Abstract

We explore the potential of Nd:YAG single-crystal fibers for the amplification of passively Q-switched microlasers operating below 1 ns. Different regimes are tested in single or double pass configurations. For high gain and high power amplification this novel gain medium provided average powers up to 20 W at high repetition rate (over 40 kHz) for a pulse duration of 1 ns. As an energy amplifier, Nd:YAG single-crystal fiber delivered 2.7 mJ, 6 MW 450 ps pulses at 1 kHz. The extraction efficiencies vary from 8% to 32.7% following the configurations.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
    [CrossRef]
  2. P. Peuser, W. Platz, and G. Holl, “Miniaturized, high-power diode-pumped, Q-switched Nd:YAG laser oscillator-amplifier,” Appl. Opt. 50(4), 399–404 (2011).
    [CrossRef] [PubMed]
  3. F. Druon, F. Balembois, P. Georges, and A. Brun, “High-repetition-rate 300-ps pulsed ultraviolet source with a passively Q-switched microchip laser and a multipass amplifier,” Opt. Lett. 24(7), 499–501 (1999).
    [CrossRef]
  4. Y. Isyanova, J. G. Manni, and D. Welford, " High-power, passively Q-switched microlaser - power amplifier system," in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, 2001), paper MD2.
  5. S. Forget, F. Balembois, P. Georges, and P.-J. Devilder, “New 3D multipass amplifier based on Nd:YAG or Nd:YVO4 crystals,” Appl. Phys. B 75(4-5), 481–485 (2002).
    [CrossRef]
  6. J. G. Manni, “Amplification of microchip oscillator emission using a diode-pumped wedged-slab amplifier,” Opt. Commun. 252(1-3), 117–126 (2005).
    [CrossRef]
  7. A. Agnesi, P. Dallocchio, S. Dell’Acqua, F. Pirzio and G. Reali, “High peak power sub-nanosecond MOPA laser,” presented at 4th EPS-QEOD EUROPHOTON CONFERENCE, Hamburg, September 2010, paper WeB5.
  8. A. Gaydardzhiev, D. Draganov, and I. Buchvarov, “A compact Nd:YAG slab amplifier for miniature solid state Q-switched lasers,” presented at 4th EPS-QEOD EUROPHOTON CONFERENCE, Hamburg, September 2010, paper WeP18.
  9. C. D. Brooks and F. Di Teodoro, “1-mJ energy, 1-MW peak-power, 10-W average-power, spectrally narrow, diffraction-limited pulses from a photonic-crystal fiber amplifier,” Opt. Express 13(22), 8999–9002 (2005).
    [CrossRef] [PubMed]
  10. F. Di Teodoro and C. D. Brooks, “Multi-MW peak power, single transverse mode operation of a 100 micron core diameter, Yb-doped photonic crystal rod amplifier,” Fiber Lasers IV: Technology, Systems, and Applications, edited by D. J. Harter, A. Tünnermann, J. Broeng, C. Headley III, Proc. of SPIE Vol. 6453, 645318, (2007).
  11. R. L. Farrow, D. A. V. Kliner, P. E. Schrader, A. A. Hoops, S. W. Moore, G. R. Hadley, and R. L. Schmitt, “High-peak-power (>1.2 MW) pulsed fiber amplifier,” Fiber Lasers III: Technology, Systems, and Applications, edited by A. J. W. Brown, J. Nilsson, D. J. Harter, A. Tünnermann, Proc. of SPIE Vol. 6102, 61020L, (2006).
  12. A. Galvanauskas, M. Cheng, K. Hou, and K. Liao, “High peak power pulse amplification in large-core Yb-doped fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 13(3), 559–566 (2007).
    [CrossRef]
  13. J. Didierjean, M. Castaing, F. Balembois, P. Georges, D. Perrodin, J. M. Fourmigué, K. Lebbou, A. Brenier, and O. Tillement, “High-power laser with Nd:YAG single-crystal fiber grown by the micro-pulling-down technique,” Opt. Lett. 31(23), 3468–3470 (2006).
    [CrossRef] [PubMed]
  14. J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+: YAG crystals,” Phys. Status Solidi., A Appl. Mater. Sci. 202(13), 2565–2573 (2005).
    [CrossRef]
  15. S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron. 34(5), 900–909 (1998).
    [CrossRef]
  16. A. Rapaport, S. Z. Zhao, G. H. Xiao, A. Howard, and M. Bass, “Temperature dependence of the 1.06-microm stimulated emission cross section of neodymium in YAG and in GSGG,” Appl. Opt. 41(33), 7052–7057 (2002).
    [CrossRef] [PubMed]
  17. O. Kimmelma, I. Tittonen, and S. C. Buchter, “Thermal tuning of laser pulse parameters in passively Q-switched Nd:YAG lasers,” Appl. Opt. 47(23), 4262–4266 (2008).
    [CrossRef] [PubMed]
  18. N. P. Barnes and B. Walsh, “Amplified Spontaneous Emission –Application to Nd:YAG Lasers,” IEEE J. Quantum Electron. 35(1), 101–109 (1999).
    [CrossRef]
  19. A. E. Siegmann, Lasers (University Sciences Books, 1986) p 386.
  20. W. Koechner, Solid State Laser Engineering, 5th ed. (Springer, 1999).

2011

2010

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[CrossRef]

2008

2007

A. Galvanauskas, M. Cheng, K. Hou, and K. Liao, “High peak power pulse amplification in large-core Yb-doped fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 13(3), 559–566 (2007).
[CrossRef]

2006

2005

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+: YAG crystals,” Phys. Status Solidi., A Appl. Mater. Sci. 202(13), 2565–2573 (2005).
[CrossRef]

J. G. Manni, “Amplification of microchip oscillator emission using a diode-pumped wedged-slab amplifier,” Opt. Commun. 252(1-3), 117–126 (2005).
[CrossRef]

C. D. Brooks and F. Di Teodoro, “1-mJ energy, 1-MW peak-power, 10-W average-power, spectrally narrow, diffraction-limited pulses from a photonic-crystal fiber amplifier,” Opt. Express 13(22), 8999–9002 (2005).
[CrossRef] [PubMed]

2002

A. Rapaport, S. Z. Zhao, G. H. Xiao, A. Howard, and M. Bass, “Temperature dependence of the 1.06-microm stimulated emission cross section of neodymium in YAG and in GSGG,” Appl. Opt. 41(33), 7052–7057 (2002).
[CrossRef] [PubMed]

S. Forget, F. Balembois, P. Georges, and P.-J. Devilder, “New 3D multipass amplifier based on Nd:YAG or Nd:YVO4 crystals,” Appl. Phys. B 75(4-5), 481–485 (2002).
[CrossRef]

1999

1998

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron. 34(5), 900–909 (1998).
[CrossRef]

Ando, A.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[CrossRef]

Balembois, F.

Barnes, N. P.

N. P. Barnes and B. Walsh, “Amplified Spontaneous Emission –Application to Nd:YAG Lasers,” IEEE J. Quantum Electron. 35(1), 101–109 (1999).
[CrossRef]

Bass, M.

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+: YAG crystals,” Phys. Status Solidi., A Appl. Mater. Sci. 202(13), 2565–2573 (2005).
[CrossRef]

A. Rapaport, S. Z. Zhao, G. H. Xiao, A. Howard, and M. Bass, “Temperature dependence of the 1.06-microm stimulated emission cross section of neodymium in YAG and in GSGG,” Appl. Opt. 41(33), 7052–7057 (2002).
[CrossRef] [PubMed]

Bonner, C. L.

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron. 34(5), 900–909 (1998).
[CrossRef]

Brenier, A.

Brooks, C. D.

Brun, A.

Buchter, S. C.

Castaing, M.

Cheng, M.

A. Galvanauskas, M. Cheng, K. Hou, and K. Liao, “High peak power pulse amplification in large-core Yb-doped fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 13(3), 559–566 (2007).
[CrossRef]

Devilder, P.-J.

S. Forget, F. Balembois, P. Georges, and P.-J. Devilder, “New 3D multipass amplifier based on Nd:YAG or Nd:YVO4 crystals,” Appl. Phys. B 75(4-5), 481–485 (2002).
[CrossRef]

Di Teodoro, F.

Didierjean, J.

Dong, J.

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+: YAG crystals,” Phys. Status Solidi., A Appl. Mater. Sci. 202(13), 2565–2573 (2005).
[CrossRef]

Druon, F.

Ferrand, B.

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron. 34(5), 900–909 (1998).
[CrossRef]

Forget, S.

S. Forget, F. Balembois, P. Georges, and P.-J. Devilder, “New 3D multipass amplifier based on Nd:YAG or Nd:YVO4 crystals,” Appl. Phys. B 75(4-5), 481–485 (2002).
[CrossRef]

Fourmigué, J. M.

Galvanauskas, A.

A. Galvanauskas, M. Cheng, K. Hou, and K. Liao, “High peak power pulse amplification in large-core Yb-doped fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 13(3), 559–566 (2007).
[CrossRef]

Georges, P.

Guy, S.

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron. 34(5), 900–909 (1998).
[CrossRef]

Hanna, D. C.

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron. 34(5), 900–909 (1998).
[CrossRef]

Holl, G.

Hou, K.

A. Galvanauskas, M. Cheng, K. Hou, and K. Liao, “High peak power pulse amplification in large-core Yb-doped fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 13(3), 559–566 (2007).
[CrossRef]

Howard, A.

Inohara, T.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[CrossRef]

Kanehara, K.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[CrossRef]

Kido, N.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[CrossRef]

Kimmelma, O.

Lebbou, K.

Liao, K.

A. Galvanauskas, M. Cheng, K. Hou, and K. Liao, “High peak power pulse amplification in large-core Yb-doped fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 13(3), 559–566 (2007).
[CrossRef]

Manni, J. G.

J. G. Manni, “Amplification of microchip oscillator emission using a diode-pumped wedged-slab amplifier,” Opt. Commun. 252(1-3), 117–126 (2005).
[CrossRef]

Perrodin, D.

Peuser, P.

Platz, W.

Rapaport, A.

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+: YAG crystals,” Phys. Status Solidi., A Appl. Mater. Sci. 202(13), 2565–2573 (2005).
[CrossRef]

A. Rapaport, S. Z. Zhao, G. H. Xiao, A. Howard, and M. Bass, “Temperature dependence of the 1.06-microm stimulated emission cross section of neodymium in YAG and in GSGG,” Appl. Opt. 41(33), 7052–7057 (2002).
[CrossRef] [PubMed]

Shepherd, D. P.

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron. 34(5), 900–909 (1998).
[CrossRef]

Szipocs, F.

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+: YAG crystals,” Phys. Status Solidi., A Appl. Mater. Sci. 202(13), 2565–2573 (2005).
[CrossRef]

Taira, T.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[CrossRef]

Tillement, O.

Tittonen, I.

Tropper, A. C.

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron. 34(5), 900–909 (1998).
[CrossRef]

Tsunekane, M.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[CrossRef]

Ueda, K.

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+: YAG crystals,” Phys. Status Solidi., A Appl. Mater. Sci. 202(13), 2565–2573 (2005).
[CrossRef]

Walsh, B.

N. P. Barnes and B. Walsh, “Amplified Spontaneous Emission –Application to Nd:YAG Lasers,” IEEE J. Quantum Electron. 35(1), 101–109 (1999).
[CrossRef]

Xiao, G. H.

Zhao, S. Z.

Appl. Opt.

Appl. Phys. B

S. Forget, F. Balembois, P. Georges, and P.-J. Devilder, “New 3D multipass amplifier based on Nd:YAG or Nd:YVO4 crystals,” Appl. Phys. B 75(4-5), 481–485 (2002).
[CrossRef]

IEEE J. Quantum Electron.

S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, “High-inversion densities in Nd:YAG: upconversion and bleaching,” IEEE J. Quantum Electron. 34(5), 900–909 (1998).
[CrossRef]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[CrossRef]

N. P. Barnes and B. Walsh, “Amplified Spontaneous Emission –Application to Nd:YAG Lasers,” IEEE J. Quantum Electron. 35(1), 101–109 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. Galvanauskas, M. Cheng, K. Hou, and K. Liao, “High peak power pulse amplification in large-core Yb-doped fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 13(3), 559–566 (2007).
[CrossRef]

Opt. Commun.

J. G. Manni, “Amplification of microchip oscillator emission using a diode-pumped wedged-slab amplifier,” Opt. Commun. 252(1-3), 117–126 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Status Solidi., A Appl. Mater. Sci.

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+: YAG crystals,” Phys. Status Solidi., A Appl. Mater. Sci. 202(13), 2565–2573 (2005).
[CrossRef]

Other

Y. Isyanova, J. G. Manni, and D. Welford, " High-power, passively Q-switched microlaser - power amplifier system," in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, 2001), paper MD2.

A. Agnesi, P. Dallocchio, S. Dell’Acqua, F. Pirzio and G. Reali, “High peak power sub-nanosecond MOPA laser,” presented at 4th EPS-QEOD EUROPHOTON CONFERENCE, Hamburg, September 2010, paper WeB5.

A. Gaydardzhiev, D. Draganov, and I. Buchvarov, “A compact Nd:YAG slab amplifier for miniature solid state Q-switched lasers,” presented at 4th EPS-QEOD EUROPHOTON CONFERENCE, Hamburg, September 2010, paper WeP18.

F. Di Teodoro and C. D. Brooks, “Multi-MW peak power, single transverse mode operation of a 100 micron core diameter, Yb-doped photonic crystal rod amplifier,” Fiber Lasers IV: Technology, Systems, and Applications, edited by D. J. Harter, A. Tünnermann, J. Broeng, C. Headley III, Proc. of SPIE Vol. 6453, 645318, (2007).

R. L. Farrow, D. A. V. Kliner, P. E. Schrader, A. A. Hoops, S. W. Moore, G. R. Hadley, and R. L. Schmitt, “High-peak-power (>1.2 MW) pulsed fiber amplifier,” Fiber Lasers III: Technology, Systems, and Applications, edited by A. J. W. Brown, J. Nilsson, D. J. Harter, A. Tünnermann, Proc. of SPIE Vol. 6102, 61020L, (2006).

A. E. Siegmann, Lasers (University Sciences Books, 1986) p 386.

W. Koechner, Solid State Laser Engineering, 5th ed. (Springer, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Experimental setup for the test of the amplifiers.

Fig. 2
Fig. 2

Gain obtained in single pass amplification for different doped Nd:YAG media. The pump beam and signal beams have a diameter around 400µm at the focus. The input average power is: 58 mW (1% Nd), 100 mW (0.5% Nd), 200 mW (0.3% Nd) and 260 mW (0.2% Nd single-crystal fiber).

Fig. 3
Fig. 3

Normalized fluorescence spectrum recorded at different pump powers for 0.2% doped Nd:YAG crystal fiber and for 1% doped Nd:YAG. The spectrum of the seeding laser is also added on the graph. The spectra at low pump power and for the 1% Nd:YAG are more noisy than the spectrum of the 0.2% Nd crystal fiber because the amount of spontaneous emission was much lower.

Fig. 4
Fig. 4

Experimental setup 1: this first pass is in co-propagation, the second pass is in counter-propagation. The seed laser emitted 1 ns pulses at 100 kHz with an average power of 350 mW.

Fig. 5
Fig. 5

Experimental setup 2: this first pass is in counter-propagation, the second pass is in co-propagation. In this section, the seed laser emitted 1 ns pulses at 100 kHz with an average power of 350 mW. It will be replaced by other seed lasers in the sections 4 and 5.

Fig. 6
Fig. 6

Propagation of the pump beam in the single crystal fiber (assuming no absorption).

Fig. 7
Fig. 7

Output power after one pass or two passes in the single-crystal fiber versus the pump power. The results in red are for the setup 1 and in black for the setup 2.

Fig. 8
Fig. 8

Spontaneous emission collected from the pump face versus the pump power.

Fig. 9
Fig. 9

Output average power (blue dots) and M2 factor (red square) versus the incident pump power with the PicoSparkTM in a simple pass configuration. This lines in blue and green are simulated output power for the 50 mm long single crystal fiber (blue) and for a 30 mm long sample (green).

Fig. 10
Fig. 10

Gain versus the average incident signal power with the PicoSparkTM laser source in a simple pass configuration for 60 W of incident pump power.

Fig. 11
Fig. 11

Output energy in single pass configuration versus the pump power.

Fig. 12
Fig. 12

Output energy in double pass configuration versus the pump power (left). M2 factor versus the pump power (right).

Fig. 13
Fig. 13

Duration of the output pulses after two pass amplification and without amplification (recorded with a 4GHz single shot oscilloscope).

Tables (1)

Tables Icon

Table 1 Summary of the Performance Obtained with the Nd:YAG Single-Crystal Fiber Amplifier*

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η e x t r = P o u t ¯ P i n ¯ P p u m p
η e x t r = E o u t E i n E s t o
E s t o = λ p λ P p u m p τ . ( 1 e t τ )

Metrics