Abstract

A multiphoton process to the conduction band of the insulator Er2O3 is reported, which occurs in vacuum under near infrared excitation. The enormous upconversion intensity is two orders of magnitude greater than that in air, and also the intensity ratio for green and red emission bands is inverted. The mechanism is probed by experiments of laser power dependence, cathodoluminescence, photoconductivity dependence and chemical dilution, and it involves cross-relaxation energy transfer upconversion of erbium ions to reach the conduction band. The upconversion color is tunable by changes in pressure, laser diode intensity and wavelength, or dopant ion concentration.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (John Wiley & Sons, 1994).
  2. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
    [CrossRef] [PubMed]
  3. D. Casanova, C. Bouzigues, T.-L. Nguyên, R. O. Ramodiharilafy, L. Bouzhir-Sima, T. Gacoin, J. P. Boilot, P.-L. Tharaux, and A. Alexandrou, “Single europium-doped nanoparticles measure temporal pattern of reactive oxygen species production inside cells,” Nat. Nanotechnol. 4(9), 581–585 (2009).
    [CrossRef] [PubMed]
  4. D. R. Gamelin and H. U. Gudel, “Upconversion processes in transition metal and rare earth metal systems,” Top. Curr. Chem. 214, 1–56 (2001).
    [CrossRef]
  5. S. Sivakumar, F. C. van Veggel, and M. Raudsepp, “Bright white-light through up-conversion of a single NIR source from sol–gel-derived thin film made with Ln3+-doped LaF3 nanoparticles,” J. Am. Chem. Soc. 127(36), 12464–12465 (2005).
    [CrossRef] [PubMed]
  6. F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
    [CrossRef] [PubMed]
  7. E. Beurer, J. Grimm, P. Gerner, and H. U. Güdel, “New type of near infrared to visible photon upconversion of Tm2+ -doped CsCaI3,” J. Am. Chem. Soc. 128(10), 3110–3111 (2006).
    [CrossRef] [PubMed]
  8. C. Cao, W. Qin, J. Zhang, Y. Wang, P. Zhu, G. Wei, G. Wang, R. Kim, and L. Wang, “Ultraviolet upconversion emissions of Gd3+,” Opt. Lett. 33(8), 857–859 (2008).
    [CrossRef] [PubMed]
  9. S. Schietinger, L. S. Menezes, B. Lauritzen, and O. Benson, “Observation of size dependence in multicolor upconversion in single Yb3+, Er3+ codoped NaYF4 nanocrystals,” Nano Lett. 9(6), 2477–2481 (2009).
    [CrossRef] [PubMed]
  10. W. Kaiser and C. B. Garrett, “Two-photon excitation CaF2: Eu2+,” Phys. Rev. Lett. 7(6), 229–231 (1961).
    [CrossRef]
  11. D. Jia, L. Liu, and W. M. Yen, “Erbium energy levels relative to the band gap of gadolinium oxide,” Opt. Commun. 212(1-3), 97–100 (2002).
    [CrossRef]
  12. W. S. Mallory, “The distribution of energy in the spectrum of erbium oxide,” Phys. Rev. 14(1), 54–66 (1919).
    [CrossRef]
  13. Z. L. Wang, H. L. W. Chan, H.-L. Li, and J. H. Hao, “Highly efficient low-voltage cathodoluminescence of LaF3:Ln (Ln=Eu3+,Ce3+,Tb3+) spherical particles,” Appl. Phys. Lett. 93(14), 141106 (2008).
    [CrossRef]
  14. H. L. Li, Z. L. Wang, S. J. Xu, and J. H. Hao, “Improved performance of spherical BaWO4: Tb3+ phosphors for field-emission displays,” J. Electrochem. Soc. 156(5), J112–J116 (2009).
    [CrossRef]
  15. P. A. Tanner and K. L. Wong, “Synthesis and spectroscopy of lanthanide ion-doped Y2O3,” J. Phys. Chem. B 108(1), 136–142 (2004).
    [CrossRef]
  16. C. K. Jørgensen, H. Bill, and R. Reisfeld, “Cathodoluminescence of rare earth,” J. Lumin. 24-25, 91–94 (1981).
    [CrossRef]
  17. J. Wang and P. A. Tanner, “Upconversion for white light generation by a single compound,” J. Am. Chem. Soc. 132(3), 947–949 (2010).
    [CrossRef]
  18. C. Brandt, S. T. Fredrich-Thornton, K. Petermann, and G. Huber, “Photoconductivity in Yb-doped oxides at high excitation densities,” Appl. Phys. B 102(4), 765–768 (2011).
    [CrossRef]

2011

C. Brandt, S. T. Fredrich-Thornton, K. Petermann, and G. Huber, “Photoconductivity in Yb-doped oxides at high excitation densities,” Appl. Phys. B 102(4), 765–768 (2011).
[CrossRef]

2010

J. Wang and P. A. Tanner, “Upconversion for white light generation by a single compound,” J. Am. Chem. Soc. 132(3), 947–949 (2010).
[CrossRef]

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

2009

S. Schietinger, L. S. Menezes, B. Lauritzen, and O. Benson, “Observation of size dependence in multicolor upconversion in single Yb3+, Er3+ codoped NaYF4 nanocrystals,” Nano Lett. 9(6), 2477–2481 (2009).
[CrossRef] [PubMed]

D. Casanova, C. Bouzigues, T.-L. Nguyên, R. O. Ramodiharilafy, L. Bouzhir-Sima, T. Gacoin, J. P. Boilot, P.-L. Tharaux, and A. Alexandrou, “Single europium-doped nanoparticles measure temporal pattern of reactive oxygen species production inside cells,” Nat. Nanotechnol. 4(9), 581–585 (2009).
[CrossRef] [PubMed]

H. L. Li, Z. L. Wang, S. J. Xu, and J. H. Hao, “Improved performance of spherical BaWO4: Tb3+ phosphors for field-emission displays,” J. Electrochem. Soc. 156(5), J112–J116 (2009).
[CrossRef]

2008

C. Cao, W. Qin, J. Zhang, Y. Wang, P. Zhu, G. Wei, G. Wang, R. Kim, and L. Wang, “Ultraviolet upconversion emissions of Gd3+,” Opt. Lett. 33(8), 857–859 (2008).
[CrossRef] [PubMed]

Z. L. Wang, H. L. W. Chan, H.-L. Li, and J. H. Hao, “Highly efficient low-voltage cathodoluminescence of LaF3:Ln (Ln=Eu3+,Ce3+,Tb3+) spherical particles,” Appl. Phys. Lett. 93(14), 141106 (2008).
[CrossRef]

2006

E. Beurer, J. Grimm, P. Gerner, and H. U. Güdel, “New type of near infrared to visible photon upconversion of Tm2+ -doped CsCaI3,” J. Am. Chem. Soc. 128(10), 3110–3111 (2006).
[CrossRef] [PubMed]

2005

S. Sivakumar, F. C. van Veggel, and M. Raudsepp, “Bright white-light through up-conversion of a single NIR source from sol–gel-derived thin film made with Ln3+-doped LaF3 nanoparticles,” J. Am. Chem. Soc. 127(36), 12464–12465 (2005).
[CrossRef] [PubMed]

2004

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[CrossRef] [PubMed]

P. A. Tanner and K. L. Wong, “Synthesis and spectroscopy of lanthanide ion-doped Y2O3,” J. Phys. Chem. B 108(1), 136–142 (2004).
[CrossRef]

2002

D. Jia, L. Liu, and W. M. Yen, “Erbium energy levels relative to the band gap of gadolinium oxide,” Opt. Commun. 212(1-3), 97–100 (2002).
[CrossRef]

2001

D. R. Gamelin and H. U. Gudel, “Upconversion processes in transition metal and rare earth metal systems,” Top. Curr. Chem. 214, 1–56 (2001).
[CrossRef]

1981

C. K. Jørgensen, H. Bill, and R. Reisfeld, “Cathodoluminescence of rare earth,” J. Lumin. 24-25, 91–94 (1981).
[CrossRef]

1961

W. Kaiser and C. B. Garrett, “Two-photon excitation CaF2: Eu2+,” Phys. Rev. Lett. 7(6), 229–231 (1961).
[CrossRef]

1919

W. S. Mallory, “The distribution of energy in the spectrum of erbium oxide,” Phys. Rev. 14(1), 54–66 (1919).
[CrossRef]

Alexandrou, A.

D. Casanova, C. Bouzigues, T.-L. Nguyên, R. O. Ramodiharilafy, L. Bouzhir-Sima, T. Gacoin, J. P. Boilot, P.-L. Tharaux, and A. Alexandrou, “Single europium-doped nanoparticles measure temporal pattern of reactive oxygen species production inside cells,” Nat. Nanotechnol. 4(9), 581–585 (2009).
[CrossRef] [PubMed]

Auzel, F.

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[CrossRef] [PubMed]

Benson, O.

S. Schietinger, L. S. Menezes, B. Lauritzen, and O. Benson, “Observation of size dependence in multicolor upconversion in single Yb3+, Er3+ codoped NaYF4 nanocrystals,” Nano Lett. 9(6), 2477–2481 (2009).
[CrossRef] [PubMed]

Beurer, E.

E. Beurer, J. Grimm, P. Gerner, and H. U. Güdel, “New type of near infrared to visible photon upconversion of Tm2+ -doped CsCaI3,” J. Am. Chem. Soc. 128(10), 3110–3111 (2006).
[CrossRef] [PubMed]

Bill, H.

C. K. Jørgensen, H. Bill, and R. Reisfeld, “Cathodoluminescence of rare earth,” J. Lumin. 24-25, 91–94 (1981).
[CrossRef]

Boilot, J. P.

D. Casanova, C. Bouzigues, T.-L. Nguyên, R. O. Ramodiharilafy, L. Bouzhir-Sima, T. Gacoin, J. P. Boilot, P.-L. Tharaux, and A. Alexandrou, “Single europium-doped nanoparticles measure temporal pattern of reactive oxygen species production inside cells,” Nat. Nanotechnol. 4(9), 581–585 (2009).
[CrossRef] [PubMed]

Bouzhir-Sima, L.

D. Casanova, C. Bouzigues, T.-L. Nguyên, R. O. Ramodiharilafy, L. Bouzhir-Sima, T. Gacoin, J. P. Boilot, P.-L. Tharaux, and A. Alexandrou, “Single europium-doped nanoparticles measure temporal pattern of reactive oxygen species production inside cells,” Nat. Nanotechnol. 4(9), 581–585 (2009).
[CrossRef] [PubMed]

Bouzigues, C.

D. Casanova, C. Bouzigues, T.-L. Nguyên, R. O. Ramodiharilafy, L. Bouzhir-Sima, T. Gacoin, J. P. Boilot, P.-L. Tharaux, and A. Alexandrou, “Single europium-doped nanoparticles measure temporal pattern of reactive oxygen species production inside cells,” Nat. Nanotechnol. 4(9), 581–585 (2009).
[CrossRef] [PubMed]

Brandt, C.

C. Brandt, S. T. Fredrich-Thornton, K. Petermann, and G. Huber, “Photoconductivity in Yb-doped oxides at high excitation densities,” Appl. Phys. B 102(4), 765–768 (2011).
[CrossRef]

Cao, C.

Casanova, D.

D. Casanova, C. Bouzigues, T.-L. Nguyên, R. O. Ramodiharilafy, L. Bouzhir-Sima, T. Gacoin, J. P. Boilot, P.-L. Tharaux, and A. Alexandrou, “Single europium-doped nanoparticles measure temporal pattern of reactive oxygen species production inside cells,” Nat. Nanotechnol. 4(9), 581–585 (2009).
[CrossRef] [PubMed]

Chan, H. L. W.

Z. L. Wang, H. L. W. Chan, H.-L. Li, and J. H. Hao, “Highly efficient low-voltage cathodoluminescence of LaF3:Ln (Ln=Eu3+,Ce3+,Tb3+) spherical particles,” Appl. Phys. Lett. 93(14), 141106 (2008).
[CrossRef]

Chen, H.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Fredrich-Thornton, S. T.

C. Brandt, S. T. Fredrich-Thornton, K. Petermann, and G. Huber, “Photoconductivity in Yb-doped oxides at high excitation densities,” Appl. Phys. B 102(4), 765–768 (2011).
[CrossRef]

Gacoin, T.

D. Casanova, C. Bouzigues, T.-L. Nguyên, R. O. Ramodiharilafy, L. Bouzhir-Sima, T. Gacoin, J. P. Boilot, P.-L. Tharaux, and A. Alexandrou, “Single europium-doped nanoparticles measure temporal pattern of reactive oxygen species production inside cells,” Nat. Nanotechnol. 4(9), 581–585 (2009).
[CrossRef] [PubMed]

Gamelin, D. R.

D. R. Gamelin and H. U. Gudel, “Upconversion processes in transition metal and rare earth metal systems,” Top. Curr. Chem. 214, 1–56 (2001).
[CrossRef]

Garrett, C. B.

W. Kaiser and C. B. Garrett, “Two-photon excitation CaF2: Eu2+,” Phys. Rev. Lett. 7(6), 229–231 (1961).
[CrossRef]

Gerner, P.

E. Beurer, J. Grimm, P. Gerner, and H. U. Güdel, “New type of near infrared to visible photon upconversion of Tm2+ -doped CsCaI3,” J. Am. Chem. Soc. 128(10), 3110–3111 (2006).
[CrossRef] [PubMed]

Grimm, J.

E. Beurer, J. Grimm, P. Gerner, and H. U. Güdel, “New type of near infrared to visible photon upconversion of Tm2+ -doped CsCaI3,” J. Am. Chem. Soc. 128(10), 3110–3111 (2006).
[CrossRef] [PubMed]

Gudel, H. U.

D. R. Gamelin and H. U. Gudel, “Upconversion processes in transition metal and rare earth metal systems,” Top. Curr. Chem. 214, 1–56 (2001).
[CrossRef]

Güdel, H. U.

E. Beurer, J. Grimm, P. Gerner, and H. U. Güdel, “New type of near infrared to visible photon upconversion of Tm2+ -doped CsCaI3,” J. Am. Chem. Soc. 128(10), 3110–3111 (2006).
[CrossRef] [PubMed]

Han, Y.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Hao, J. H.

H. L. Li, Z. L. Wang, S. J. Xu, and J. H. Hao, “Improved performance of spherical BaWO4: Tb3+ phosphors for field-emission displays,” J. Electrochem. Soc. 156(5), J112–J116 (2009).
[CrossRef]

Z. L. Wang, H. L. W. Chan, H.-L. Li, and J. H. Hao, “Highly efficient low-voltage cathodoluminescence of LaF3:Ln (Ln=Eu3+,Ce3+,Tb3+) spherical particles,” Appl. Phys. Lett. 93(14), 141106 (2008).
[CrossRef]

Hong, M.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Huber, G.

C. Brandt, S. T. Fredrich-Thornton, K. Petermann, and G. Huber, “Photoconductivity in Yb-doped oxides at high excitation densities,” Appl. Phys. B 102(4), 765–768 (2011).
[CrossRef]

Jia, D.

D. Jia, L. Liu, and W. M. Yen, “Erbium energy levels relative to the band gap of gadolinium oxide,” Opt. Commun. 212(1-3), 97–100 (2002).
[CrossRef]

Jørgensen, C. K.

C. K. Jørgensen, H. Bill, and R. Reisfeld, “Cathodoluminescence of rare earth,” J. Lumin. 24-25, 91–94 (1981).
[CrossRef]

Kaiser, W.

W. Kaiser and C. B. Garrett, “Two-photon excitation CaF2: Eu2+,” Phys. Rev. Lett. 7(6), 229–231 (1961).
[CrossRef]

Kim, R.

Lauritzen, B.

S. Schietinger, L. S. Menezes, B. Lauritzen, and O. Benson, “Observation of size dependence in multicolor upconversion in single Yb3+, Er3+ codoped NaYF4 nanocrystals,” Nano Lett. 9(6), 2477–2481 (2009).
[CrossRef] [PubMed]

Li, H. L.

H. L. Li, Z. L. Wang, S. J. Xu, and J. H. Hao, “Improved performance of spherical BaWO4: Tb3+ phosphors for field-emission displays,” J. Electrochem. Soc. 156(5), J112–J116 (2009).
[CrossRef]

Li, H.-L.

Z. L. Wang, H. L. W. Chan, H.-L. Li, and J. H. Hao, “Highly efficient low-voltage cathodoluminescence of LaF3:Ln (Ln=Eu3+,Ce3+,Tb3+) spherical particles,” Appl. Phys. Lett. 93(14), 141106 (2008).
[CrossRef]

Lim, C. S.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Liu, L.

D. Jia, L. Liu, and W. M. Yen, “Erbium energy levels relative to the band gap of gadolinium oxide,” Opt. Commun. 212(1-3), 97–100 (2002).
[CrossRef]

Liu, X.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Lu, Y.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Mallory, W. S.

W. S. Mallory, “The distribution of energy in the spectrum of erbium oxide,” Phys. Rev. 14(1), 54–66 (1919).
[CrossRef]

Menezes, L. S.

S. Schietinger, L. S. Menezes, B. Lauritzen, and O. Benson, “Observation of size dependence in multicolor upconversion in single Yb3+, Er3+ codoped NaYF4 nanocrystals,” Nano Lett. 9(6), 2477–2481 (2009).
[CrossRef] [PubMed]

Nguyên, T.-L.

D. Casanova, C. Bouzigues, T.-L. Nguyên, R. O. Ramodiharilafy, L. Bouzhir-Sima, T. Gacoin, J. P. Boilot, P.-L. Tharaux, and A. Alexandrou, “Single europium-doped nanoparticles measure temporal pattern of reactive oxygen species production inside cells,” Nat. Nanotechnol. 4(9), 581–585 (2009).
[CrossRef] [PubMed]

Petermann, K.

C. Brandt, S. T. Fredrich-Thornton, K. Petermann, and G. Huber, “Photoconductivity in Yb-doped oxides at high excitation densities,” Appl. Phys. B 102(4), 765–768 (2011).
[CrossRef]

Qin, W.

Ramodiharilafy, R. O.

D. Casanova, C. Bouzigues, T.-L. Nguyên, R. O. Ramodiharilafy, L. Bouzhir-Sima, T. Gacoin, J. P. Boilot, P.-L. Tharaux, and A. Alexandrou, “Single europium-doped nanoparticles measure temporal pattern of reactive oxygen species production inside cells,” Nat. Nanotechnol. 4(9), 581–585 (2009).
[CrossRef] [PubMed]

Raudsepp,, M.

S. Sivakumar, F. C. van Veggel, and M. Raudsepp, “Bright white-light through up-conversion of a single NIR source from sol–gel-derived thin film made with Ln3+-doped LaF3 nanoparticles,” J. Am. Chem. Soc. 127(36), 12464–12465 (2005).
[CrossRef] [PubMed]

Reisfeld, R.

C. K. Jørgensen, H. Bill, and R. Reisfeld, “Cathodoluminescence of rare earth,” J. Lumin. 24-25, 91–94 (1981).
[CrossRef]

Schietinger, S.

S. Schietinger, L. S. Menezes, B. Lauritzen, and O. Benson, “Observation of size dependence in multicolor upconversion in single Yb3+, Er3+ codoped NaYF4 nanocrystals,” Nano Lett. 9(6), 2477–2481 (2009).
[CrossRef] [PubMed]

Sivakumar, S.

S. Sivakumar, F. C. van Veggel, and M. Raudsepp, “Bright white-light through up-conversion of a single NIR source from sol–gel-derived thin film made with Ln3+-doped LaF3 nanoparticles,” J. Am. Chem. Soc. 127(36), 12464–12465 (2005).
[CrossRef] [PubMed]

Tanner, P. A.

J. Wang and P. A. Tanner, “Upconversion for white light generation by a single compound,” J. Am. Chem. Soc. 132(3), 947–949 (2010).
[CrossRef]

P. A. Tanner and K. L. Wong, “Synthesis and spectroscopy of lanthanide ion-doped Y2O3,” J. Phys. Chem. B 108(1), 136–142 (2004).
[CrossRef]

Tharaux, P.-L.

D. Casanova, C. Bouzigues, T.-L. Nguyên, R. O. Ramodiharilafy, L. Bouzhir-Sima, T. Gacoin, J. P. Boilot, P.-L. Tharaux, and A. Alexandrou, “Single europium-doped nanoparticles measure temporal pattern of reactive oxygen species production inside cells,” Nat. Nanotechnol. 4(9), 581–585 (2009).
[CrossRef] [PubMed]

van Veggel, F. C.

S. Sivakumar, F. C. van Veggel, and M. Raudsepp, “Bright white-light through up-conversion of a single NIR source from sol–gel-derived thin film made with Ln3+-doped LaF3 nanoparticles,” J. Am. Chem. Soc. 127(36), 12464–12465 (2005).
[CrossRef] [PubMed]

Wang, F.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Wang, G.

Wang, J.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

J. Wang and P. A. Tanner, “Upconversion for white light generation by a single compound,” J. Am. Chem. Soc. 132(3), 947–949 (2010).
[CrossRef]

Wang, L.

Wang, Y.

Wang, Z. L.

H. L. Li, Z. L. Wang, S. J. Xu, and J. H. Hao, “Improved performance of spherical BaWO4: Tb3+ phosphors for field-emission displays,” J. Electrochem. Soc. 156(5), J112–J116 (2009).
[CrossRef]

Z. L. Wang, H. L. W. Chan, H.-L. Li, and J. H. Hao, “Highly efficient low-voltage cathodoluminescence of LaF3:Ln (Ln=Eu3+,Ce3+,Tb3+) spherical particles,” Appl. Phys. Lett. 93(14), 141106 (2008).
[CrossRef]

Wei, G.

Wong, K. L.

P. A. Tanner and K. L. Wong, “Synthesis and spectroscopy of lanthanide ion-doped Y2O3,” J. Phys. Chem. B 108(1), 136–142 (2004).
[CrossRef]

Xu, J.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Xu, S. J.

H. L. Li, Z. L. Wang, S. J. Xu, and J. H. Hao, “Improved performance of spherical BaWO4: Tb3+ phosphors for field-emission displays,” J. Electrochem. Soc. 156(5), J112–J116 (2009).
[CrossRef]

Yen, W. M.

D. Jia, L. Liu, and W. M. Yen, “Erbium energy levels relative to the band gap of gadolinium oxide,” Opt. Commun. 212(1-3), 97–100 (2002).
[CrossRef]

Zhang, C.

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Zhang, J.

Zhu, P.

Appl. Phys. B

C. Brandt, S. T. Fredrich-Thornton, K. Petermann, and G. Huber, “Photoconductivity in Yb-doped oxides at high excitation densities,” Appl. Phys. B 102(4), 765–768 (2011).
[CrossRef]

Appl. Phys. Lett.

Z. L. Wang, H. L. W. Chan, H.-L. Li, and J. H. Hao, “Highly efficient low-voltage cathodoluminescence of LaF3:Ln (Ln=Eu3+,Ce3+,Tb3+) spherical particles,” Appl. Phys. Lett. 93(14), 141106 (2008).
[CrossRef]

Chem. Rev.

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[CrossRef] [PubMed]

J. Am. Chem. Soc.

S. Sivakumar, F. C. van Veggel, and M. Raudsepp, “Bright white-light through up-conversion of a single NIR source from sol–gel-derived thin film made with Ln3+-doped LaF3 nanoparticles,” J. Am. Chem. Soc. 127(36), 12464–12465 (2005).
[CrossRef] [PubMed]

E. Beurer, J. Grimm, P. Gerner, and H. U. Güdel, “New type of near infrared to visible photon upconversion of Tm2+ -doped CsCaI3,” J. Am. Chem. Soc. 128(10), 3110–3111 (2006).
[CrossRef] [PubMed]

J. Wang and P. A. Tanner, “Upconversion for white light generation by a single compound,” J. Am. Chem. Soc. 132(3), 947–949 (2010).
[CrossRef]

J. Electrochem. Soc.

H. L. Li, Z. L. Wang, S. J. Xu, and J. H. Hao, “Improved performance of spherical BaWO4: Tb3+ phosphors for field-emission displays,” J. Electrochem. Soc. 156(5), J112–J116 (2009).
[CrossRef]

J. Lumin.

C. K. Jørgensen, H. Bill, and R. Reisfeld, “Cathodoluminescence of rare earth,” J. Lumin. 24-25, 91–94 (1981).
[CrossRef]

J. Phys. Chem. B

P. A. Tanner and K. L. Wong, “Synthesis and spectroscopy of lanthanide ion-doped Y2O3,” J. Phys. Chem. B 108(1), 136–142 (2004).
[CrossRef]

Nano Lett.

S. Schietinger, L. S. Menezes, B. Lauritzen, and O. Benson, “Observation of size dependence in multicolor upconversion in single Yb3+, Er3+ codoped NaYF4 nanocrystals,” Nano Lett. 9(6), 2477–2481 (2009).
[CrossRef] [PubMed]

Nat. Nanotechnol.

D. Casanova, C. Bouzigues, T.-L. Nguyên, R. O. Ramodiharilafy, L. Bouzhir-Sima, T. Gacoin, J. P. Boilot, P.-L. Tharaux, and A. Alexandrou, “Single europium-doped nanoparticles measure temporal pattern of reactive oxygen species production inside cells,” Nat. Nanotechnol. 4(9), 581–585 (2009).
[CrossRef] [PubMed]

Nature

F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010).
[CrossRef] [PubMed]

Opt. Commun.

D. Jia, L. Liu, and W. M. Yen, “Erbium energy levels relative to the band gap of gadolinium oxide,” Opt. Commun. 212(1-3), 97–100 (2002).
[CrossRef]

Opt. Lett.

Phys. Rev.

W. S. Mallory, “The distribution of energy in the spectrum of erbium oxide,” Phys. Rev. 14(1), 54–66 (1919).
[CrossRef]

Phys. Rev. Lett.

W. Kaiser and C. B. Garrett, “Two-photon excitation CaF2: Eu2+,” Phys. Rev. Lett. 7(6), 229–231 (1961).
[CrossRef]

Top. Curr. Chem.

D. R. Gamelin and H. U. Gudel, “Upconversion processes in transition metal and rare earth metal systems,” Top. Curr. Chem. 214, 1–56 (2001).
[CrossRef]

Other

E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (John Wiley & Sons, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Luminescence of Er2O3 powders between 400 and 825 nm. (a) Cathodoluminescence (CL) intensity versus beam voltage under 1.25 A beam current. (b) CL intensity versus beam current under 6.0 keV beam voltage. (c) 975 nm excited upconversion luminescence in air or vacuum under 750 mW irradiation.

Fig. 2
Fig. 2

Log-log plots of various experimental variables for Er2O3 powders: (a) integrated emission intensity versus 975 nm laser diode power in the region between 400 and 850 nm in ambient air or vacuum of 2 × 10−2 mbar; (b) photocurrent versus laser power for three pressures; c) photocurrent and upconversion intensity versus pressure using 950 mW NIR laser excitation power: these results are not simultaneous.

Fig. 3
Fig. 3

Calculated Commission Internationale de L'éclairage (CIE) coordinate ranges of Er2O3 powder sample under electron gun (CL) and NIR excitation. The circle is for CL; the triangle region for 808 nm excitation and the rectangle for 975 nm excitation. The insets are photographs of Er2O3 powder in a circular metal holder behind a glass window of the vacuum chamber: (top) of the upconversion under 975 nm excitation, (bottom) of the upconversion under 808 nm excitation and (left) of CL.

Metrics