Abstract

With recent developments and optimizations for quasi-phase-matched adhered ridge waveguide (QPM-ARW), outstanding performances containing efficient amplification were demonstrated by difference frequency generation (DFG) and optical parametric amplification (OPA). A maximum channel conversion efficiency of +7.6 dB (570%) was achieved in a telecommunication band using a 50 mm-long device, when coupling with 160 mW pump. Simultaneously, the input signal was amplified up to +9.5 dB (890%).

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Efficient second-harmonic generation of 340-nm light in a 1.4-μm periodically poled bulk MgO:LiNbO3,” Jpn. J. Appl. Phys. 42(Part 2, No. 2A), L90–L91 (2003).
    [CrossRef]
  2. S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate,” Appl. Phys. Lett. 90(5), 051115 (2007).
    [CrossRef]
  3. M. Maruyama, H. Nakajima, S. Kurimura, N. E. Yu, and K. Kitamura, “70-mm-long periodically poled Mg-doped stoichiometric LiNbO3 devices for nanosecond optical parametric generation,” Appl. Phys. Lett. 89(1), 011101 (2006).
    [CrossRef]
  4. T. Tanemura, C. S. Goh, K. Kikuchi, and S. Y. Set, “Highly efficient arbitrary wavelength conversion within entire C-band based on nondegenerate fiber four-wave mixing,” IEEE Photon. Technol. Lett. 16(2), 551–553 (2004).
    [CrossRef]
  5. V. G. Ta’eed, N. J. Baker, L. B. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15(15), 9205–9221 (2007).
    [CrossRef] [PubMed]
  6. V. G. Ta’eed, M. D. Pelusi, B. J. Eggleton, D. Y. Choi, S. Madden, D. Bulla, and B. Luther-Davies, “Broadband wavelength conversion at 40 Gb/s using long serpentine As2S3 planar waveguides,” Opt. Express 15(23), 15047–15052 (2007).
    [CrossRef] [PubMed]
  7. K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000).
    [CrossRef]
  8. C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1168–1180 (1997).
    [CrossRef]
  9. S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
    [CrossRef]
  10. C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions 1.5-μm by difference-frequency-generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63(9), 1170–1172 (1993).
    [CrossRef]
  11. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
    [CrossRef]
  12. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27(3), 179–181 (2002).
    [CrossRef]
  13. Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkotter, V. Quiring, and W. Sohler, “Wavelength- and time-selective all-optical, channel dropping in periodically poled Ti:LiNbO3 channel waveguides,” IEEE Photon. Technol. Lett. 15(7), 978–980 (2003).
    [CrossRef]
  14. T. Suhara and M. Fujimura, Waveguide Nonlinear-Optic Devices (Springer-Verlag, Berlin, 2003).
  15. C. Ware, L. K. Oxenløwe, F. Gómez Agis, H. C. H. Mulvad, M. Galili, S. Kurimura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “320 Gbps to 10 GHz sub-clock recovery using a PPLN-based opto-electronic phase-locked loop,” Opt. Express 16(7), 5007–5012 (2008).
    [CrossRef] [PubMed]
  16. L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s dock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–372 (2008).
    [CrossRef]
  17. M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256-QAM (64 Gb/s) Coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz,” IEEE Photon. Technol. Lett. 22(3), 185–187 (2010).
    [CrossRef]
  18. T. Kawanishi, T. Sakamoto, and M. Izutsu, “High-speed control of lightwave amplitude, phase, and frequency by use of electrooptic effect,” IEEE J. Sel. Top. Quantum Electron. 13(1), 79–91 (2007).
    [CrossRef]

2010

M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256-QAM (64 Gb/s) Coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz,” IEEE Photon. Technol. Lett. 22(3), 185–187 (2010).
[CrossRef]

2008

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s dock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–372 (2008).
[CrossRef]

C. Ware, L. K. Oxenløwe, F. Gómez Agis, H. C. H. Mulvad, M. Galili, S. Kurimura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “320 Gbps to 10 GHz sub-clock recovery using a PPLN-based opto-electronic phase-locked loop,” Opt. Express 16(7), 5007–5012 (2008).
[CrossRef] [PubMed]

2007

V. G. Ta’eed, N. J. Baker, L. B. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15(15), 9205–9221 (2007).
[CrossRef] [PubMed]

V. G. Ta’eed, M. D. Pelusi, B. J. Eggleton, D. Y. Choi, S. Madden, D. Bulla, and B. Luther-Davies, “Broadband wavelength conversion at 40 Gb/s using long serpentine As2S3 planar waveguides,” Opt. Express 15(23), 15047–15052 (2007).
[CrossRef] [PubMed]

T. Kawanishi, T. Sakamoto, and M. Izutsu, “High-speed control of lightwave amplitude, phase, and frequency by use of electrooptic effect,” IEEE J. Sel. Top. Quantum Electron. 13(1), 79–91 (2007).
[CrossRef]

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate,” Appl. Phys. Lett. 90(5), 051115 (2007).
[CrossRef]

2006

M. Maruyama, H. Nakajima, S. Kurimura, N. E. Yu, and K. Kitamura, “70-mm-long periodically poled Mg-doped stoichiometric LiNbO3 devices for nanosecond optical parametric generation,” Appl. Phys. Lett. 89(1), 011101 (2006).
[CrossRef]

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[CrossRef]

2004

T. Tanemura, C. S. Goh, K. Kikuchi, and S. Y. Set, “Highly efficient arbitrary wavelength conversion within entire C-band based on nondegenerate fiber four-wave mixing,” IEEE Photon. Technol. Lett. 16(2), 551–553 (2004).
[CrossRef]

2003

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Efficient second-harmonic generation of 340-nm light in a 1.4-μm periodically poled bulk MgO:LiNbO3,” Jpn. J. Appl. Phys. 42(Part 2, No. 2A), L90–L91 (2003).
[CrossRef]

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkotter, V. Quiring, and W. Sohler, “Wavelength- and time-selective all-optical, channel dropping in periodically poled Ti:LiNbO3 channel waveguides,” IEEE Photon. Technol. Lett. 15(7), 978–980 (2003).
[CrossRef]

2002

2000

K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000).
[CrossRef]

1999

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

1997

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1168–1180 (1997).
[CrossRef]

1993

C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions 1.5-μm by difference-frequency-generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63(9), 1170–1172 (1993).
[CrossRef]

Baker, N. J.

Brener, I.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

Bulla, D.

Chaban, E. E.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

Choi, D. Y.

Chou, M. H.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

Christman, S. B.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

Clausen, A. T.

C. Ware, L. K. Oxenløwe, F. Gómez Agis, H. C. H. Mulvad, M. Galili, S. Kurimura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “320 Gbps to 10 GHz sub-clock recovery using a PPLN-based opto-electronic phase-locked loop,” Opt. Express 16(7), 5007–5012 (2008).
[CrossRef] [PubMed]

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s dock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–372 (2008).
[CrossRef]

Danielsen, S. L.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1168–1180 (1997).
[CrossRef]

Daub, K.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1168–1180 (1997).
[CrossRef]

Doussiere, P.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1168–1180 (1997).
[CrossRef]

Eggleton, B. J.

Erasme, D.

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s dock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–372 (2008).
[CrossRef]

C. Ware, L. K. Oxenløwe, F. Gómez Agis, H. C. H. Mulvad, M. Galili, S. Kurimura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “320 Gbps to 10 GHz sub-clock recovery using a PPLN-based opto-electronic phase-locked loop,” Opt. Express 16(7), 5007–5012 (2008).
[CrossRef] [PubMed]

Fejer, M. M.

K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27(3), 179–181 (2002).
[CrossRef]

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

Finsterbusch, K.

Fu, L. B.

Fujimura, M.

Galili, M.

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s dock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–372 (2008).
[CrossRef]

C. Ware, L. K. Oxenløwe, F. Gómez Agis, H. C. H. Mulvad, M. Galili, S. Kurimura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “320 Gbps to 10 GHz sub-clock recovery using a PPLN-based opto-electronic phase-locked loop,” Opt. Express 16(7), 5007–5012 (2008).
[CrossRef] [PubMed]

Goh, C. S.

T. Tanemura, C. S. Goh, K. Kikuchi, and S. Y. Set, “Highly efficient arbitrary wavelength conversion within entire C-band based on nondegenerate fiber four-wave mixing,” IEEE Photon. Technol. Lett. 16(2), 551–553 (2004).
[CrossRef]

Gomez Agis, F.

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s dock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–372 (2008).
[CrossRef]

Gómez Agis, F.

Grundkotter, W.

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkotter, V. Quiring, and W. Sohler, “Wavelength- and time-selective all-optical, channel dropping in periodically poled Ti:LiNbO3 channel waveguides,” IEEE Photon. Technol. Lett. 15(7), 978–980 (2003).
[CrossRef]

Hansen, P. B.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1168–1180 (1997).
[CrossRef]

Ichikawa, J.

C. Ware, L. K. Oxenløwe, F. Gómez Agis, H. C. H. Mulvad, M. Galili, S. Kurimura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “320 Gbps to 10 GHz sub-clock recovery using a PPLN-based opto-electronic phase-locked loop,” Opt. Express 16(7), 5007–5012 (2008).
[CrossRef] [PubMed]

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s dock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–372 (2008).
[CrossRef]

Idler, W.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1168–1180 (1997).
[CrossRef]

Izutsu, M.

T. Kawanishi, T. Sakamoto, and M. Izutsu, “High-speed control of lightwave amplitude, phase, and frequency by use of electrooptic effect,” IEEE J. Sel. Top. Quantum Electron. 13(1), 79–91 (2007).
[CrossRef]

Jeppesen, P.

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s dock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–372 (2008).
[CrossRef]

C. Ware, L. K. Oxenløwe, F. Gómez Agis, H. C. H. Mulvad, M. Galili, S. Kurimura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “320 Gbps to 10 GHz sub-clock recovery using a PPLN-based opto-electronic phase-locked loop,” Opt. Express 16(7), 5007–5012 (2008).
[CrossRef] [PubMed]

Joergensen, C.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1168–1180 (1997).
[CrossRef]

Kasai, K.

M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256-QAM (64 Gb/s) Coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz,” IEEE Photon. Technol. Lett. 22(3), 185–187 (2010).
[CrossRef]

Kato, Y.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[CrossRef]

Kawahara, M.

C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions 1.5-μm by difference-frequency-generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63(9), 1170–1172 (1993).
[CrossRef]

Kawanishi, T.

T. Kawanishi, T. Sakamoto, and M. Izutsu, “High-speed control of lightwave amplitude, phase, and frequency by use of electrooptic effect,” IEEE J. Sel. Top. Quantum Electron. 13(1), 79–91 (2007).
[CrossRef]

Kikuchi, K.

T. Tanemura, C. S. Goh, K. Kikuchi, and S. Y. Set, “Highly efficient arbitrary wavelength conversion within entire C-band based on nondegenerate fiber four-wave mixing,” IEEE Photon. Technol. Lett. 16(2), 551–553 (2004).
[CrossRef]

Kitamura, K.

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s dock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–372 (2008).
[CrossRef]

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate,” Appl. Phys. Lett. 90(5), 051115 (2007).
[CrossRef]

M. Maruyama, H. Nakajima, S. Kurimura, N. E. Yu, and K. Kitamura, “70-mm-long periodically poled Mg-doped stoichiometric LiNbO3 devices for nanosecond optical parametric generation,” Appl. Phys. Lett. 89(1), 011101 (2006).
[CrossRef]

Kloch, A.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1168–1180 (1997).
[CrossRef]

Kurimura, S.

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s dock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–372 (2008).
[CrossRef]

C. Ware, L. K. Oxenløwe, F. Gómez Agis, H. C. H. Mulvad, M. Galili, S. Kurimura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “320 Gbps to 10 GHz sub-clock recovery using a PPLN-based opto-electronic phase-locked loop,” Opt. Express 16(7), 5007–5012 (2008).
[CrossRef] [PubMed]

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate,” Appl. Phys. Lett. 90(5), 051115 (2007).
[CrossRef]

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[CrossRef]

M. Maruyama, H. Nakajima, S. Kurimura, N. E. Yu, and K. Kitamura, “70-mm-long periodically poled Mg-doped stoichiometric LiNbO3 devices for nanosecond optical parametric generation,” Appl. Phys. Lett. 89(1), 011101 (2006).
[CrossRef]

Kurz, J. R.

Lach, E.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1168–1180 (1997).
[CrossRef]

Lamont, M. R. E.

Laube, G.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1168–1180 (1997).
[CrossRef]

Lee, J. H.

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkotter, V. Quiring, and W. Sohler, “Wavelength- and time-selective all-optical, channel dropping in periodically poled Ti:LiNbO3 channel waveguides,” IEEE Photon. Technol. Lett. 15(7), 978–980 (2003).
[CrossRef]

Lee, Y. L.

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkotter, V. Quiring, and W. Sohler, “Wavelength- and time-selective all-optical, channel dropping in periodically poled Ti:LiNbO3 channel waveguides,” IEEE Photon. Technol. Lett. 15(7), 978–980 (2003).
[CrossRef]

Luther-Davies, B.

Madden, S.

Maruyama, M.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[CrossRef]

M. Maruyama, H. Nakajima, S. Kurimura, N. E. Yu, and K. Kitamura, “70-mm-long periodically poled Mg-doped stoichiometric LiNbO3 devices for nanosecond optical parametric generation,” Appl. Phys. Lett. 89(1), 011101 (2006).
[CrossRef]

Mikkelsen, B.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1168–1180 (1997).
[CrossRef]

Min, Y. H.

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkotter, V. Quiring, and W. Sohler, “Wavelength- and time-selective all-optical, channel dropping in periodically poled Ti:LiNbO3 channel waveguides,” IEEE Photon. Technol. Lett. 15(7), 978–980 (2003).
[CrossRef]

Mizuuchi, K.

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Efficient second-harmonic generation of 340-nm light in a 1.4-μm periodically poled bulk MgO:LiNbO3,” Jpn. J. Appl. Phys. 42(Part 2, No. 2A), L90–L91 (2003).
[CrossRef]

Morikawa, A.

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Efficient second-harmonic generation of 340-nm light in a 1.4-μm periodically poled bulk MgO:LiNbO3,” Jpn. J. Appl. Phys. 42(Part 2, No. 2A), L90–L91 (2003).
[CrossRef]

Moss, D. J.

Mulvad, H. C. H.

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s dock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–372 (2008).
[CrossRef]

C. Ware, L. K. Oxenløwe, F. Gómez Agis, H. C. H. Mulvad, M. Galili, S. Kurimura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “320 Gbps to 10 GHz sub-clock recovery using a PPLN-based opto-electronic phase-locked loop,” Opt. Express 16(7), 5007–5012 (2008).
[CrossRef] [PubMed]

Nakajima, H.

C. Ware, L. K. Oxenløwe, F. Gómez Agis, H. C. H. Mulvad, M. Galili, S. Kurimura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “320 Gbps to 10 GHz sub-clock recovery using a PPLN-based opto-electronic phase-locked loop,” Opt. Express 16(7), 5007–5012 (2008).
[CrossRef] [PubMed]

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s dock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–372 (2008).
[CrossRef]

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[CrossRef]

M. Maruyama, H. Nakajima, S. Kurimura, N. E. Yu, and K. Kitamura, “70-mm-long periodically poled Mg-doped stoichiometric LiNbO3 devices for nanosecond optical parametric generation,” Appl. Phys. Lett. 89(1), 011101 (2006).
[CrossRef]

Nakazawa, M.

M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256-QAM (64 Gb/s) Coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz,” IEEE Photon. Technol. Lett. 22(3), 185–187 (2010).
[CrossRef]

Nguyen, H. C.

Okamoto, S.

M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256-QAM (64 Gb/s) Coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz,” IEEE Photon. Technol. Lett. 22(3), 185–187 (2010).
[CrossRef]

Okayama, H.

C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions 1.5-μm by difference-frequency-generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63(9), 1170–1172 (1993).
[CrossRef]

Omiya, T.

M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256-QAM (64 Gb/s) Coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz,” IEEE Photon. Technol. Lett. 22(3), 185–187 (2010).
[CrossRef]

Oxenløwe, L. K.

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s dock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–372 (2008).
[CrossRef]

C. Ware, L. K. Oxenløwe, F. Gómez Agis, H. C. H. Mulvad, M. Galili, S. Kurimura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “320 Gbps to 10 GHz sub-clock recovery using a PPLN-based opto-electronic phase-locked loop,” Opt. Express 16(7), 5007–5012 (2008).
[CrossRef] [PubMed]

Parameswaran, K. R.

Pelusi, M. D.

Pommerau, F.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1168–1180 (1997).
[CrossRef]

Poulsen, H. N.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1168–1180 (1997).
[CrossRef]

Quiring, V.

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkotter, V. Quiring, and W. Sohler, “Wavelength- and time-selective all-optical, channel dropping in periodically poled Ti:LiNbO3 channel waveguides,” IEEE Photon. Technol. Lett. 15(7), 978–980 (2003).
[CrossRef]

Roussev, R. V.

Route, R. K.

Sakamoto, T.

T. Kawanishi, T. Sakamoto, and M. Izutsu, “High-speed control of lightwave amplitude, phase, and frequency by use of electrooptic effect,” IEEE J. Sel. Top. Quantum Electron. 13(1), 79–91 (2007).
[CrossRef]

Schilling, M.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1168–1180 (1997).
[CrossRef]

Set, S. Y.

T. Tanemura, C. S. Goh, K. Kikuchi, and S. Y. Set, “Highly efficient arbitrary wavelength conversion within entire C-band based on nondegenerate fiber four-wave mixing,” IEEE Photon. Technol. Lett. 16(2), 551–553 (2004).
[CrossRef]

Shinozaki, K.

C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions 1.5-μm by difference-frequency-generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63(9), 1170–1172 (1993).
[CrossRef]

Sohler, W.

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkotter, V. Quiring, and W. Sohler, “Wavelength- and time-selective all-optical, channel dropping in periodically poled Ti:LiNbO3 channel waveguides,” IEEE Photon. Technol. Lett. 15(7), 978–980 (2003).
[CrossRef]

Stubkjaer, K. E.

K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000).
[CrossRef]

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1168–1180 (1997).
[CrossRef]

Suche, H.

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkotter, V. Quiring, and W. Sohler, “Wavelength- and time-selective all-optical, channel dropping in periodically poled Ti:LiNbO3 channel waveguides,” IEEE Photon. Technol. Lett. 15(7), 978–980 (2003).
[CrossRef]

Sugita, T.

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Efficient second-harmonic generation of 340-nm light in a 1.4-μm periodically poled bulk MgO:LiNbO3,” Jpn. J. Appl. Phys. 42(Part 2, No. 2A), L90–L91 (2003).
[CrossRef]

Ta’eed, V. G.

Tanemura, T.

T. Tanemura, C. S. Goh, K. Kikuchi, and S. Y. Set, “Highly efficient arbitrary wavelength conversion within entire C-band based on nondegenerate fiber four-wave mixing,” IEEE Photon. Technol. Lett. 16(2), 551–553 (2004).
[CrossRef]

Tovstonog, S. V.

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate,” Appl. Phys. Lett. 90(5), 051115 (2007).
[CrossRef]

Usui, Y.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[CrossRef]

Vaa, M.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1168–1180 (1997).
[CrossRef]

Ware, C.

C. Ware, L. K. Oxenløwe, F. Gómez Agis, H. C. H. Mulvad, M. Galili, S. Kurimura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “320 Gbps to 10 GHz sub-clock recovery using a PPLN-based opto-electronic phase-locked loop,” Opt. Express 16(7), 5007–5012 (2008).
[CrossRef] [PubMed]

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s dock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–372 (2008).
[CrossRef]

Watanabe, K.

C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions 1.5-μm by difference-frequency-generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63(9), 1170–1172 (1993).
[CrossRef]

Wunstel, K.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1168–1180 (1997).
[CrossRef]

Xu, C. Q.

C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions 1.5-μm by difference-frequency-generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63(9), 1170–1172 (1993).
[CrossRef]

Yamamoto, K.

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Efficient second-harmonic generation of 340-nm light in a 1.4-μm periodically poled bulk MgO:LiNbO3,” Jpn. J. Appl. Phys. 42(Part 2, No. 2A), L90–L91 (2003).
[CrossRef]

Yoshida, M.

M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256-QAM (64 Gb/s) Coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz,” IEEE Photon. Technol. Lett. 22(3), 185–187 (2010).
[CrossRef]

Yu, N. E.

M. Maruyama, H. Nakajima, S. Kurimura, N. E. Yu, and K. Kitamura, “70-mm-long periodically poled Mg-doped stoichiometric LiNbO3 devices for nanosecond optical parametric generation,” Appl. Phys. Lett. 89(1), 011101 (2006).
[CrossRef]

Appl. Phys. Lett.

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate,” Appl. Phys. Lett. 90(5), 051115 (2007).
[CrossRef]

M. Maruyama, H. Nakajima, S. Kurimura, N. E. Yu, and K. Kitamura, “70-mm-long periodically poled Mg-doped stoichiometric LiNbO3 devices for nanosecond optical parametric generation,” Appl. Phys. Lett. 89(1), 011101 (2006).
[CrossRef]

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[CrossRef]

C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions 1.5-μm by difference-frequency-generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63(9), 1170–1172 (1993).
[CrossRef]

Electron. Lett.

L. K. Oxenløwe, F. Gomez Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, K. Kitamura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640 Gbit/s dock recovery using periodically poled lithium niobate,” Electron. Lett. 44(5), 370–372 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

T. Kawanishi, T. Sakamoto, and M. Izutsu, “High-speed control of lightwave amplitude, phase, and frequency by use of electrooptic effect,” IEEE J. Sel. Top. Quantum Electron. 13(1), 79–91 (2007).
[CrossRef]

K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000).
[CrossRef]

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1168–1180 (1997).
[CrossRef]

IEEE Photon. Technol. Lett.

T. Tanemura, C. S. Goh, K. Kikuchi, and S. Y. Set, “Highly efficient arbitrary wavelength conversion within entire C-band based on nondegenerate fiber four-wave mixing,” IEEE Photon. Technol. Lett. 16(2), 551–553 (2004).
[CrossRef]

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkotter, V. Quiring, and W. Sohler, “Wavelength- and time-selective all-optical, channel dropping in periodically poled Ti:LiNbO3 channel waveguides,” IEEE Photon. Technol. Lett. 15(7), 978–980 (2003).
[CrossRef]

M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256-QAM (64 Gb/s) Coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz,” IEEE Photon. Technol. Lett. 22(3), 185–187 (2010).
[CrossRef]

Jpn. J. Appl. Phys.

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Efficient second-harmonic generation of 340-nm light in a 1.4-μm periodically poled bulk MgO:LiNbO3,” Jpn. J. Appl. Phys. 42(Part 2, No. 2A), L90–L91 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Other

T. Suhara and M. Fujimura, Waveguide Nonlinear-Optic Devices (Springer-Verlag, Berlin, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Overview photomicrograph from the top face of ARWs (26 waveguides per each section: total 52 waveguides in the above photograph).

Fig. 2
Fig. 2

SEM cross-sectional photograph of 9, 8 and 7 µm-wide waveguides. An insulator-sandwich structure is fabricated by adhesion and CMP processes.

Fig. 3
Fig. 3

Near-field mode profiles at 8 µm-wide waveguide for each wavelength: (a) 1550 nm, (b) 780 nm.

Fig. 4
Fig. 4

SHG tuning curve shows that the maximum normalized conversion efficiency is approximate 4600%/W at fundamental wavelength of 1576.5 nm. The side robes correspond to fluctuations of the waveguide’s dimensions.

Fig. 5
Fig. 5

DFG spectra comparison of just signal light (dashed line: −15 dBm) and coupling with 160 mW pump of a Ti:sapphire CW laser (solid line). Clear OPAs appear in the both lights. The central peak corresponds to the 2nd order diffraction of the pump light in an optical spectrum analyzer.

Fig. 6
Fig. 6

Dependences of signal (white) and converted (black) lights power on Ti: Sapphire CW pump power. Each upper right plot of signal and converted lights correspond with the spectra in Fig. 5 for 160 mW pump.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η n o r m = 8 π 2 c μ 0 ( d e f f ) 2 ( n ω ) 2 n 2 ω ( λ ω ) 2 S e f f × L 2

Metrics