Abstract

We report on inscription of microchannels of different widths in optical fiber using femtosecond (fs) laser inscription assisted chemical etching and the narrowest channel has been created with a width down to only 1.2μm. Microchannels with 5μm and 35μm widths were fabricated together with Fabry-Pérot (FP) cavities formed by UV laser written fiber Bragg gratings (FBGs), creating high function and linear response refractometers. The device with a 5μm microchannel has exhibited a refractive index (RI) detection range up to 1.7, significantly higher than all fiber grating RI sensors. In addition, the microchannel FBG FP structures have been theoretically simulated showing excellent agreement with experimental measured characteristics.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  2. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser,” Opt. Lett. 28(1), 55–57 (2003).
    [CrossRef] [PubMed]
  3. K. Zhou, Y. Lai, X. Chen, K. Sugden, L. Zhang, and I. Bennion, “A refractometer based on a micro-slot in a fiber Bragg grating formed by chemically assisted femtosecond laser processing,” Opt. Express 15(24), 15848–15853 (2007).
    [CrossRef] [PubMed]
  4. S. Mihailov, C. Smelser, D. Grobnic, R. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22(1), 94–100 (2004).
    [CrossRef]
  5. A. Martinez, I. Y. Khrushchev, and I. Bennion, “Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser,” Opt. Lett. 31(11), 1603–1605 (2006).
    [CrossRef] [PubMed]
  6. Y. Lai, K. Zhou, K. Sugden, and I. Bennion, “Point-by-point inscription of first-order fiber Bragg grating for C-band applications,” Opt. Express 15(26), 18318–18325 (2007).
    [CrossRef] [PubMed]
  7. G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18(19), 19844–19859 (2010).
    [CrossRef] [PubMed]
  8. Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, “Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses,” Opt. Lett. 24(10), 646–648 (1999).
    [CrossRef]
  9. T. Wei, Y. Han, Y. Li, H.-L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16(8), 5764–5769 (2008).
    [CrossRef] [PubMed]
  10. Y. Wang, D. N. Wang, M. Yang, W. Hong, and P. Lu, “Refractive index sensor based on a microhole in single-mode fiber created by the use of femtosecond laser micromachining,” Opt. Lett. 34(21), 3328–3330 (2009).
    [CrossRef] [PubMed]
  11. Y. Wang, M. Yang, D. N. Wang, S. Liu, and P. Lu, “Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B 27(3), 370–374 (2010).
    [CrossRef]
  12. Z. Ran, Y. Rao, J. Zhang, Z. Liu, and B. Xu, “A miniature fiber-optic refractive-index sensor based on laser-machined Fabry–Perot interferometer tip,” J. Lightwave Technol. 27(23), 5426–5429 (2009).
    [CrossRef]
  13. R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1-2), 26–46 (2008).
    [CrossRef]
  14. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [CrossRef] [PubMed]
  15. P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
    [CrossRef]
  16. A. Muller, E. B. Flagg, J. R. Lawall, and G. S. Solomon, “Ultrahigh-finesse, low-mode-volume Fabry-Perot microcavity,” Opt. Lett. 35(13), 2293–2295 (2010).
    [CrossRef] [PubMed]
  17. Y. Lai, K. Zhou, L. Zhang, and I. Bennion, “Microchannels in conventional single-mode fibers,” Opt. Lett. 31(17), 2559–2561 (2006).
    [CrossRef] [PubMed]
  18. J. Petrovic, Y. Lai, and I. Bennion, “Numerical and experimental study of microfluidic devices in step-index optical fibers,” Appl. Opt. 47(10), 1410–1416 (2008).
    [CrossRef] [PubMed]
  19. K. Zhou, X. Chen, G. Simpson, D. Zhao, L. Zhang, and I. Bennion, “Temperature referenced high sensitivity point-probe optical fiber chem-sensors based on cladding etched fiber bragg gratings,” in Optical Sensing, B. Culshaw, A. Mignani, and R. Riesenberg, eds., 5459, 409–414 (2004).
  20. R. Kashyap, Fiber Bragg Grating (Academic Press, 1999).
  21. S. Yuan and N. A. Riza, “General formula for coupling-loss characterization of single-mode fiber collimators by use of gradient-index rod lenses,” Appl. Opt. 38(15), 3214–3222 (1999).
    [CrossRef]

2010 (3)

2009 (2)

2008 (3)

2007 (2)

2006 (2)

2004 (1)

2003 (2)

1999 (2)

1997 (1)

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

1996 (1)

Bennion, I.

Chen, X.

Cheng, Y.

Davis, K. M.

Ding, H.

Fan, S.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Ferrera, J.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Flagg, E. B.

Foresi, J. S.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Grobnic, D.

Han, Y.

Hirao, K.

Hnatovsky, C.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1-2), 26–46 (2008).
[CrossRef]

Hong, W.

Ippen, E. P.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Joannopoulos, J. D.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Jovanovic, N.

Kawachi, M.

Kazansky, P. G.

Khrushchev, I. Y.

Kimerling, L. C.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Kondo, Y.

Lai, Y.

Lawall, J. R.

Li, Y.

Liu, S.

Liu, Z.

Lu, P.

Marshall, G. D.

Martinez, A.

Masuda, M.

Midorikawa, K.

Mihailov, S.

Mitsuyu, T.

Miura, K.

Muller, A.

Nouchi, K.

Petrovic, J.

Ran, Z.

Rao, Y.

Riza, N. A.

Shihoyama, K.

Simova, E.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1-2), 26–46 (2008).
[CrossRef]

Smelser, C.

Smith, H. I.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Solomon, G. S.

Steel, M. J.

Steinmeyer, G.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Sugden, K.

Sugimoto, N.

Sugioka, K.

Taylor, R.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1-2), 26–46 (2008).
[CrossRef]

Thoen, E. R.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Toyoda, K.

Tsai, H.-L.

Unruh, J.

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

Villeneuve, P. R.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Walker, R.

Wang, D. N.

Wang, Y.

Watanabe, M.

Wei, T.

Williams, R. J.

Withford, M. J.

Xiao, H.

Xu, B.

Yang, M.

Yuan, S.

Zhang, J.

Zhang, L.

Zhou, K.

Appl. Opt. (2)

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1-2), 26–46 (2008).
[CrossRef]

Nature (2)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Opt. Express (4)

Opt. Lett. (7)

Other (2)

K. Zhou, X. Chen, G. Simpson, D. Zhao, L. Zhang, and I. Bennion, “Temperature referenced high sensitivity point-probe optical fiber chem-sensors based on cladding etched fiber bragg gratings,” in Optical Sensing, B. Culshaw, A. Mignani, and R. Riesenberg, eds., 5459, 409–414 (2004).

R. Kashyap, Fiber Bragg Grating (Academic Press, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of the microchannel FBG FP device; the dashed arrow lines give the movement of the focal spot of the laser within the optical fiber. (b) Images of the fs laser inscription/chemical etching induced microchannels.

Fig. 2
Fig. 2

Spectral evolution of the FBG FP cavity during the etching process with a (a) 35µm and (b) 5µm microchannel. Inset in (b) shows the offset spectra.

Fig. 3
Fig. 3

(a) Spectral evolution of the 5μm microchannel device subject to different RI oils; inset shows the offset spectra. (b) Linear relation between the wavelength of the resonant peak and RI of the oil, with a coefficient of 1.1nm/RIU.

Fig. 4
Fig. 4

(a) Spectral evolution of the 35μm microchannel device subjected to different RI oils. (b) Relation between the wavelength of the resonant peak and RI of the oil.

Fig. 5
Fig. 5

Simulated transmission spectra for a microchannel FBG FP cavity with different transmission coefficients.

Fig. 6
Fig. 6

(a)Simulated spectra of the 35μm device with oils of different RI in the microchannel. (b) Wavelength shift of the FP resonance peaks with respect to RI of the oil; the triangles are the experimental result for comparison. (b) Influence on RI sensitivity of a microchannel FBG FP device with different cavity lengths.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T C = [ t exp [ i 2 π n l λ ] 0 0 t 1 exp [ i 2 π n l λ ] ]
T F = [ exp [ i 2 π n l λ ] 0 0 exp [ i 2 π n l λ ] ]
T F B G = [ a 11 a 12 a 21 a 22 ]
T F B G T F T C T F B G

Metrics