrays for integrated optics of gas and liquids,” IEEE J. Sel. Top. Quantum Electron. 11(2), 519–527 (2005).
    [CrossRef]
  12. R. Bernini, G. Testa, L. Zeni, and P. M. Sarro, “ntegrated optofluidic Mach-Zehnder interferometer based on liquid core waveguides,” Appl. Phys. Lett. 93(1), 011106 (2008).
    [CrossRef]
  13. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003).
    [CrossRef] [PubMed]
  14. F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181 (2004).
    [CrossRef]
  15. M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
    [CrossRef]
  16. T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical field on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
    [CrossRef]
  17. T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
    [CrossRef]
  18. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett. 29(17), 1974–1976 (2004).
    [CrossRef] [PubMed]
  19. V. J. Cadarso, A. Llobera, C. Fernandez-Sanchez, M. Darder, and C. Dominguez, “Hollow waveguide-based full-field absorbance biosensor,” Sens. Actuators B Chem. 139(1), 143–149 (2009).
    [CrossRef]
  20. A. Sugimura and D. Ishino, “Nematic director deformation induced by a periodic surface anchoring strength,” Thin Solid Films 438–439, 433–439 (2003).
    [CrossRef]
  21. J. He, B. Yan, X. Wang, B. Yu, and Y. Wang, “A novel polymer dispersed liquid crystal film prepared by reversible addition fragmentation chain transfer polymerization,” Eur. Polym. J. 43(9), 4037–4042 (2007).
    [CrossRef]
  22. Z. Zalevsky, F. Luan, W. J. Wadsworth, S. L. Saval, and T. A. Birks, “Liquid-crystal-based in-fiber tunable spectral structures,” Opt. Eng. 45(3), 035005 (2006).
    [CrossRef]
  23. S. Brugioni and R. Meucci, “Refractive indices of the nematic mixture E7 at 1550nm,” Infrared Phys. Technol. 49(3), 210–212 (2007).
    [CrossRef]
  24. H.-Y. Pan, H.-K. Chiu, and C.-C. Chen, “Liquid crystal infiltrated waveguide with distributed Bragg reflectors,” (unpublished data).
  25. S. C. Jeng, S. J. Hwang, and C. Y. Yang, “Tunable pretilt angles based on nanoparticles-doped planar liquid-crystal cells,” Opt. Lett. 34(4), 455–457 (2009).
    [CrossRef] [PubMed]

2010 (1)

D. Donisi, B. Bellini, R. Beccherelli, R. Asquini, G. Gilardi, M. Trotta, and A. d’Alessandro, “Switchable liquid-crystal optical channel waveguide on silicon,” IEEE J. Quantum Electron. 46(5), 762–768 (2010).
[CrossRef]

2009 (2)

V. J. Cadarso, A. Llobera, C. Fernandez-Sanchez, M. Darder, and C. Dominguez, “Hollow waveguide-based full-field absorbance biosensor,” Sens. Actuators B Chem. 139(1), 143–149 (2009).
[CrossRef]

S. C. Jeng, S. J. Hwang, and C. Y. Yang, “Tunable pretilt angles based on nanoparticles-doped planar liquid-crystal cells,” Opt. Lett. 34(4), 455–457 (2009).
[CrossRef] [PubMed]

2008 (3)

H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluid. Nanofluid. 4(1-2), 3–16 (2008).
[CrossRef] [PubMed]

A. R. Hawkins and H. Schmidt, “Optofluidic waveguides: II. fabrication and structures,” Microfluid. Nanofluid. 4(1-2), 17–32 (2008).
[CrossRef]

R. Bernini, G. Testa, L. Zeni, and P. M. Sarro, “ntegrated optofluidic Mach-Zehnder interferometer based on liquid core waveguides,” Appl. Phys. Lett. 93(1), 011106 (2008).
[CrossRef]

2007 (3)

J. He, B. Yan, X. Wang, B. Yu, and Y. Wang, “A novel polymer dispersed liquid crystal film prepared by reversible addition fragmentation chain transfer polymerization,” Eur. Polym. J. 43(9), 4037–4042 (2007).
[CrossRef]

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

S. Brugioni and R. Meucci, “Refractive indices of the nematic mixture E7 at 1550nm,” Infrared Phys. Technol. 49(3), 210–212 (2007).
[CrossRef]

2006 (3)

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical field on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[CrossRef]

Z. Zalevsky, F. Luan, W. J. Wadsworth, S. L. Saval, and T. A. Birks, “Liquid-crystal-based in-fiber tunable spectral structures,” Opt. Eng. 45(3), 035005 (2006).
[CrossRef]

A. D’Alessandro, B. D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron. 42(10), 1084–1090 (2006).
[CrossRef]

2005 (2)

H. Schmidt, D. Yin, J. P. Barber, and A. R. Hawkins, “Hollow-core waveguides and 2-D waveguide arrays for integrated optics of gas and liquids,” IEEE J. Sel. Top. Quantum Electron. 11(2), 519–527 (2005).
[CrossRef]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

2004 (5)

D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, “Integrated optical waveguides with liquid cores,” Appl. Phys. Lett. 85(16), 3477 (2004).
[CrossRef]

F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181 (2004).
[CrossRef]

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
[CrossRef] [PubMed]

J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett. 29(17), 1974–1976 (2004).
[CrossRef] [PubMed]

W. Risk, H. Kim, R. Miller, H. Temkin, and S. Gangopadhyay, “Optical waveguides with an aqueous core and a low-index nanoporous cladding,” Opt. Express 12(26), 6446–6455 (2004).
[CrossRef] [PubMed]

2003 (3)

T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003).
[CrossRef] [PubMed]

A. Datta, I. Y. Eom, A. Dhar, P. Kuban, R. Manor, I. Ahmad, S. Gangopadhyay, T. Dallas, M. Holtz, H. Temkin, and P. K. Dasgupta, “Microfabrication and characterization of teflon AF-coated liquid core waveguide channels in silicon,” IEEE Sens. J. 3(6), 788–795 (2003).
[CrossRef]

A. Sugimura and D. Ishino, “Nematic director deformation induced by a periodic surface anchoring strength,” Thin Solid Films 438–439, 433–439 (2003).
[CrossRef]

1986 (1)

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13 (1986).
[CrossRef]

1978 (1)

Agmon, P.

Ahmad, I.

A. Datta, I. Y. Eom, A. Dhar, P. Kuban, R. Manor, I. Ahmad, S. Gangopadhyay, T. Dallas, M. Holtz, H. Temkin, and P. K. Dasgupta, “Microfabrication and characterization of teflon AF-coated liquid core waveguide channels in silicon,” IEEE Sens. J. 3(6), 788–795 (2003).
[CrossRef]

Alkeskjold, T. T.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

Asquini, R.

D. Donisi, B. Bellini, R. Beccherelli, R. Asquini, G. Gilardi, M. Trotta, and A. d’Alessandro, “Switchable liquid-crystal optical channel waveguide on silicon,” IEEE J. Quantum Electron. 46(5), 762–768 (2010).
[CrossRef]

A. D’Alessandro, B. D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron. 42(10), 1084–1090 (2006).
[CrossRef]

Barber, J. P.

H. Schmidt, D. Yin, J. P. Barber, and A. R. Hawkins, “Hollow-core waveguides and 2-D waveguide arrays for integrated optics of gas and liquids,” IEEE J. Sel. Top. Quantum Electron. 11(2), 519–527 (2005).
[CrossRef]

D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, “Integrated optical waveguides with liquid cores,” Appl. Phys. Lett. 85(16), 3477 (2004).
[CrossRef]

Beccherelli, R.

D. Donisi, B. Bellini, R. Beccherelli, R. Asquini, G. Gilardi, M. Trotta, and A. d’Alessandro, “Switchable liquid-crystal optical channel waveguide on silicon,” IEEE J. Quantum Electron. 46(5), 762–768 (2010).
[CrossRef]

A. D’Alessandro, B. D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron. 42(10), 1084–1090 (2006).
[CrossRef]

Bellini, B.

D. Donisi, B. Bellini, R. Beccherelli, R. Asquini, G. Gilardi, M. Trotta, and A. d’Alessandro, “Switchable liquid-crystal optical channel waveguide on silicon,” IEEE J. Quantum Electron. 46(5), 762–768 (2010).
[CrossRef]

Bernini, R.

R. Bernini, G. Testa, L. Zeni, and P. M. Sarro, “ntegrated optofluidic Mach-Zehnder interferometer based on liquid core waveguides,” Appl. Phys. Lett. 93(1), 011106 (2008).
[CrossRef]

Birks, T. A.

Z. Zalevsky, F. Luan, W. J. Wadsworth, S. L. Saval, and T. A. Birks, “Liquid-crystal-based in-fiber tunable spectral structures,” Opt. Eng. 45(3), 035005 (2006).
[CrossRef]

Bjarklev, A.

Broeng, J.

Brugioni, S.

S. Brugioni and R. Meucci, “Refractive indices of the nematic mixture E7 at 1550nm,” Infrared Phys. Technol. 49(3), 210–212 (2007).
[CrossRef]

Cadarso, V. J.

V. J. Cadarso, A. Llobera, C. Fernandez-Sanchez, M. Darder, and C. Dominguez, “Hollow waveguide-based full-field absorbance biosensor,” Sens. Actuators B Chem. 139(1), 143–149 (2009).
[CrossRef]

Carlsen, A.

Conroy, R. S.

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
[CrossRef] [PubMed]

Czapla, A.

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

d’Alessandro, A.

D. Donisi, B. Bellini, R. Beccherelli, R. Asquini, G. Gilardi, M. Trotta, and A. d’Alessandro, “Switchable liquid-crystal optical channel waveguide on silicon,” IEEE J. Quantum Electron. 46(5), 762–768 (2010).
[CrossRef]

A. D’Alessandro, B. D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron. 42(10), 1084–1090 (2006).
[CrossRef]

Dabrowski, R.

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical field on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[CrossRef]

Dallas, T.

A. Datta, I. Y. Eom, A. Dhar, P. Kuban, R. Manor, I. Ahmad, S. Gangopadhyay, T. Dallas, M. Holtz, H. Temkin, and P. K. Dasgupta, “Microfabrication and characterization of teflon AF-coated liquid core waveguide channels in silicon,” IEEE Sens. J. 3(6), 788–795 (2003).
[CrossRef]

Darder, M.

V. J. Cadarso, A. Llobera, C. Fernandez-Sanchez, M. Darder, and C. Dominguez, “Hollow waveguide-based full-field absorbance biosensor,” Sens. Actuators B Chem. 139(1), 143–149 (2009).
[CrossRef]

Dasgupta, P. K.

A. Datta, I. Y. Eom, A. Dhar, P. Kuban, R. Manor, I. Ahmad, S. Gangopadhyay, T. Dallas, M. Holtz, H. Temkin, and P. K. Dasgupta, “Microfabrication and characterization of teflon AF-coated liquid core waveguide channels in silicon,” IEEE Sens. J. 3(6), 788–795 (2003).
[CrossRef]

Datta, A.

A. Datta, I. Y. Eom, A. Dhar, P. Kuban, R. Manor, I. Ahmad, S. Gangopadhyay, T. Dallas, M. Holtz, H. Temkin, and P. K. Dasgupta, “Microfabrication and characterization of teflon AF-coated liquid core waveguide channels in silicon,” IEEE Sens. J. 3(6), 788–795 (2003).
[CrossRef]

Deamer, D. W.

D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, “Integrated optical waveguides with liquid cores,” Appl. Phys. Lett. 85(16), 3477 (2004).
[CrossRef]

Dhar, A.

A. Datta, I. Y. Eom, A. Dhar, P. Kuban, R. Manor, I. Ahmad, S. Gangopadhyay, T. Dallas, M. Holtz, H. Temkin, and P. K. Dasgupta, “Microfabrication and characterization of teflon AF-coated liquid core waveguide channels in silicon,” IEEE Sens. J. 3(6), 788–795 (2003).
[CrossRef]

Domanski, A. W.

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical field on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[CrossRef]

Dominguez, C.

V. J. Cadarso, A. Llobera, C. Fernandez-Sanchez, M. Darder, and C. Dominguez, “Hollow waveguide-based full-field absorbance biosensor,” Sens. Actuators B Chem. 139(1), 143–149 (2009).
[CrossRef]

Donisi, B. D.

A. D’Alessandro, B. D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron. 42(10), 1084–1090 (2006).
[CrossRef]

Donisi, D.

D. Donisi, B. Bellini, R. Beccherelli, R. Asquini, G. Gilardi, M. Trotta, and A. d’Alessandro, “Switchable liquid-crystal optical channel waveguide on silicon,” IEEE J. Quantum Electron. 46(5), 762–768 (2010).
[CrossRef]

Du, F.

F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181 (2004).
[CrossRef]

Duguay, M. A.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13 (1986).
[CrossRef]

Engan, H. E.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

Eom, I. Y.

A. Datta, I. Y. Eom, A. Dhar, P. Kuban, R. Manor, I. Ahmad, S. Gangopadhyay, T. Dallas, M. Holtz, H. Temkin, and P. K. Dasgupta, “Microfabrication and characterization of teflon AF-coated liquid core waveguide channels in silicon,” IEEE Sens. J. 3(6), 788–795 (2003).
[CrossRef]

Ertman, S.

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical field on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[CrossRef]

Fernandez-Sanchez, C.

V. J. Cadarso, A. Llobera, C. Fernandez-Sanchez, M. Darder, and C. Dominguez, “Hollow waveguide-based full-field absorbance biosensor,” Sens. Actuators B Chem. 139(1), 143–149 (2009).
[CrossRef]

Fischbach, M. A.

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
[CrossRef] [PubMed]

Folkenberg, J. R.

Gangopadhyay, S.

W. Risk, H. Kim, R. Miller, H. Temkin, and S. Gangopadhyay, “Optical waveguides with an aqueous core and a low-index nanoporous cladding,” Opt. Express 12(26), 6446–6455 (2004).
[CrossRef] [PubMed]

A. Datta, I. Y. Eom, A. Dhar, P. Kuban, R. Manor, I. Ahmad, S. Gangopadhyay, T. Dallas, M. Holtz, H. Temkin, and P. K. Dasgupta, “Microfabrication and characterization of teflon AF-coated liquid core waveguide channels in silicon,” IEEE Sens. J. 3(6), 788–795 (2003).
[CrossRef]

Garstecki, P.

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
[CrossRef] [PubMed]

Gilardi, G.

D. Donisi, B. Bellini, R. Beccherelli, R. Asquini, G. Gilardi, M. Trotta, and A. d’Alessandro, “Switchable liquid-crystal optical channel waveguide on silicon,” IEEE J. Quantum Electron. 46(5), 762–768 (2010).
[CrossRef]

Haakestad, M. W.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

Hansen, T. P.

Hawkins, A. R.

H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluid. Nanofluid. 4(1-2), 3–16 (2008).
[CrossRef] [PubMed]

A. R. Hawkins and H. Schmidt, “Optofluidic waveguides: II. fabrication and structures,” Microfluid. Nanofluid. 4(1-2), 17–32 (2008).
[CrossRef]

H. Schmidt, D. Yin, J. P. Barber, and A. R. Hawkins, “Hollow-core waveguides and 2-D waveguide arrays for integrated optics of gas and liquids,” IEEE J. Sel. Top. Quantum Electron. 11(2), 519–527 (2005).
[CrossRef]

D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, “Integrated optical waveguides with liquid cores,” Appl. Phys. Lett. 85(16), 3477 (2004).
[CrossRef]

He, J.

J. He, B. Yan, X. Wang, B. Yu, and Y. Wang, “A novel polymer dispersed liquid crystal film prepared by reversible addition fragmentation chain transfer polymerization,” Eur. Polym. J. 43(9), 4037–4042 (2007).
[CrossRef]

Hermann, D. S.

Hoiby, P. E.

Holtz, M.

A. Datta, I. Y. Eom, A. Dhar, P. Kuban, R. Manor, I. Ahmad, S. Gangopadhyay, T. Dallas, M. Holtz, H. Temkin, and P. K. Dasgupta, “Microfabrication and characterization of teflon AF-coated liquid core waveguide channels in silicon,” IEEE Sens. J. 3(6), 788–795 (2003).
[CrossRef]

Hwang, S. J.

Ishino, D.

A. Sugimura and D. Ishino, “Nematic director deformation induced by a periodic surface anchoring strength,” Thin Solid Films 438–439, 433–439 (2003).
[CrossRef]

Jeng, S. C.

Jensen, J. B.

Kim, H.

Koch, T. L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13 (1986).
[CrossRef]

Kokubun, Y.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13 (1986).
[CrossRef]

Kuban, P.

A. Datta, I. Y. Eom, A. Dhar, P. Kuban, R. Manor, I. Ahmad, S. Gangopadhyay, T. Dallas, M. Holtz, H. Temkin, and P. K. Dasgupta, “Microfabrication and characterization of teflon AF-coated liquid core waveguide channels in silicon,” IEEE Sens. J. 3(6), 788–795 (2003).
[CrossRef]

Larsen, T. T.

Lesiak, P.

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical field on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[CrossRef]

Llobera, A.

V. J. Cadarso, A. Llobera, C. Fernandez-Sanchez, M. Darder, and C. Dominguez, “Hollow waveguide-based full-field absorbance biosensor,” Sens. Actuators B Chem. 139(1), 143–149 (2009).
[CrossRef]

Lu, Y. Q.

F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181 (2004).
[CrossRef]

Luan, F.

Z. Zalevsky, F. Luan, W. J. Wadsworth, S. L. Saval, and T. A. Birks, “Liquid-crystal-based in-fiber tunable spectral structures,” Opt. Eng. 45(3), 035005 (2006).
[CrossRef]

Manor, R.

A. Datta, I. Y. Eom, A. Dhar, P. Kuban, R. Manor, I. Ahmad, S. Gangopadhyay, T. Dallas, M. Holtz, H. Temkin, and P. K. Dasgupta, “Microfabrication and characterization of teflon AF-coated liquid core waveguide channels in silicon,” IEEE Sens. J. 3(6), 788–795 (2003).
[CrossRef]

Mayers, B. T.

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
[CrossRef] [PubMed]

Meucci, R.

S. Brugioni and R. Meucci, “Refractive indices of the nematic mixture E7 at 1550nm,” Infrared Phys. Technol. 49(3), 210–212 (2007).
[CrossRef]

Miller, R.

Nielsen, K.

Nielsen, L. B.

Nielsen, M. D.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

Noordegraaf, D.

Nowecka, K.

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

Nowinowski-Kruszelnicki, E.

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical field on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[CrossRef]

Paul, K. E.

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
[CrossRef] [PubMed]

Pedersen, L. H.

Pfeiffer, L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13 (1986).
[CrossRef]

Prentiss, M.

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
[CrossRef] [PubMed]

Riishede, J.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett. 29(17), 1974–1976 (2004).
[CrossRef] [PubMed]

Risk, W.

Sarro, P. M.

R. Bernini, G. Testa, L. Zeni, and P. M. Sarro, “ntegrated optofluidic Mach-Zehnder interferometer based on liquid core waveguides,” Appl. Phys. Lett. 93(1), 011106 (2008).
[CrossRef]

Saval, S. L.

Z. Zalevsky, F. Luan, W. J. Wadsworth, S. L. Saval, and T. A. Birks, “Liquid-crystal-based in-fiber tunable spectral structures,” Opt. Eng. 45(3), 035005 (2006).
[CrossRef]

Schmidt, H.

A. R. Hawkins and H. Schmidt, “Optofluidic waveguides: II. fabrication and structures,” Microfluid. Nanofluid. 4(1-2), 17–32 (2008).
[CrossRef]

H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluid. Nanofluid. 4(1-2), 3–16 (2008).
[CrossRef] [PubMed]

H. Schmidt, D. Yin, J. P. Barber, and A. R. Hawkins, “Hollow-core waveguides and 2-D waveguide arrays for integrated optics of gas and liquids,” IEEE J. Sel. Top. Quantum Electron. 11(2), 519–527 (2005).
[CrossRef]

D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, “Integrated optical waveguides with liquid cores,” Appl. Phys. Lett. 85(16), 3477 (2004).
[CrossRef]

Scolari, L.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

Shellan, J. B.

Sugimura, A.

A. Sugimura and D. Ishino, “Nematic director deformation induced by a periodic surface anchoring strength,” Thin Solid Films 438–439, 433–439 (2003).
[CrossRef]

Szaniawska, K.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical field on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[CrossRef]

Temkin, H.

W. Risk, H. Kim, R. Miller, H. Temkin, and S. Gangopadhyay, “Optical waveguides with an aqueous core and a low-index nanoporous cladding,” Opt. Express 12(26), 6446–6455 (2004).
[CrossRef] [PubMed]

A. Datta, I. Y. Eom, A. Dhar, P. Kuban, R. Manor, I. Ahmad, S. Gangopadhyay, T. Dallas, M. Holtz, H. Temkin, and P. K. Dasgupta, “Microfabrication and characterization of teflon AF-coated liquid core waveguide channels in silicon,” IEEE Sens. J. 3(6), 788–795 (2003).
[CrossRef]

Testa, G.

R. Bernini, G. Testa, L. Zeni, and P. M. Sarro, “ntegrated optofluidic Mach-Zehnder interferometer based on liquid core waveguides,” Appl. Phys. Lett. 93(1), 011106 (2008).
[CrossRef]

Trotta, M.

D. Donisi, B. Bellini, R. Beccherelli, R. Asquini, G. Gilardi, M. Trotta, and A. d’Alessandro, “Switchable liquid-crystal optical channel waveguide on silicon,” IEEE J. Quantum Electron. 46(5), 762–768 (2010).
[CrossRef]

Wadsworth, W. J.

Z. Zalevsky, F. Luan, W. J. Wadsworth, S. L. Saval, and T. A. Birks, “Liquid-crystal-based in-fiber tunable spectral structures,” Opt. Eng. 45(3), 035005 (2006).
[CrossRef]

Wang, X.

J. He, B. Yan, X. Wang, B. Yu, and Y. Wang, “A novel polymer dispersed liquid crystal film prepared by reversible addition fragmentation chain transfer polymerization,” Eur. Polym. J. 43(9), 4037–4042 (2007).
[CrossRef]

Wang, Y.

J. He, B. Yan, X. Wang, B. Yu, and Y. Wang, “A novel polymer dispersed liquid crystal film prepared by reversible addition fragmentation chain transfer polymerization,” Eur. Polym. J. 43(9), 4037–4042 (2007).
[CrossRef]

Whitesides, G. M.

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
[CrossRef] [PubMed]

Wojcik, J.

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical field on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[CrossRef]

Wolfe, D. B.

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
[CrossRef] [PubMed]

Wolinski, T. R.

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical field on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[CrossRef]

Wu, S. T.

F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181 (2004).
[CrossRef]

Yan, B.

J. He, B. Yan, X. Wang, B. Yu, and Y. Wang, “A novel polymer dispersed liquid crystal film prepared by reversible addition fragmentation chain transfer polymerization,” Eur. Polym. J. 43(9), 4037–4042 (2007).
[CrossRef]

Yang, C. Y.

Yariv, A.

Yeh, P.

Yin, D.

H. Schmidt, D. Yin, J. P. Barber, and A. R. Hawkins, “Hollow-core waveguides and 2-D waveguide arrays for integrated optics of gas and liquids,” IEEE J. Sel. Top. Quantum Electron. 11(2), 519–527 (2005).
[CrossRef]

D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, “Integrated optical waveguides with liquid cores,” Appl. Phys. Lett. 85(16), 3477 (2004).
[CrossRef]

Yu, B.

J. He, B. Yan, X. Wang, B. Yu, and Y. Wang, “A novel polymer dispersed liquid crystal film prepared by reversible addition fragmentation chain transfer polymerization,” Eur. Polym. J. 43(9), 4037–4042 (2007).
[CrossRef]

Zalevsky, Z.

Z. Zalevsky, F. Luan, W. J. Wadsworth, S. L. Saval, and T. A. Birks, “Liquid-crystal-based in-fiber tunable spectral structures,” Opt. Eng. 45(3), 035005 (2006).
[CrossRef]

Zeni, L.

R. Bernini, G. Testa, L. Zeni, and P. M. Sarro, “ntegrated optofluidic Mach-Zehnder interferometer based on liquid core waveguides,” Appl. Phys. Lett. 93(1), 011106 (2008).
[CrossRef]

Appl. Phys. Lett. (4)

R. Bernini, G. Testa, L. Zeni, and P. M. Sarro, “ntegrated optofluidic Mach-Zehnder interferometer based on liquid core waveguides,” Appl. Phys. Lett. 93(1), 011106 (2008).
[CrossRef]

F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181 (2004).
[CrossRef]

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13 (1986).
[CrossRef]

D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, “Integrated optical waveguides with liquid cores,” Appl. Phys. Lett. 85(16), 3477 (2004).
[CrossRef]

Eur. Polym. J. (1)

J. He, B. Yan, X. Wang, B. Yu, and Y. Wang, “A novel polymer dispersed liquid crystal film prepared by reversible addition fragmentation chain transfer polymerization,” Eur. Polym. J. 43(9), 4037–4042 (2007).
[CrossRef]

IEEE J. Quantum Electron. (2)

A. D’Alessandro, B. D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron. 42(10), 1084–1090 (2006).
[CrossRef]

D. Donisi, B. Bellini, R. Beccherelli, R. Asquini, G. Gilardi, M. Trotta, and A. d’Alessandro, “Switchable liquid-crystal optical channel waveguide on silicon,” IEEE J. Quantum Electron. 46(5), 762–768 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Schmidt, D. Yin, J. P. Barber, and A. R. Hawkins, “Hollow-core waveguides and 2-D waveguide arrays for integrated optics of gas and liquids,” IEEE J. Sel. Top. Quantum Electron. 11(2), 519–527 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

IEEE Sens. J. (1)

A. Datta, I. Y. Eom, A. Dhar, P. Kuban, R. Manor, I. Ahmad, S. Gangopadhyay, T. Dallas, M. Holtz, H. Temkin, and P. K. Dasgupta, “Microfabrication and characterization of teflon AF-coated liquid core waveguide channels in silicon,” IEEE Sens. J. 3(6), 788–795 (2003).
[CrossRef]

Infrared Phys. Technol. (1)

S. Brugioni and R. Meucci, “Refractive indices of the nematic mixture E7 at 1550nm,” Infrared Phys. Technol. 49(3), 210–212 (2007).
[CrossRef]

J. Opt. Soc. Am. (1)

Meas. Sci. Technol. (2)

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical field on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[CrossRef]

T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007).
[CrossRef]

Microfluid. Nanofluid. (2)

H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluid. Nanofluid. 4(1-2), 3–16 (2008).
[CrossRef] [PubMed]

A. R. Hawkins and H. Schmidt, “Optofluidic waveguides: II. fabrication and structures,” Microfluid. Nanofluid. 4(1-2), 17–32 (2008).
[CrossRef]

Opt. Eng. (1)

Z. Zalevsky, F. Luan, W. J. Wadsworth, S. L. Saval, and T. A. Birks, “Liquid-crystal-based in-fiber tunable spectral structures,” Opt. Eng. 45(3), 035005 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Proc. Natl. Acad. Sci. U.S.A. (1)

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
[CrossRef] [PubMed]

Sens. Actuators B Chem. (1)

V. J. Cadarso, A. Llobera, C. Fernandez-Sanchez, M. Darder, and C. Dominguez, “Hollow waveguide-based full-field absorbance biosensor,” Sens. Actuators B Chem. 139(1), 143–149 (2009).
[CrossRef]

Thin Solid Films (1)

A. Sugimura and D. Ishino, “Nematic director deformation induced by a periodic surface anchoring strength,” Thin Solid Films 438–439, 433–439 (2003).
[CrossRef]

Other (1)

H.-Y. Pan, H.-K. Chiu, and C.-C. Chen, “Liquid crystal infiltrated waveguide with distributed Bragg reflectors,” (unpublished data).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic drawing of the cross-section of the HWGs.

Fig. 2
Fig. 2

Propagation loss of the devices for different applying voltages and for the incident light with different polarizations. (a) the case for the direction of LC directors is parallel to the x-direction where no contributes to the leakage of the light. (b) the case for the direction of LC directors is non-uniform distribution.

Fig. 3
Fig. 3

SEM image of the cleaved waveguide facet.

Fig. 4
Fig. 4

(a) Output field image without applying external voltage. (b) Output field image with applying external voltage at 4 Vpp.

Fig. 5
Fig. 5

Output power for different polarized lights and for different applied voltages.

Metrics