Abstract

This paper proposes an approach for producing dual liquid crystal (LC) alignment configuration based on nanoparticle-doped polymer films. Experimental results indicate that illuminating a nanoparticle-doped pre-polymer film, coated onto a substrate with a homogeneous alignment layer, with unpolarized UV light through a photomask causes the polymerization of pre-polymer, ultimately generating homogeneous and vertical alignment layers in unpolymerized and polymerized regions, respectively. The dual LC alignment configuration of the homogeneous (vertical) and hybrid alignments can be achieved by combining the treated substrate with another substrate that has a homogeneous (vertical) alignment layer. Additionally, the applications of the dual LC alignment layer in phase gratings and transflective LC displays are demonstrated.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, T. J. Sluckin, and J. L. West, “Orientational coupling amplification in ferroelectric nematic colloids,” Phys. Rev. Lett. 97(14), 147801 (2006).
    [CrossRef] [PubMed]
  2. A. Kumar, J. Prakash, D. S. Mehta, A. M. Biradar, and W. Haase, “Enhanced photoluminescence in gold nanoparticles doped ferroelectric liquid crystals,” Appl. Phys. Lett. 95(2), 023117 (2009).
    [CrossRef]
  3. W. Lee, C.-Y. Wang, and Y.-C. Shih, “Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host,” Appl. Phys. Lett. 85(4), 513–515 (2004).
    [CrossRef]
  4. C.-Y. Huang, H.-C. Pan, and C.-T. Hsieh, “Electrooptical properties of carbon-nanotube-doped twisted nematic liquid crystal cell,” Jpn. J. Appl. Phys. 45(No. 8A), 6392–6394 (2006).
    [CrossRef]
  5. S.-C. Jeng, C.-W. Kuo, H.-L. Wang, and C.-C. Liao, “Nanoparticles-induced vertical alignment in liquid crystal cell,” Appl. Phys. Lett. 91(6), 061112 (2007).
    [CrossRef]
  6. S.-J. Hwang, S.-C. Jeng, C.-Y. Yang, C.-W. Kuo, and C.-C. Liao, “Characteristics of nanoparticle-doped homeotropic liquid crystal devices,” J. Phys. D Appl. Phys. 42(2), 025102 (2009).
    [CrossRef]
  7. W.-Z. Chen, Y.-T. Tsai, and T.-H. Lin, “Photoalignment effect in a liquid-crystal film doped with nanoparticles and azo-dye,” Appl. Phys. Lett. 94(20), 201114 (2009).
    [CrossRef]
  8. W.-Z. Chen, Y.-T. Tsai, and T.-H. Lin, “Single-cell-gap transflective liquid-crystal display based on photo- and nanoparticle-induced alignment effects,” Opt. Lett. 34(17), 2545–2547 (2009).
    [CrossRef] [PubMed]
  9. T.-J. Chen and K.-L. Chu, “Pretilt angle control for single-cell-gap transflective liquid crystal cells,” Appl. Phys. Lett. 92(9), 091102 (2008).
    [CrossRef]
  10. K.-T. Cheng, C.-K. Liu, C.-L. Ting, and A. Y.-G. Fuh, “Electrically switchable and optically rewritable reflective Fresnel zone plate in dye-doped cholesteric liquid crystals,” Opt. Express 15(21), 14078–14085 (2007).
    [CrossRef] [PubMed]
  11. A. Y.-G. Fuh, J.-C. Chen, K.-T. Cheng, and S.-Y. Huang, “Polarization-independent and electrically tunable liquid crystal Fresnel lenses based on photoalignment in dye-doped liquid crystals,” J. Soc. Inf. Disp. 18(8), 572–576 (2010).
    [CrossRef]
  12. A. Y.-G. Fuh, J.-C. Chen, S.-Y. Huang, and K.-T. Cheng, “Binary liquid crystal alignments based on photoalignment in azo dye-doped liquid crystals and their application,” Appl. Phys. Lett. 96(5), 051103 (2010).
    [CrossRef]
  13. J. Pyun and K. Matyjaszewski, “Synthesis of nanocomposite organic/inorganic hybrid materials using controlled/‘living’ radical polymerization,” Chem. Mater. 13(10), 3436–3448 (2001).
    [CrossRef]
  14. A. Strachota, I. Kroutilova, J. Kovarova, and L. Matejka, “Epoxy networks reinforced with polyhedral oligomeric silsesquioxanes (POSS). thermomechanical properties,” Macromolecules 37(25), 9457–9464 (2004).
    [CrossRef]
  15. P. T. Mather, H. G. Jeon, A. Romo-Uribe, T. S. Haddad, and J. D. Lichtenhan, “Mechanical relaxation and microstructure of poly(norbornyl-POSS) copolymers,” Macromolecules 32(4), 1194–1203 (1999).
    [CrossRef]
  16. C.-J. Yu, J.-H. Park, J. Kim, M.-S. Jung, and S.-D. Lee, “Diffraction patterns of binary liquid crystal gratings in homeotropic and hybrid geometries,” Mater. Sci. Eng. C 24(1-2), 247–250 (2004).
    [CrossRef]
  17. C.-J. Yu, D.-W. Kim, J. Kim, and S.-D. Lee, “Polarization-invariant grating based on a photoaligned liquid crystal in an oppositely twisted binary configuration,” Opt. Lett. 30(15), 1995–1997 (2005).
    [CrossRef] [PubMed]
  18. J.-H. Park, C.-J. Yu, J. Kim, S.-Y. Chung, and S.-D. Lee, “Concept of a liquid-crystal polarization beamsplitter based on binary phase gratings,” Appl. Phys. Lett. 83(10), 1918–1920 (2003).
    [CrossRef]
  19. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley & Sons, Inc., 1999), Chap. 5.

2010 (2)

A. Y.-G. Fuh, J.-C. Chen, K.-T. Cheng, and S.-Y. Huang, “Polarization-independent and electrically tunable liquid crystal Fresnel lenses based on photoalignment in dye-doped liquid crystals,” J. Soc. Inf. Disp. 18(8), 572–576 (2010).
[CrossRef]

A. Y.-G. Fuh, J.-C. Chen, S.-Y. Huang, and K.-T. Cheng, “Binary liquid crystal alignments based on photoalignment in azo dye-doped liquid crystals and their application,” Appl. Phys. Lett. 96(5), 051103 (2010).
[CrossRef]

2009 (4)

S.-J. Hwang, S.-C. Jeng, C.-Y. Yang, C.-W. Kuo, and C.-C. Liao, “Characteristics of nanoparticle-doped homeotropic liquid crystal devices,” J. Phys. D Appl. Phys. 42(2), 025102 (2009).
[CrossRef]

W.-Z. Chen, Y.-T. Tsai, and T.-H. Lin, “Photoalignment effect in a liquid-crystal film doped with nanoparticles and azo-dye,” Appl. Phys. Lett. 94(20), 201114 (2009).
[CrossRef]

A. Kumar, J. Prakash, D. S. Mehta, A. M. Biradar, and W. Haase, “Enhanced photoluminescence in gold nanoparticles doped ferroelectric liquid crystals,” Appl. Phys. Lett. 95(2), 023117 (2009).
[CrossRef]

W.-Z. Chen, Y.-T. Tsai, and T.-H. Lin, “Single-cell-gap transflective liquid-crystal display based on photo- and nanoparticle-induced alignment effects,” Opt. Lett. 34(17), 2545–2547 (2009).
[CrossRef] [PubMed]

2008 (1)

T.-J. Chen and K.-L. Chu, “Pretilt angle control for single-cell-gap transflective liquid crystal cells,” Appl. Phys. Lett. 92(9), 091102 (2008).
[CrossRef]

2007 (2)

2006 (2)

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, T. J. Sluckin, and J. L. West, “Orientational coupling amplification in ferroelectric nematic colloids,” Phys. Rev. Lett. 97(14), 147801 (2006).
[CrossRef] [PubMed]

C.-Y. Huang, H.-C. Pan, and C.-T. Hsieh, “Electrooptical properties of carbon-nanotube-doped twisted nematic liquid crystal cell,” Jpn. J. Appl. Phys. 45(No. 8A), 6392–6394 (2006).
[CrossRef]

2005 (1)

2004 (3)

C.-J. Yu, J.-H. Park, J. Kim, M.-S. Jung, and S.-D. Lee, “Diffraction patterns of binary liquid crystal gratings in homeotropic and hybrid geometries,” Mater. Sci. Eng. C 24(1-2), 247–250 (2004).
[CrossRef]

A. Strachota, I. Kroutilova, J. Kovarova, and L. Matejka, “Epoxy networks reinforced with polyhedral oligomeric silsesquioxanes (POSS). thermomechanical properties,” Macromolecules 37(25), 9457–9464 (2004).
[CrossRef]

W. Lee, C.-Y. Wang, and Y.-C. Shih, “Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host,” Appl. Phys. Lett. 85(4), 513–515 (2004).
[CrossRef]

2003 (1)

J.-H. Park, C.-J. Yu, J. Kim, S.-Y. Chung, and S.-D. Lee, “Concept of a liquid-crystal polarization beamsplitter based on binary phase gratings,” Appl. Phys. Lett. 83(10), 1918–1920 (2003).
[CrossRef]

2001 (1)

J. Pyun and K. Matyjaszewski, “Synthesis of nanocomposite organic/inorganic hybrid materials using controlled/‘living’ radical polymerization,” Chem. Mater. 13(10), 3436–3448 (2001).
[CrossRef]

1999 (1)

P. T. Mather, H. G. Jeon, A. Romo-Uribe, T. S. Haddad, and J. D. Lichtenhan, “Mechanical relaxation and microstructure of poly(norbornyl-POSS) copolymers,” Macromolecules 32(4), 1194–1203 (1999).
[CrossRef]

Biradar, A. M.

A. Kumar, J. Prakash, D. S. Mehta, A. M. Biradar, and W. Haase, “Enhanced photoluminescence in gold nanoparticles doped ferroelectric liquid crystals,” Appl. Phys. Lett. 95(2), 023117 (2009).
[CrossRef]

Buchnev, O.

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, T. J. Sluckin, and J. L. West, “Orientational coupling amplification in ferroelectric nematic colloids,” Phys. Rev. Lett. 97(14), 147801 (2006).
[CrossRef] [PubMed]

Chen, J.-C.

A. Y.-G. Fuh, J.-C. Chen, K.-T. Cheng, and S.-Y. Huang, “Polarization-independent and electrically tunable liquid crystal Fresnel lenses based on photoalignment in dye-doped liquid crystals,” J. Soc. Inf. Disp. 18(8), 572–576 (2010).
[CrossRef]

A. Y.-G. Fuh, J.-C. Chen, S.-Y. Huang, and K.-T. Cheng, “Binary liquid crystal alignments based on photoalignment in azo dye-doped liquid crystals and their application,” Appl. Phys. Lett. 96(5), 051103 (2010).
[CrossRef]

Chen, T.-J.

T.-J. Chen and K.-L. Chu, “Pretilt angle control for single-cell-gap transflective liquid crystal cells,” Appl. Phys. Lett. 92(9), 091102 (2008).
[CrossRef]

Chen, W.-Z.

W.-Z. Chen, Y.-T. Tsai, and T.-H. Lin, “Photoalignment effect in a liquid-crystal film doped with nanoparticles and azo-dye,” Appl. Phys. Lett. 94(20), 201114 (2009).
[CrossRef]

W.-Z. Chen, Y.-T. Tsai, and T.-H. Lin, “Single-cell-gap transflective liquid-crystal display based on photo- and nanoparticle-induced alignment effects,” Opt. Lett. 34(17), 2545–2547 (2009).
[CrossRef] [PubMed]

Cheng, K.-T.

A. Y.-G. Fuh, J.-C. Chen, S.-Y. Huang, and K.-T. Cheng, “Binary liquid crystal alignments based on photoalignment in azo dye-doped liquid crystals and their application,” Appl. Phys. Lett. 96(5), 051103 (2010).
[CrossRef]

A. Y.-G. Fuh, J.-C. Chen, K.-T. Cheng, and S.-Y. Huang, “Polarization-independent and electrically tunable liquid crystal Fresnel lenses based on photoalignment in dye-doped liquid crystals,” J. Soc. Inf. Disp. 18(8), 572–576 (2010).
[CrossRef]

K.-T. Cheng, C.-K. Liu, C.-L. Ting, and A. Y.-G. Fuh, “Electrically switchable and optically rewritable reflective Fresnel zone plate in dye-doped cholesteric liquid crystals,” Opt. Express 15(21), 14078–14085 (2007).
[CrossRef] [PubMed]

Cheon, C. I.

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, T. J. Sluckin, and J. L. West, “Orientational coupling amplification in ferroelectric nematic colloids,” Phys. Rev. Lett. 97(14), 147801 (2006).
[CrossRef] [PubMed]

Chu, K.-L.

T.-J. Chen and K.-L. Chu, “Pretilt angle control for single-cell-gap transflective liquid crystal cells,” Appl. Phys. Lett. 92(9), 091102 (2008).
[CrossRef]

Chung, S.-Y.

J.-H. Park, C.-J. Yu, J. Kim, S.-Y. Chung, and S.-D. Lee, “Concept of a liquid-crystal polarization beamsplitter based on binary phase gratings,” Appl. Phys. Lett. 83(10), 1918–1920 (2003).
[CrossRef]

Fuh, A. Y.-G.

A. Y.-G. Fuh, J.-C. Chen, K.-T. Cheng, and S.-Y. Huang, “Polarization-independent and electrically tunable liquid crystal Fresnel lenses based on photoalignment in dye-doped liquid crystals,” J. Soc. Inf. Disp. 18(8), 572–576 (2010).
[CrossRef]

A. Y.-G. Fuh, J.-C. Chen, S.-Y. Huang, and K.-T. Cheng, “Binary liquid crystal alignments based on photoalignment in azo dye-doped liquid crystals and their application,” Appl. Phys. Lett. 96(5), 051103 (2010).
[CrossRef]

K.-T. Cheng, C.-K. Liu, C.-L. Ting, and A. Y.-G. Fuh, “Electrically switchable and optically rewritable reflective Fresnel zone plate in dye-doped cholesteric liquid crystals,” Opt. Express 15(21), 14078–14085 (2007).
[CrossRef] [PubMed]

Glushchenko, A.

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, T. J. Sluckin, and J. L. West, “Orientational coupling amplification in ferroelectric nematic colloids,” Phys. Rev. Lett. 97(14), 147801 (2006).
[CrossRef] [PubMed]

Haase, W.

A. Kumar, J. Prakash, D. S. Mehta, A. M. Biradar, and W. Haase, “Enhanced photoluminescence in gold nanoparticles doped ferroelectric liquid crystals,” Appl. Phys. Lett. 95(2), 023117 (2009).
[CrossRef]

Haddad, T. S.

P. T. Mather, H. G. Jeon, A. Romo-Uribe, T. S. Haddad, and J. D. Lichtenhan, “Mechanical relaxation and microstructure of poly(norbornyl-POSS) copolymers,” Macromolecules 32(4), 1194–1203 (1999).
[CrossRef]

Hsieh, C.-T.

C.-Y. Huang, H.-C. Pan, and C.-T. Hsieh, “Electrooptical properties of carbon-nanotube-doped twisted nematic liquid crystal cell,” Jpn. J. Appl. Phys. 45(No. 8A), 6392–6394 (2006).
[CrossRef]

Huang, C.-Y.

C.-Y. Huang, H.-C. Pan, and C.-T. Hsieh, “Electrooptical properties of carbon-nanotube-doped twisted nematic liquid crystal cell,” Jpn. J. Appl. Phys. 45(No. 8A), 6392–6394 (2006).
[CrossRef]

Huang, S.-Y.

A. Y.-G. Fuh, J.-C. Chen, K.-T. Cheng, and S.-Y. Huang, “Polarization-independent and electrically tunable liquid crystal Fresnel lenses based on photoalignment in dye-doped liquid crystals,” J. Soc. Inf. Disp. 18(8), 572–576 (2010).
[CrossRef]

A. Y.-G. Fuh, J.-C. Chen, S.-Y. Huang, and K.-T. Cheng, “Binary liquid crystal alignments based on photoalignment in azo dye-doped liquid crystals and their application,” Appl. Phys. Lett. 96(5), 051103 (2010).
[CrossRef]

Hwang, S.-J.

S.-J. Hwang, S.-C. Jeng, C.-Y. Yang, C.-W. Kuo, and C.-C. Liao, “Characteristics of nanoparticle-doped homeotropic liquid crystal devices,” J. Phys. D Appl. Phys. 42(2), 025102 (2009).
[CrossRef]

Jeng, S.-C.

S.-J. Hwang, S.-C. Jeng, C.-Y. Yang, C.-W. Kuo, and C.-C. Liao, “Characteristics of nanoparticle-doped homeotropic liquid crystal devices,” J. Phys. D Appl. Phys. 42(2), 025102 (2009).
[CrossRef]

S.-C. Jeng, C.-W. Kuo, H.-L. Wang, and C.-C. Liao, “Nanoparticles-induced vertical alignment in liquid crystal cell,” Appl. Phys. Lett. 91(6), 061112 (2007).
[CrossRef]

Jeon, H. G.

P. T. Mather, H. G. Jeon, A. Romo-Uribe, T. S. Haddad, and J. D. Lichtenhan, “Mechanical relaxation and microstructure of poly(norbornyl-POSS) copolymers,” Macromolecules 32(4), 1194–1203 (1999).
[CrossRef]

Jung, M.-S.

C.-J. Yu, J.-H. Park, J. Kim, M.-S. Jung, and S.-D. Lee, “Diffraction patterns of binary liquid crystal gratings in homeotropic and hybrid geometries,” Mater. Sci. Eng. C 24(1-2), 247–250 (2004).
[CrossRef]

Kim, D.-W.

Kim, J.

C.-J. Yu, D.-W. Kim, J. Kim, and S.-D. Lee, “Polarization-invariant grating based on a photoaligned liquid crystal in an oppositely twisted binary configuration,” Opt. Lett. 30(15), 1995–1997 (2005).
[CrossRef] [PubMed]

C.-J. Yu, J.-H. Park, J. Kim, M.-S. Jung, and S.-D. Lee, “Diffraction patterns of binary liquid crystal gratings in homeotropic and hybrid geometries,” Mater. Sci. Eng. C 24(1-2), 247–250 (2004).
[CrossRef]

J.-H. Park, C.-J. Yu, J. Kim, S.-Y. Chung, and S.-D. Lee, “Concept of a liquid-crystal polarization beamsplitter based on binary phase gratings,” Appl. Phys. Lett. 83(10), 1918–1920 (2003).
[CrossRef]

Kovarova, J.

A. Strachota, I. Kroutilova, J. Kovarova, and L. Matejka, “Epoxy networks reinforced with polyhedral oligomeric silsesquioxanes (POSS). thermomechanical properties,” Macromolecules 37(25), 9457–9464 (2004).
[CrossRef]

Kroutilova, I.

A. Strachota, I. Kroutilova, J. Kovarova, and L. Matejka, “Epoxy networks reinforced with polyhedral oligomeric silsesquioxanes (POSS). thermomechanical properties,” Macromolecules 37(25), 9457–9464 (2004).
[CrossRef]

Kumar, A.

A. Kumar, J. Prakash, D. S. Mehta, A. M. Biradar, and W. Haase, “Enhanced photoluminescence in gold nanoparticles doped ferroelectric liquid crystals,” Appl. Phys. Lett. 95(2), 023117 (2009).
[CrossRef]

Kuo, C.-W.

S.-J. Hwang, S.-C. Jeng, C.-Y. Yang, C.-W. Kuo, and C.-C. Liao, “Characteristics of nanoparticle-doped homeotropic liquid crystal devices,” J. Phys. D Appl. Phys. 42(2), 025102 (2009).
[CrossRef]

S.-C. Jeng, C.-W. Kuo, H.-L. Wang, and C.-C. Liao, “Nanoparticles-induced vertical alignment in liquid crystal cell,” Appl. Phys. Lett. 91(6), 061112 (2007).
[CrossRef]

Lee, S.-D.

C.-J. Yu, D.-W. Kim, J. Kim, and S.-D. Lee, “Polarization-invariant grating based on a photoaligned liquid crystal in an oppositely twisted binary configuration,” Opt. Lett. 30(15), 1995–1997 (2005).
[CrossRef] [PubMed]

C.-J. Yu, J.-H. Park, J. Kim, M.-S. Jung, and S.-D. Lee, “Diffraction patterns of binary liquid crystal gratings in homeotropic and hybrid geometries,” Mater. Sci. Eng. C 24(1-2), 247–250 (2004).
[CrossRef]

J.-H. Park, C.-J. Yu, J. Kim, S.-Y. Chung, and S.-D. Lee, “Concept of a liquid-crystal polarization beamsplitter based on binary phase gratings,” Appl. Phys. Lett. 83(10), 1918–1920 (2003).
[CrossRef]

Lee, W.

W. Lee, C.-Y. Wang, and Y.-C. Shih, “Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host,” Appl. Phys. Lett. 85(4), 513–515 (2004).
[CrossRef]

Li, F.

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, T. J. Sluckin, and J. L. West, “Orientational coupling amplification in ferroelectric nematic colloids,” Phys. Rev. Lett. 97(14), 147801 (2006).
[CrossRef] [PubMed]

Liao, C.-C.

S.-J. Hwang, S.-C. Jeng, C.-Y. Yang, C.-W. Kuo, and C.-C. Liao, “Characteristics of nanoparticle-doped homeotropic liquid crystal devices,” J. Phys. D Appl. Phys. 42(2), 025102 (2009).
[CrossRef]

S.-C. Jeng, C.-W. Kuo, H.-L. Wang, and C.-C. Liao, “Nanoparticles-induced vertical alignment in liquid crystal cell,” Appl. Phys. Lett. 91(6), 061112 (2007).
[CrossRef]

Lichtenhan, J. D.

P. T. Mather, H. G. Jeon, A. Romo-Uribe, T. S. Haddad, and J. D. Lichtenhan, “Mechanical relaxation and microstructure of poly(norbornyl-POSS) copolymers,” Macromolecules 32(4), 1194–1203 (1999).
[CrossRef]

Lin, T.-H.

W.-Z. Chen, Y.-T. Tsai, and T.-H. Lin, “Single-cell-gap transflective liquid-crystal display based on photo- and nanoparticle-induced alignment effects,” Opt. Lett. 34(17), 2545–2547 (2009).
[CrossRef] [PubMed]

W.-Z. Chen, Y.-T. Tsai, and T.-H. Lin, “Photoalignment effect in a liquid-crystal film doped with nanoparticles and azo-dye,” Appl. Phys. Lett. 94(20), 201114 (2009).
[CrossRef]

Liu, C.-K.

Matejka, L.

A. Strachota, I. Kroutilova, J. Kovarova, and L. Matejka, “Epoxy networks reinforced with polyhedral oligomeric silsesquioxanes (POSS). thermomechanical properties,” Macromolecules 37(25), 9457–9464 (2004).
[CrossRef]

Mather, P. T.

P. T. Mather, H. G. Jeon, A. Romo-Uribe, T. S. Haddad, and J. D. Lichtenhan, “Mechanical relaxation and microstructure of poly(norbornyl-POSS) copolymers,” Macromolecules 32(4), 1194–1203 (1999).
[CrossRef]

Matyjaszewski, K.

J. Pyun and K. Matyjaszewski, “Synthesis of nanocomposite organic/inorganic hybrid materials using controlled/‘living’ radical polymerization,” Chem. Mater. 13(10), 3436–3448 (2001).
[CrossRef]

Mehta, D. S.

A. Kumar, J. Prakash, D. S. Mehta, A. M. Biradar, and W. Haase, “Enhanced photoluminescence in gold nanoparticles doped ferroelectric liquid crystals,” Appl. Phys. Lett. 95(2), 023117 (2009).
[CrossRef]

Pan, H.-C.

C.-Y. Huang, H.-C. Pan, and C.-T. Hsieh, “Electrooptical properties of carbon-nanotube-doped twisted nematic liquid crystal cell,” Jpn. J. Appl. Phys. 45(No. 8A), 6392–6394 (2006).
[CrossRef]

Park, J.-H.

C.-J. Yu, J.-H. Park, J. Kim, M.-S. Jung, and S.-D. Lee, “Diffraction patterns of binary liquid crystal gratings in homeotropic and hybrid geometries,” Mater. Sci. Eng. C 24(1-2), 247–250 (2004).
[CrossRef]

J.-H. Park, C.-J. Yu, J. Kim, S.-Y. Chung, and S.-D. Lee, “Concept of a liquid-crystal polarization beamsplitter based on binary phase gratings,” Appl. Phys. Lett. 83(10), 1918–1920 (2003).
[CrossRef]

Prakash, J.

A. Kumar, J. Prakash, D. S. Mehta, A. M. Biradar, and W. Haase, “Enhanced photoluminescence in gold nanoparticles doped ferroelectric liquid crystals,” Appl. Phys. Lett. 95(2), 023117 (2009).
[CrossRef]

Pyun, J.

J. Pyun and K. Matyjaszewski, “Synthesis of nanocomposite organic/inorganic hybrid materials using controlled/‘living’ radical polymerization,” Chem. Mater. 13(10), 3436–3448 (2001).
[CrossRef]

Reshetnyak, V.

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, T. J. Sluckin, and J. L. West, “Orientational coupling amplification in ferroelectric nematic colloids,” Phys. Rev. Lett. 97(14), 147801 (2006).
[CrossRef] [PubMed]

Reznikov, Y.

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, T. J. Sluckin, and J. L. West, “Orientational coupling amplification in ferroelectric nematic colloids,” Phys. Rev. Lett. 97(14), 147801 (2006).
[CrossRef] [PubMed]

Romo-Uribe, A.

P. T. Mather, H. G. Jeon, A. Romo-Uribe, T. S. Haddad, and J. D. Lichtenhan, “Mechanical relaxation and microstructure of poly(norbornyl-POSS) copolymers,” Macromolecules 32(4), 1194–1203 (1999).
[CrossRef]

Shih, Y.-C.

W. Lee, C.-Y. Wang, and Y.-C. Shih, “Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host,” Appl. Phys. Lett. 85(4), 513–515 (2004).
[CrossRef]

Sluckin, T. J.

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, T. J. Sluckin, and J. L. West, “Orientational coupling amplification in ferroelectric nematic colloids,” Phys. Rev. Lett. 97(14), 147801 (2006).
[CrossRef] [PubMed]

Strachota, A.

A. Strachota, I. Kroutilova, J. Kovarova, and L. Matejka, “Epoxy networks reinforced with polyhedral oligomeric silsesquioxanes (POSS). thermomechanical properties,” Macromolecules 37(25), 9457–9464 (2004).
[CrossRef]

Ting, C.-L.

Tsai, Y.-T.

W.-Z. Chen, Y.-T. Tsai, and T.-H. Lin, “Single-cell-gap transflective liquid-crystal display based on photo- and nanoparticle-induced alignment effects,” Opt. Lett. 34(17), 2545–2547 (2009).
[CrossRef] [PubMed]

W.-Z. Chen, Y.-T. Tsai, and T.-H. Lin, “Photoalignment effect in a liquid-crystal film doped with nanoparticles and azo-dye,” Appl. Phys. Lett. 94(20), 201114 (2009).
[CrossRef]

Wang, C.-Y.

W. Lee, C.-Y. Wang, and Y.-C. Shih, “Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host,” Appl. Phys. Lett. 85(4), 513–515 (2004).
[CrossRef]

Wang, H.-L.

S.-C. Jeng, C.-W. Kuo, H.-L. Wang, and C.-C. Liao, “Nanoparticles-induced vertical alignment in liquid crystal cell,” Appl. Phys. Lett. 91(6), 061112 (2007).
[CrossRef]

West, J. L.

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, T. J. Sluckin, and J. L. West, “Orientational coupling amplification in ferroelectric nematic colloids,” Phys. Rev. Lett. 97(14), 147801 (2006).
[CrossRef] [PubMed]

Yang, C.-Y.

S.-J. Hwang, S.-C. Jeng, C.-Y. Yang, C.-W. Kuo, and C.-C. Liao, “Characteristics of nanoparticle-doped homeotropic liquid crystal devices,” J. Phys. D Appl. Phys. 42(2), 025102 (2009).
[CrossRef]

Yu, C.-J.

C.-J. Yu, D.-W. Kim, J. Kim, and S.-D. Lee, “Polarization-invariant grating based on a photoaligned liquid crystal in an oppositely twisted binary configuration,” Opt. Lett. 30(15), 1995–1997 (2005).
[CrossRef] [PubMed]

C.-J. Yu, J.-H. Park, J. Kim, M.-S. Jung, and S.-D. Lee, “Diffraction patterns of binary liquid crystal gratings in homeotropic and hybrid geometries,” Mater. Sci. Eng. C 24(1-2), 247–250 (2004).
[CrossRef]

J.-H. Park, C.-J. Yu, J. Kim, S.-Y. Chung, and S.-D. Lee, “Concept of a liquid-crystal polarization beamsplitter based on binary phase gratings,” Appl. Phys. Lett. 83(10), 1918–1920 (2003).
[CrossRef]

Appl. Phys. Lett. (7)

A. Kumar, J. Prakash, D. S. Mehta, A. M. Biradar, and W. Haase, “Enhanced photoluminescence in gold nanoparticles doped ferroelectric liquid crystals,” Appl. Phys. Lett. 95(2), 023117 (2009).
[CrossRef]

W. Lee, C.-Y. Wang, and Y.-C. Shih, “Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host,” Appl. Phys. Lett. 85(4), 513–515 (2004).
[CrossRef]

S.-C. Jeng, C.-W. Kuo, H.-L. Wang, and C.-C. Liao, “Nanoparticles-induced vertical alignment in liquid crystal cell,” Appl. Phys. Lett. 91(6), 061112 (2007).
[CrossRef]

W.-Z. Chen, Y.-T. Tsai, and T.-H. Lin, “Photoalignment effect in a liquid-crystal film doped with nanoparticles and azo-dye,” Appl. Phys. Lett. 94(20), 201114 (2009).
[CrossRef]

T.-J. Chen and K.-L. Chu, “Pretilt angle control for single-cell-gap transflective liquid crystal cells,” Appl. Phys. Lett. 92(9), 091102 (2008).
[CrossRef]

A. Y.-G. Fuh, J.-C. Chen, S.-Y. Huang, and K.-T. Cheng, “Binary liquid crystal alignments based on photoalignment in azo dye-doped liquid crystals and their application,” Appl. Phys. Lett. 96(5), 051103 (2010).
[CrossRef]

J.-H. Park, C.-J. Yu, J. Kim, S.-Y. Chung, and S.-D. Lee, “Concept of a liquid-crystal polarization beamsplitter based on binary phase gratings,” Appl. Phys. Lett. 83(10), 1918–1920 (2003).
[CrossRef]

Chem. Mater. (1)

J. Pyun and K. Matyjaszewski, “Synthesis of nanocomposite organic/inorganic hybrid materials using controlled/‘living’ radical polymerization,” Chem. Mater. 13(10), 3436–3448 (2001).
[CrossRef]

J. Phys. D Appl. Phys. (1)

S.-J. Hwang, S.-C. Jeng, C.-Y. Yang, C.-W. Kuo, and C.-C. Liao, “Characteristics of nanoparticle-doped homeotropic liquid crystal devices,” J. Phys. D Appl. Phys. 42(2), 025102 (2009).
[CrossRef]

J. Soc. Inf. Disp. (1)

A. Y.-G. Fuh, J.-C. Chen, K.-T. Cheng, and S.-Y. Huang, “Polarization-independent and electrically tunable liquid crystal Fresnel lenses based on photoalignment in dye-doped liquid crystals,” J. Soc. Inf. Disp. 18(8), 572–576 (2010).
[CrossRef]

Jpn. J. Appl. Phys. (1)

C.-Y. Huang, H.-C. Pan, and C.-T. Hsieh, “Electrooptical properties of carbon-nanotube-doped twisted nematic liquid crystal cell,” Jpn. J. Appl. Phys. 45(No. 8A), 6392–6394 (2006).
[CrossRef]

Macromolecules (2)

A. Strachota, I. Kroutilova, J. Kovarova, and L. Matejka, “Epoxy networks reinforced with polyhedral oligomeric silsesquioxanes (POSS). thermomechanical properties,” Macromolecules 37(25), 9457–9464 (2004).
[CrossRef]

P. T. Mather, H. G. Jeon, A. Romo-Uribe, T. S. Haddad, and J. D. Lichtenhan, “Mechanical relaxation and microstructure of poly(norbornyl-POSS) copolymers,” Macromolecules 32(4), 1194–1203 (1999).
[CrossRef]

Mater. Sci. Eng. C (1)

C.-J. Yu, J.-H. Park, J. Kim, M.-S. Jung, and S.-D. Lee, “Diffraction patterns of binary liquid crystal gratings in homeotropic and hybrid geometries,” Mater. Sci. Eng. C 24(1-2), 247–250 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, T. J. Sluckin, and J. L. West, “Orientational coupling amplification in ferroelectric nematic colloids,” Phys. Rev. Lett. 97(14), 147801 (2006).
[CrossRef] [PubMed]

Other (1)

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley & Sons, Inc., 1999), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Fabrication procedures of nanoparticle-doped polymer film coated onto the substrate.

Fig. 2
Fig. 2

Images of fabricated stripe-type binary LC alignment sample observed under cross-polarizer POM. (a), (b), and (c) are images of the sample rotated through 0°, 45°, and 90°, respectively, from the transmission axis of the polarizer. (P) and (A) represent the transmission axes of the polarizer and analyzer, respectively. (R) denotes the direction of rubbing.

Fig. 3
Fig. 3

First-order diffraction efficiency as a function of the applied AC (1 KHz) voltage of the fabricated LC phase gratings, probed using a polarized laser beam with its polarization perpendicular (pink) and parallel (blue) to the direction of rubbing (R). Inset (a) and (b) schematically depict diffraction signals and LC reorientations of those shown in pink and blue curves, respectively.

Fig. 4
Fig. 4

Schema of the designed single-cell-gap transflective LC cell. The T and (R) regions are transmissive (homogeneous alignment) and reflective (hybrid alignment) regions, respectively.

Fig. 5
Fig. 5

(a) Transmittance versus voltage (T-V) curves; (b) phase retardation versus voltage (δ-V) curves. Pink and blue lines represent the curves of the T (homogeneous alignment) and R regions (hybrid alignment), respectively.

Fig. 6
Fig. 6

Images of the T (left-hand side) and R (right-hand side) regions (no reflector) in transflective LCDs observed under crossed polarizers by applying AC (1 KHz) voltages of (a) 6, (b) 8, (c) 10, (d) 12, and (e) 14 V.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η 1 = [ ( 2 / π ) sin ( π / 2 ) ] 2 sin 2 ( Δ ϕ / 2 ) ,

Metrics