Abstract

A key device in future high speed short reach interconnect technology will be the optical modulator. These devices, in silicon, have experienced dramatic improvements over the last 6 years and the modulation bandwidth has increased from a few tens of MHz to over 30 GHz. However, the demands of optical interconnects are significant. Here we describe an approach based on a self-aligned wrap around p-n junction structure embedded in a silicon waveguide that can produce high-speed optical phase modulation, whilst at the same time, capable of a high extinction ratio. An all-silicon optical modulator using a CMOS compatible fabrication process with a data rate of 40 Gb/s and extinction ratio up to approximately 6.5 dB for TE and TM polarisations is demonstrated. This technology is not only compatible with conventional complementary MOS (CMOS) processing, but is also intended to simplify and improve the reliability of, the fabrication process.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed, and A. P. Knights, Silicon Photonics: An Introduction (John Wiley & Sons, Inc., 2004).
  2. F. Y. Gardes, G. T. Reed, N. G. Emerson, and C. E. Png, “A sub-micron depletion-type photonic modulator in silicon on insulator,” Opt. Express 13, 2005.
    [CrossRef] [PubMed]
  3. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
    [CrossRef] [PubMed]
  4. L. Liao, A. Liu, D. Rubin, J. A. B. J. Basak, Y. A. C. Y. Chetrit, H. A. N. H. Nguyen, R. A. C. R. Cohen, N. A. I. N. Izhaky, and M. A. P. M. Paniccia, “40 Gbit/s silicon optical modulator for highspeed applications,” Electron. Lett. 43, 2007.
    [CrossRef]
  5. D. Marris-Morini, X. Le Roux, L. Vivien, E. Cassan, D. Pascal, M. Halbwax, S. Maine, S. Laval, J. M. Fédéli, and J. F. Damlencourt, “Optical modulation by carrier depletion in a silicon PIN diode,” Opt. Express 14(22), 10838–10843 (2006).
    [CrossRef] [PubMed]
  6. C. Gunn, “CMOS Photonics for High-Speed Interconnects,” Micro. IEEE 26(2), 58–66 (2006).
    [CrossRef]
  7. J. W. Park, J.-B. You, I. G. Kim, and G. Kim, “High-modulation efficiency silicon Mach-Zehnder optical modulator based on carrier depletion in a PN Diode,” Opt. Express 17(18), 15520–15524 (2009).
    [CrossRef] [PubMed]
  8. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17(25), 22484–22490 (2009).
    [CrossRef]
  9. J.-B. You, M. Park, J.-W. Park, and G. Kim, “12.5 Gbps optical modulation of silicon racetrack resonator based on carrier-depletion in asymmetric p-n diode,” Opt. Express 16(22), 18340–18344 (2008).
    [CrossRef] [PubMed]
  10. F. Y. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J. M. Fedeli, P. Dumon, L. Vivien, T. F. Krauss, G. T. Reed, and J. Martí, “High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode,” Opt. Express 17(24), 21986–21991 (2009).
    [CrossRef] [PubMed]
  11. A. Narasimha, S. AbdaIla, C. Bradbury, A. Clark, J. Clymore, J. Coyne, A. Dahl, S. Gloeckner, A. Gruenberg, D. Guckenberger, S. Gutierrez, M. Harrison, D. Kucharski, K. Leap, R. LeBlanc, V. Liang, M. Mack, D. Martinez, G. Masini, A. Mekis, R. Menigoz, C. Ogden, M. Peterson, T. Pinguet, J. Redman, J. Rodriguez, S. Sahni, M. Sharp, T. J. Sleboda, D. Song, V. Wang, B. Welch, J. Witzens, W. Xu, K. Vokoyama, and P. De DobbeIaere, “An ultra low power CMOS Photonics Technology Platform for H/S Optoelectronic Transceivers at less than $1per Gbps,” in OFC, 22–25 March, San Diego, USA 2010.
  12. L. Tsung-Yang, A. Kah-Wee, F. Qing, S. Jun-Feng, X. Yong-Zhong, Y. Ming-Bin, L. Guo-Qiang, and K. Dim-Lee, “Silicon Modulators and Germanium Photodetectors on SOI: Monolithic Integration, Compatibility, and Performance Optimization,” IEEE Sel. Top. Quan. Electron. 16, 307–315.
  13. N.-N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 1.4V-cm V(pi)L integrated on 0.25microm silicon-on-insulator waveguides,” Opt. Express 18(8), 7994–7999 (2010).
    [CrossRef] [PubMed]
  14. D. M. Gill, M. Rasras, T. Kun-Yii, C. Young-Kai, A. E. White, S. S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal Bandwidth Equalization in a CMOS-Compatible Si-Ring Modulator,” IEEE Photon. Technol. Lett. 21(4), 200–202 (2009).
  15. S. J. Spector, M. W. Geis, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, F. Gan, G. R. Zhou, F. X. Kaertner, and T. M. Lyszczarz, “High-speed silicon electro-optical modulator that can be operated in carrier depletion or carrier injection mode,” in 2008 Conference on Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics, CLEO/QELS, San Jose, CA, United states, 2008.
  16. D. J. Thomson, F. Y. Gardes, G. T. Reed, F. Milesi, and J.-M. Fedeli, “High speed silicon optical modulator with self aligned fabrication process,” Opt. Express 18(18), 19064–19069 (2010).
    [CrossRef] [PubMed]
  17. D. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97(7), 1166–1185 (2009).
    [CrossRef]

2010 (2)

2009 (5)

2008 (1)

2007 (1)

2006 (2)

2005 (1)

F. Y. Gardes, G. T. Reed, N. G. Emerson, and C. E. Png, “A sub-micron depletion-type photonic modulator in silicon on insulator,” Opt. Express 13, 2005.
[CrossRef] [PubMed]

Asghari, M.

Basak, J. A. B. J.

L. Liao, A. Liu, D. Rubin, J. A. B. J. Basak, Y. A. C. Y. Chetrit, H. A. N. H. Nguyen, R. A. C. R. Cohen, N. A. I. N. Izhaky, and M. A. P. M. Paniccia, “40 Gbit/s silicon optical modulator for highspeed applications,” Electron. Lett. 43, 2007.
[CrossRef]

Beattie, J.

D. M. Gill, M. Rasras, T. Kun-Yii, C. Young-Kai, A. E. White, S. S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal Bandwidth Equalization in a CMOS-Compatible Si-Ring Modulator,” IEEE Photon. Technol. Lett. 21(4), 200–202 (2009).

Brimont, A.

Carothers, D.

D. M. Gill, M. Rasras, T. Kun-Yii, C. Young-Kai, A. E. White, S. S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal Bandwidth Equalization in a CMOS-Compatible Si-Ring Modulator,” IEEE Photon. Technol. Lett. 21(4), 200–202 (2009).

Cassan, E.

Chetrit, Y.

Chetrit, Y. A. C. Y.

L. Liao, A. Liu, D. Rubin, J. A. B. J. Basak, Y. A. C. Y. Chetrit, H. A. N. H. Nguyen, R. A. C. R. Cohen, N. A. I. N. Izhaky, and M. A. P. M. Paniccia, “40 Gbit/s silicon optical modulator for highspeed applications,” Electron. Lett. 43, 2007.
[CrossRef]

Ciftcioglu, B.

Cohen, R. A. C. R.

L. Liao, A. Liu, D. Rubin, J. A. B. J. Basak, Y. A. C. Y. Chetrit, H. A. N. H. Nguyen, R. A. C. R. Cohen, N. A. I. N. Izhaky, and M. A. P. M. Paniccia, “40 Gbit/s silicon optical modulator for highspeed applications,” Electron. Lett. 43, 2007.
[CrossRef]

Cunningham, J. E.

Damlencourt, J. F.

Dim-Lee, K.

L. Tsung-Yang, A. Kah-Wee, F. Qing, S. Jun-Feng, X. Yong-Zhong, Y. Ming-Bin, L. Guo-Qiang, and K. Dim-Lee, “Silicon Modulators and Germanium Photodetectors on SOI: Monolithic Integration, Compatibility, and Performance Optimization,” IEEE Sel. Top. Quan. Electron. 16, 307–315.

Dong, F.

Dong, P.

Dumon, P.

Emerson, N. G.

F. Y. Gardes, G. T. Reed, N. G. Emerson, and C. E. Png, “A sub-micron depletion-type photonic modulator in silicon on insulator,” Opt. Express 13, 2005.
[CrossRef] [PubMed]

Fedeli, J. M.

Fedeli, J.-M.

Fédéli, J. M.

Feng, D.

Feng, N.-N.

Gardes, F. Y.

Gill, D. M.

D. M. Gill, M. Rasras, T. Kun-Yii, C. Young-Kai, A. E. White, S. S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal Bandwidth Equalization in a CMOS-Compatible Si-Ring Modulator,” IEEE Photon. Technol. Lett. 21(4), 200–202 (2009).

Gunn, C.

C. Gunn, “CMOS Photonics for High-Speed Interconnects,” Micro. IEEE 26(2), 58–66 (2006).
[CrossRef]

Guo-Qiang, L.

L. Tsung-Yang, A. Kah-Wee, F. Qing, S. Jun-Feng, X. Yong-Zhong, Y. Ming-Bin, L. Guo-Qiang, and K. Dim-Lee, “Silicon Modulators and Germanium Photodetectors on SOI: Monolithic Integration, Compatibility, and Performance Optimization,” IEEE Sel. Top. Quan. Electron. 16, 307–315.

Halbwax, M.

Hill, C.

D. M. Gill, M. Rasras, T. Kun-Yii, C. Young-Kai, A. E. White, S. S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal Bandwidth Equalization in a CMOS-Compatible Si-Ring Modulator,” IEEE Photon. Technol. Lett. 21(4), 200–202 (2009).

Izhaky, N.

Izhaky, N. A. I. N.

L. Liao, A. Liu, D. Rubin, J. A. B. J. Basak, Y. A. C. Y. Chetrit, H. A. N. H. Nguyen, R. A. C. R. Cohen, N. A. I. N. Izhaky, and M. A. P. M. Paniccia, “40 Gbit/s silicon optical modulator for highspeed applications,” Electron. Lett. 43, 2007.
[CrossRef]

Jun-Feng, S.

L. Tsung-Yang, A. Kah-Wee, F. Qing, S. Jun-Feng, X. Yong-Zhong, Y. Ming-Bin, L. Guo-Qiang, and K. Dim-Lee, “Silicon Modulators and Germanium Photodetectors on SOI: Monolithic Integration, Compatibility, and Performance Optimization,” IEEE Sel. Top. Quan. Electron. 16, 307–315.

Kah-Wee, A.

L. Tsung-Yang, A. Kah-Wee, F. Qing, S. Jun-Feng, X. Yong-Zhong, Y. Ming-Bin, L. Guo-Qiang, and K. Dim-Lee, “Silicon Modulators and Germanium Photodetectors on SOI: Monolithic Integration, Compatibility, and Performance Optimization,” IEEE Sel. Top. Quan. Electron. 16, 307–315.

Kamocsai, R.

D. M. Gill, M. Rasras, T. Kun-Yii, C. Young-Kai, A. E. White, S. S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal Bandwidth Equalization in a CMOS-Compatible Si-Ring Modulator,” IEEE Photon. Technol. Lett. 21(4), 200–202 (2009).

Kim, G.

Kim, I. G.

Krauss, T. F.

Krishnamoorthy, A. V.

Kung, C.-C.

Kun-Yii, T.

D. M. Gill, M. Rasras, T. Kun-Yii, C. Young-Kai, A. E. White, S. S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal Bandwidth Equalization in a CMOS-Compatible Si-Ring Modulator,” IEEE Photon. Technol. Lett. 21(4), 200–202 (2009).

Laval, S.

Le Roux, X.

Li, G.

Liang, H.

Liao, L.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
[CrossRef] [PubMed]

L. Liao, A. Liu, D. Rubin, J. A. B. J. Basak, Y. A. C. Y. Chetrit, H. A. N. H. Nguyen, R. A. C. R. Cohen, N. A. I. N. Izhaky, and M. A. P. M. Paniccia, “40 Gbit/s silicon optical modulator for highspeed applications,” Electron. Lett. 43, 2007.
[CrossRef]

Liao, S.

Liu, A.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
[CrossRef] [PubMed]

L. Liao, A. Liu, D. Rubin, J. A. B. J. Basak, Y. A. C. Y. Chetrit, H. A. N. H. Nguyen, R. A. C. R. Cohen, N. A. I. N. Izhaky, and M. A. P. M. Paniccia, “40 Gbit/s silicon optical modulator for highspeed applications,” Electron. Lett. 43, 2007.
[CrossRef]

Maine, S.

Marris-Morini, D.

Martí, J.

Milesi, F.

Miller, D.

D. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[CrossRef]

Ming-Bin, Y.

L. Tsung-Yang, A. Kah-Wee, F. Qing, S. Jun-Feng, X. Yong-Zhong, Y. Ming-Bin, L. Guo-Qiang, and K. Dim-Lee, “Silicon Modulators and Germanium Photodetectors on SOI: Monolithic Integration, Compatibility, and Performance Optimization,” IEEE Sel. Top. Quan. Electron. 16, 307–315.

Nguyen, H.

Nguyen, H. A. N. H.

L. Liao, A. Liu, D. Rubin, J. A. B. J. Basak, Y. A. C. Y. Chetrit, H. A. N. H. Nguyen, R. A. C. R. Cohen, N. A. I. N. Izhaky, and M. A. P. M. Paniccia, “40 Gbit/s silicon optical modulator for highspeed applications,” Electron. Lett. 43, 2007.
[CrossRef]

O’Faolain, L.

Paniccia, M.

Paniccia, M. A. P. M.

L. Liao, A. Liu, D. Rubin, J. A. B. J. Basak, Y. A. C. Y. Chetrit, H. A. N. H. Nguyen, R. A. C. R. Cohen, N. A. I. N. Izhaky, and M. A. P. M. Paniccia, “40 Gbit/s silicon optical modulator for highspeed applications,” Electron. Lett. 43, 2007.
[CrossRef]

Park, J. W.

Park, J.-W.

Park, M.

Pascal, D.

Patel, S. S.

D. M. Gill, M. Rasras, T. Kun-Yii, C. Young-Kai, A. E. White, S. S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal Bandwidth Equalization in a CMOS-Compatible Si-Ring Modulator,” IEEE Photon. Technol. Lett. 21(4), 200–202 (2009).

Png, C. E.

F. Y. Gardes, G. T. Reed, N. G. Emerson, and C. E. Png, “A sub-micron depletion-type photonic modulator in silicon on insulator,” Opt. Express 13, 2005.
[CrossRef] [PubMed]

Pomerene, A.

D. M. Gill, M. Rasras, T. Kun-Yii, C. Young-Kai, A. E. White, S. S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal Bandwidth Equalization in a CMOS-Compatible Si-Ring Modulator,” IEEE Photon. Technol. Lett. 21(4), 200–202 (2009).

Qian, W.

Qing, F.

L. Tsung-Yang, A. Kah-Wee, F. Qing, S. Jun-Feng, X. Yong-Zhong, Y. Ming-Bin, L. Guo-Qiang, and K. Dim-Lee, “Silicon Modulators and Germanium Photodetectors on SOI: Monolithic Integration, Compatibility, and Performance Optimization,” IEEE Sel. Top. Quan. Electron. 16, 307–315.

Rasigade, G.

Rasras, M.

D. M. Gill, M. Rasras, T. Kun-Yii, C. Young-Kai, A. E. White, S. S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal Bandwidth Equalization in a CMOS-Compatible Si-Ring Modulator,” IEEE Photon. Technol. Lett. 21(4), 200–202 (2009).

Reed, G. T.

Rubin, D.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
[CrossRef] [PubMed]

L. Liao, A. Liu, D. Rubin, J. A. B. J. Basak, Y. A. C. Y. Chetrit, H. A. N. H. Nguyen, R. A. C. R. Cohen, N. A. I. N. Izhaky, and M. A. P. M. Paniccia, “40 Gbit/s silicon optical modulator for highspeed applications,” Electron. Lett. 43, 2007.
[CrossRef]

Sanchis, P.

Shafiiha, R.

Thomson, D. J.

Tsung-Yang, L.

L. Tsung-Yang, A. Kah-Wee, F. Qing, S. Jun-Feng, X. Yong-Zhong, Y. Ming-Bin, L. Guo-Qiang, and K. Dim-Lee, “Silicon Modulators and Germanium Photodetectors on SOI: Monolithic Integration, Compatibility, and Performance Optimization,” IEEE Sel. Top. Quan. Electron. 16, 307–315.

Vivien, L.

White, A. E.

D. M. Gill, M. Rasras, T. Kun-Yii, C. Young-Kai, A. E. White, S. S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal Bandwidth Equalization in a CMOS-Compatible Si-Ring Modulator,” IEEE Photon. Technol. Lett. 21(4), 200–202 (2009).

Yong-Zhong, X.

L. Tsung-Yang, A. Kah-Wee, F. Qing, S. Jun-Feng, X. Yong-Zhong, Y. Ming-Bin, L. Guo-Qiang, and K. Dim-Lee, “Silicon Modulators and Germanium Photodetectors on SOI: Monolithic Integration, Compatibility, and Performance Optimization,” IEEE Sel. Top. Quan. Electron. 16, 307–315.

You, J.-B.

Young-Kai, C.

D. M. Gill, M. Rasras, T. Kun-Yii, C. Young-Kai, A. E. White, S. S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal Bandwidth Equalization in a CMOS-Compatible Si-Ring Modulator,” IEEE Photon. Technol. Lett. 21(4), 200–202 (2009).

Zheng, D.

Zheng, X.

IEEE (1)

D. M. Gill, M. Rasras, T. Kun-Yii, C. Young-Kai, A. E. White, S. S. Patel, D. Carothers, A. Pomerene, R. Kamocsai, C. Hill, and J. Beattie, “Internal Bandwidth Equalization in a CMOS-Compatible Si-Ring Modulator,” IEEE Photon. Technol. Lett. 21(4), 200–202 (2009).

IEEE Sel. Top. Quan. Electron. (1)

L. Tsung-Yang, A. Kah-Wee, F. Qing, S. Jun-Feng, X. Yong-Zhong, Y. Ming-Bin, L. Guo-Qiang, and K. Dim-Lee, “Silicon Modulators and Germanium Photodetectors on SOI: Monolithic Integration, Compatibility, and Performance Optimization,” IEEE Sel. Top. Quan. Electron. 16, 307–315.

Micro. IEEE (1)

C. Gunn, “CMOS Photonics for High-Speed Interconnects,” Micro. IEEE 26(2), 58–66 (2006).
[CrossRef]

Opt. Express (9)

J. W. Park, J.-B. You, I. G. Kim, and G. Kim, “High-modulation efficiency silicon Mach-Zehnder optical modulator based on carrier depletion in a PN Diode,” Opt. Express 17(18), 15520–15524 (2009).
[CrossRef] [PubMed]

P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17(25), 22484–22490 (2009).
[CrossRef]

J.-B. You, M. Park, J.-W. Park, and G. Kim, “12.5 Gbps optical modulation of silicon racetrack resonator based on carrier-depletion in asymmetric p-n diode,” Opt. Express 16(22), 18340–18344 (2008).
[CrossRef] [PubMed]

F. Y. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J. M. Fedeli, P. Dumon, L. Vivien, T. F. Krauss, G. T. Reed, and J. Martí, “High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode,” Opt. Express 17(24), 21986–21991 (2009).
[CrossRef] [PubMed]

F. Y. Gardes, G. T. Reed, N. G. Emerson, and C. E. Png, “A sub-micron depletion-type photonic modulator in silicon on insulator,” Opt. Express 13, 2005.
[CrossRef] [PubMed]

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
[CrossRef] [PubMed]

D. Marris-Morini, X. Le Roux, L. Vivien, E. Cassan, D. Pascal, M. Halbwax, S. Maine, S. Laval, J. M. Fédéli, and J. F. Damlencourt, “Optical modulation by carrier depletion in a silicon PIN diode,” Opt. Express 14(22), 10838–10843 (2006).
[CrossRef] [PubMed]

N.-N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 1.4V-cm V(pi)L integrated on 0.25microm silicon-on-insulator waveguides,” Opt. Express 18(8), 7994–7999 (2010).
[CrossRef] [PubMed]

D. J. Thomson, F. Y. Gardes, G. T. Reed, F. Milesi, and J.-M. Fedeli, “High speed silicon optical modulator with self aligned fabrication process,” Opt. Express 18(18), 19064–19069 (2010).
[CrossRef] [PubMed]

Proc. IEEE (1)

D. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[CrossRef]

Other (4)

S. J. Spector, M. W. Geis, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, F. Gan, G. R. Zhou, F. X. Kaertner, and T. M. Lyszczarz, “High-speed silicon electro-optical modulator that can be operated in carrier depletion or carrier injection mode,” in 2008 Conference on Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics, CLEO/QELS, San Jose, CA, United states, 2008.

G. T. Reed, and A. P. Knights, Silicon Photonics: An Introduction (John Wiley & Sons, Inc., 2004).

L. Liao, A. Liu, D. Rubin, J. A. B. J. Basak, Y. A. C. Y. Chetrit, H. A. N. H. Nguyen, R. A. C. R. Cohen, N. A. I. N. Izhaky, and M. A. P. M. Paniccia, “40 Gbit/s silicon optical modulator for highspeed applications,” Electron. Lett. 43, 2007.
[CrossRef]

A. Narasimha, S. AbdaIla, C. Bradbury, A. Clark, J. Clymore, J. Coyne, A. Dahl, S. Gloeckner, A. Gruenberg, D. Guckenberger, S. Gutierrez, M. Harrison, D. Kucharski, K. Leap, R. LeBlanc, V. Liang, M. Mack, D. Martinez, G. Masini, A. Mekis, R. Menigoz, C. Ogden, M. Peterson, T. Pinguet, J. Redman, J. Rodriguez, S. Sahni, M. Sharp, T. J. Sleboda, D. Song, V. Wang, B. Welch, J. Witzens, W. Xu, K. Vokoyama, and P. De DobbeIaere, “An ultra low power CMOS Photonics Technology Platform for H/S Optoelectronic Transceivers at less than $1per Gbps,” in OFC, 22–25 March, San Diego, USA 2010.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Cross section of the optical modulator; illustrates the junction positioning.

Fig. 2
Fig. 2

SEM Cross section of the optical modulator.

Fig. 3
Fig. 3

Implantation process used to achieve the wrap around junction a) implantation of the horizontal junction, b) etch of the rib waveguide, c) implantation of the left side of the n type region of the rib waveguide and slab d) implantation of the right side of the n type region of the rib waveguide and slab.

Fig. 4
Fig. 4

On chip loss and DC extinction ratio for a phase shifter length of 1350 micrometers, at 0 V and 6 V reverse bias, for TE polarisation.

Fig. 5
Fig. 5

On chip loss and DC extinction ratio for a phase shifter length of 1350 micrometers, at 0 V and 6 V reverse bias, for TM polarisation.

Fig. 6
Fig. 6

Current against voltage (IV) characteristics in the reverse regime of the diode. This shows the 6 V available for the operation of the device. Above 7 V the diode reverse current increases rapidly with a breakdown voltage located around 9 V.

Fig. 7
Fig. 7

Top down view of the coplanar waveguide electrode design and waveguide positioning to form a Mach Zehnder interferometer.

Fig. 8
Fig. 8

S21 measurements showing the transmission of the coplanar waveguides for an unloaded coplanar waveguide on a chip where no doping or via are present.

Fig. 9
Fig. 9

S21 measurements showing the transmission performed on loaded coplanar waveguides which contains a phase shifter diode. Measurements were performed at 0V and 3V reverse bias. The coplanar waveguide transmissions are measured for lengths from 490 micrometers up to 1980 micrometers where the phase shifter diodes are slightly shorter, of length 450, 900, 1350 and 1800 micrometers.

Fig. 10
Fig. 10

Eye diagram for a 1350 micrometers long device measured at 10 Gb/s, and at a wavelength of ~1557 nm for TE polarisation. The extinction ratio is approximately 7.3 dB.

Fig. 11
Fig. 11

Eye diagram for a 1350 micrometers long device measured at 10 Gb/s, and at a wavelength of ~1557 nm for TM polarisation. The extinction ratio is approximately 7.3 dB.

Fig. 12
Fig. 12

Eye diagram for a 1350 micrometers long device measured at 40 Gb/s, and at a wavelength of ~1557 nm for TE polarisation. The extinction ratio is approximately 6.5 dB.

Fig. 13
Fig. 13

Eye diagram for a 1350 micrometers long device measured at 40 Gb/s, and at a wavelength of ~1557 nm for TM polarisation. The extinction ratio is approximately 6.5 dB.

Metrics