Abstract

A ring isolator is demonstrated for the first time by directly bonding a cerium-substituted yttrium iron garnet (Ce:YIG) onto a silicon ring resonator using oxygen plasma enhanced bonding. The silicon waveguide is 600 nm wide and 295 nm thick with 500-nm-thick Ce:YIG on the top to have reasonable nonreciprocal effect and low optical loss. With a radial magnetic field applied to the ring isolator, it exhibits 9-dB isolation at resonance in the 1550 nm wavelength regime.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Shintaku, “Integrated optical isolator based on efficient nonreciprocal radiation mode conversion,” Appl. Phys. Lett. 73(14), 1946–1948 (1998).
    [CrossRef]
  2. H. Shimizu and S. Goto, “Evanescent semiconductor active optical isolators for low insertion loss and high gain saturation power,” J. Lightwave Technol. 28(9), 1414–1419 (2010).
    [CrossRef]
  3. H. Shimizu and Y. Nakano, “Fabrication and characterization of an InGaAsP/InP active waveguide optical isolator with 14.7 dB/mm TE mode nonreciprocal attenuation,” J. Lightwave Technol. 24(1), 38–43 (2006).
    [CrossRef]
  4. J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dotsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76(16), 2158–2160 (2000).
    [CrossRef]
  5. H. Yokoi, T. Mizumoto, and Y. Shoji, “Optical nonreciprocal devices with a silicon guiding layer fabricated by wafer bonding,” Appl. Opt. 42(33), 6605–6612 (2003).
    [CrossRef] [PubMed]
  6. H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, and Y. Nakano, “Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift,” Appl. Opt. 39(33), 6158–6164 (2000).
    [CrossRef]
  7. Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
    [CrossRef]
  8. Z. Wang and S. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystals,” Opt. Lett. 30(15), 1989–1991 (2005).
    [CrossRef] [PubMed]
  9. W. Śmigaj, J. Romero-Vivas, B. Gralak, L. Magdenko, B. Dagens, and M. Vanwolleghem, “Magneto-optical circulator designed for operation in a uniform external magnetic field,” Opt. Lett. 35(4), 568–570 (2010).
    [CrossRef] [PubMed]
  10. A. Rostami, “Piecewise linear integrated optical device as an optical isolator using two-port nonlinear ring resonators,” Opt. Laser Technol. 39(5), 1059–1065 (2007).
    [CrossRef]
  11. L. Fan, J. Wang, H. Shen, L. T. Varghese, B. Niu, J. Ouyang, and M. Qi, “A CMOS compatible microring-based on-chip isolator with 18dB optical isolation,” in Frontiers in Optics (OSA, 2010), paper FThQ4.
  12. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
    [CrossRef]
  13. N. Kono, K. Kakihara, K. Saitoh, and M. Koshiba, “Nonreciprocal microresonators for the miniaturization of optical waveguide isolators,” Opt. Express 15(12), 7737–7751 (2007).
    [CrossRef] [PubMed]
  14. S. Yamamoto and T. Makimoto, “Circuit theory for a class of anisotropic and gyrotropic thin-film optical waveguides and design of nonreciprocal devices for integrated optics,” J. Appl. Phys. 45(2), 882–888 (1974).
    [CrossRef]
  15. O. Zhuromskyy, H. Dotsch, M. Lohmeyer, L. Wilkens, and P. Hertel, “Magnetooptical waveguides with polarization-independent nonreciprocal phase shift,” J. Lightwave Technol. 19(2), 214–221 (2001).
    [CrossRef]
  16. A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26(11), 1423–1431 (2008).
    [CrossRef]
  17. P. Paolo, M.-C. Tien, and J. Bowers, “Design of magneto-optical ring isolator on SOI based on the finite element method,” Photon. Technol. Lett. (submitted to).
  18. A. Konrad, “High-order triangular finite elements for electromagnetic waves in anisotropic media,” IEEE Trans. Microw. Theory Tech. 25(5), 353–360 (1977).
    [CrossRef]
  19. T. Shintaku, T. Uno, and M. Kobayashi, “Magneto-optic channel waveguides in Ce-substituted yttrium iron garnet,” J. Appl. Phys. 74(8), 4877–4881 (1993).
    [CrossRef]
  20. D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quantum Electron. 8(1), 118–131 (2002).
    [CrossRef]

2010 (2)

2009 (1)

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
[CrossRef]

2008 (2)

A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26(11), 1423–1431 (2008).
[CrossRef]

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[CrossRef]

2007 (2)

A. Rostami, “Piecewise linear integrated optical device as an optical isolator using two-port nonlinear ring resonators,” Opt. Laser Technol. 39(5), 1059–1065 (2007).
[CrossRef]

N. Kono, K. Kakihara, K. Saitoh, and M. Koshiba, “Nonreciprocal microresonators for the miniaturization of optical waveguide isolators,” Opt. Express 15(12), 7737–7751 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (1)

2003 (1)

2002 (1)

D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quantum Electron. 8(1), 118–131 (2002).
[CrossRef]

2001 (1)

2000 (2)

H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, and Y. Nakano, “Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift,” Appl. Opt. 39(33), 6158–6164 (2000).
[CrossRef]

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dotsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76(16), 2158–2160 (2000).
[CrossRef]

1998 (1)

T. Shintaku, “Integrated optical isolator based on efficient nonreciprocal radiation mode conversion,” Appl. Phys. Lett. 73(14), 1946–1948 (1998).
[CrossRef]

1993 (1)

T. Shintaku, T. Uno, and M. Kobayashi, “Magneto-optic channel waveguides in Ce-substituted yttrium iron garnet,” J. Appl. Phys. 74(8), 4877–4881 (1993).
[CrossRef]

1977 (1)

A. Konrad, “High-order triangular finite elements for electromagnetic waves in anisotropic media,” IEEE Trans. Microw. Theory Tech. 25(5), 353–360 (1977).
[CrossRef]

1974 (1)

S. Yamamoto and T. Makimoto, “Circuit theory for a class of anisotropic and gyrotropic thin-film optical waveguides and design of nonreciprocal devices for integrated optics,” J. Appl. Phys. 45(2), 882–888 (1974).
[CrossRef]

Bowers, J.

P. Paolo, M.-C. Tien, and J. Bowers, “Design of magneto-optical ring isolator on SOI based on the finite element method,” Photon. Technol. Lett. (submitted to).

Dagens, B.

Dotsch, H.

O. Zhuromskyy, H. Dotsch, M. Lohmeyer, L. Wilkens, and P. Hertel, “Magnetooptical waveguides with polarization-independent nonreciprocal phase shift,” J. Lightwave Technol. 19(2), 214–221 (2001).
[CrossRef]

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dotsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76(16), 2158–2160 (2000).
[CrossRef]

Fallahkhair, A. B.

Fan, S.

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
[CrossRef]

Z. Wang and S. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystals,” Opt. Lett. 30(15), 1989–1991 (2005).
[CrossRef] [PubMed]

Fujita, J.

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dotsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76(16), 2158–2160 (2000).
[CrossRef]

Futakuchi, N.

Goto, S.

Gralak, B.

Hertel, P.

Hjort, K.

D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quantum Electron. 8(1), 118–131 (2002).
[CrossRef]

Hsieh, I. W.

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[CrossRef]

Kakihara, K.

Kobayashi, M.

T. Shintaku, T. Uno, and M. Kobayashi, “Magneto-optic channel waveguides in Ce-substituted yttrium iron garnet,” J. Appl. Phys. 74(8), 4877–4881 (1993).
[CrossRef]

Kono, N.

Konrad, A.

A. Konrad, “High-order triangular finite elements for electromagnetic waves in anisotropic media,” IEEE Trans. Microw. Theory Tech. 25(5), 353–360 (1977).
[CrossRef]

Koshiba, M.

Levy, M.

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dotsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76(16), 2158–2160 (2000).
[CrossRef]

Li, K. S.

Lohmeyer, M.

Magdenko, L.

Makimoto, T.

S. Yamamoto and T. Makimoto, “Circuit theory for a class of anisotropic and gyrotropic thin-film optical waveguides and design of nonreciprocal devices for integrated optics,” J. Appl. Phys. 45(2), 882–888 (1974).
[CrossRef]

Mizumoto, T.

Murphy, T. E.

Nakano, Y.

Osgood, R. M.

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[CrossRef]

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dotsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76(16), 2158–2160 (2000).
[CrossRef]

Paolo, P.

P. Paolo, M.-C. Tien, and J. Bowers, “Design of magneto-optical ring isolator on SOI based on the finite element method,” Photon. Technol. Lett. (submitted to).

Pasquariello, D.

D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quantum Electron. 8(1), 118–131 (2002).
[CrossRef]

Romero-Vivas, J.

Rostami, A.

A. Rostami, “Piecewise linear integrated optical device as an optical isolator using two-port nonlinear ring resonators,” Opt. Laser Technol. 39(5), 1059–1065 (2007).
[CrossRef]

Saitoh, K.

Shimizu, H.

Shinjo, N.

Shintaku, T.

T. Shintaku, “Integrated optical isolator based on efficient nonreciprocal radiation mode conversion,” Appl. Phys. Lett. 73(14), 1946–1948 (1998).
[CrossRef]

T. Shintaku, T. Uno, and M. Kobayashi, “Magneto-optic channel waveguides in Ce-substituted yttrium iron garnet,” J. Appl. Phys. 74(8), 4877–4881 (1993).
[CrossRef]

Shoji, Y.

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[CrossRef]

H. Yokoi, T. Mizumoto, and Y. Shoji, “Optical nonreciprocal devices with a silicon guiding layer fabricated by wafer bonding,” Appl. Opt. 42(33), 6605–6612 (2003).
[CrossRef] [PubMed]

Smigaj, W.

Tien, M.-C.

P. Paolo, M.-C. Tien, and J. Bowers, “Design of magneto-optical ring isolator on SOI based on the finite element method,” Photon. Technol. Lett. (submitted to).

Uno, T.

T. Shintaku, T. Uno, and M. Kobayashi, “Magneto-optic channel waveguides in Ce-substituted yttrium iron garnet,” J. Appl. Phys. 74(8), 4877–4881 (1993).
[CrossRef]

Vanwolleghem, M.

Wang, Z.

Wilkens, L.

O. Zhuromskyy, H. Dotsch, M. Lohmeyer, L. Wilkens, and P. Hertel, “Magnetooptical waveguides with polarization-independent nonreciprocal phase shift,” J. Lightwave Technol. 19(2), 214–221 (2001).
[CrossRef]

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dotsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76(16), 2158–2160 (2000).
[CrossRef]

Yamamoto, S.

S. Yamamoto and T. Makimoto, “Circuit theory for a class of anisotropic and gyrotropic thin-film optical waveguides and design of nonreciprocal devices for integrated optics,” J. Appl. Phys. 45(2), 882–888 (1974).
[CrossRef]

Yokoi, H.

Yu, Z.

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
[CrossRef]

Zhuromskyy, O.

Appl. Opt. (2)

Appl. Phys. Lett. (3)

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[CrossRef]

T. Shintaku, “Integrated optical isolator based on efficient nonreciprocal radiation mode conversion,” Appl. Phys. Lett. 73(14), 1946–1948 (1998).
[CrossRef]

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dotsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76(16), 2158–2160 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quantum Electron. 8(1), 118–131 (2002).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

A. Konrad, “High-order triangular finite elements for electromagnetic waves in anisotropic media,” IEEE Trans. Microw. Theory Tech. 25(5), 353–360 (1977).
[CrossRef]

J. Appl. Phys. (2)

T. Shintaku, T. Uno, and M. Kobayashi, “Magneto-optic channel waveguides in Ce-substituted yttrium iron garnet,” J. Appl. Phys. 74(8), 4877–4881 (1993).
[CrossRef]

S. Yamamoto and T. Makimoto, “Circuit theory for a class of anisotropic and gyrotropic thin-film optical waveguides and design of nonreciprocal devices for integrated optics,” J. Appl. Phys. 45(2), 882–888 (1974).
[CrossRef]

J. Lightwave Technol. (4)

Nat. Photonics (1)

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
[CrossRef]

Opt. Express (1)

Opt. Laser Technol. (1)

A. Rostami, “Piecewise linear integrated optical device as an optical isolator using two-port nonlinear ring resonators,” Opt. Laser Technol. 39(5), 1059–1065 (2007).
[CrossRef]

Opt. Lett. (2)

Photon. Technol. Lett. (1)

P. Paolo, M.-C. Tien, and J. Bowers, “Design of magneto-optical ring isolator on SOI based on the finite element method,” Photon. Technol. Lett. (submitted to).

Other (1)

L. Fan, J. Wang, H. Shen, L. T. Varghese, B. Niu, J. Ouyang, and M. Qi, “A CMOS compatible microring-based on-chip isolator with 18dB optical isolation,” in Frontiers in Optics (OSA, 2010), paper FThQ4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of a ring isolator consisting of a ring resonator, a straight waveguide and a bonded Ce:YIG layer as magneto-optic material. (a) top view (b) cross-section.

Fig. 2
Fig. 2

(a) Calculated Hx field distribution in a 600 nm by 300 nm silicon waveguide with 500-nm-thick Ce:YIG as upper cladding and silicon dioxide as lower cladding. (b) Resonance wavelength split of the ring resonator as a function of waveguide thickness due to the nonreciprocal effect. The Faraday coefficient used for calculation is 4000 °/cm.

Fig. 3
Fig. 3

(a) X-ray diffraction measurement of 500-nm-thick Ce:YIG and SGGG substrates. (b) Hysteretic magnetization of Ce:YIG measured using a Quantum Design superconducting quantum interference device (SQUID).

Fig. 4
Fig. 4

Calculated magnetic flux density using COMSOL.

Fig. 5
Fig. 5

(a) Transmission spectra of the ring isolator with external radial magnetic fields in different directions. (b) Transmission spectrum of the ring resonator before bonding with Ce:YIG. (c) Near field infrared image at the waveguide output facet with different directions of fields at 1551.25 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ β = ω ε 0 E * Δ ε E d x d y [ E × H * + E * × H ] z d x d y ,

Metrics