Abstract

We report an efficient fiber-laser-based source of high-power, continuous-wave (cw), linearly-polarized radiation at 970 nm in a simple, compact, and practical design. Using direct single-pass second-harmonic-generation (SP-SHG) of a cw thulium fiber laser at 1940 nm in a 40-mm-long periodically-poled LiNbO3 (PPLN) crystal, we have generated 13.1 W of output power at 970 nm for a fundamental power of 40 W at a conversion efficiency as high as 32.7%. The generated second-harmonic output exhibits a passive power stability better than 1.4% (1σ value) over 1 hour, has a linewidth better than 0.3 nm, and a TEM00 spatial beam profile with M2<1.6. Relevant theoretical calculations for the characterization of SP-SHG in the crystal have also been performed.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Sandrock, D. Fischer, P. Glas, M. Leitner, M. Wrage, and A. Diening, “Diode-pumped 1-W Er-doped fluoride glass M-profile fiber laser emitting at 2.8 µm,” Opt. Lett. 24(18), 1284–1286 (1999).
    [CrossRef]
  2. E. Heumann, S. Bar, K. Rademaker, G. Huber, S. Butterworth, A. Diening, and W. Seelert, “Semiconductor-laser-pumped high-power upconversion laser,” Appl. Phys. Lett. 88(6), 061108 (2006).
    [CrossRef]
  3. T. Kasamatsu, H. Sekita, and Y. Kuwano, “Temperature dependence and optimization of 970-nm diode-pumped Yb:YAG and Yb:LuAG lasers,” Appl. Opt. 38(24), 5149–5153 (1999).
    [CrossRef]
  4. I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic application at 970 nm wavelength,” Appl. Phys. Lett. 97(8), 081108 (2010).
    [CrossRef]
  5. X. G. Sun, G. W. Switzer, and J. L. Carlsten, “Blue light generation in an external ring cavity using both cavity and grating feedback,” Appl. Phys. Lett. 76(8), 955–957 (2000).
    [CrossRef]
  6. L. J. Al-Muhanna, L. J. Mawst, D. Botez, D. Z. Garbuzov, R. U. Martinelli, and J. C. Connolly, “High-power (>10 W) continuous-wave operation from 100-μm-aperture 0.97-μm-emitting Al-free diode lasers,” Appl. Phys. Lett. 73(9), 1182–1184 (1998).
    [CrossRef]
  7. M. Kanskar, T. Earles, T. J. Goodnough, E. Stiers, D. Botez, and L. J. Mawst, “73% cw power conversion efficiency at 50 W from 970 nm diode laser bars,” Electron. Lett. 41(5), 245–247 (2005).
    [CrossRef]
  8. C. Ruppert and M. Betz, “Generation of 30 femtosecond, 900-970 nm pulses from a Ti:sapphire laser far off the gain peak,” Opt. Express 16(8), 5572–5576 (2008).
    [CrossRef] [PubMed]
  9. F. Demaria, S. Lorch, S. Menzel, M. C. Riedl, F. Rinaldi, R. Rosch, and P. Unger, “Design of highly efficient high-power optically pumped semiconductor disk lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 973–977 (2009).
    [CrossRef]
  10. F. Roser, C. Jauregui, J. Limpert, and A. Tunnermann, “94 W 980 nm high brightness Yb-doped fiber laser,” Opt. Express 16(22), 17310–17318 (2008).
    [CrossRef] [PubMed]
  11. S. C. Kumar, G. K. Samanta, and M. Ebrahim-Zadeh, “High-power, single-frequency, continuous-wave second-harmonic-generation of ytterbium fiber laser in PPKTP and MgO:sPPLT,” Opt. Express 17(16), 13711–13726 (2009).
    [CrossRef] [PubMed]
  12. G. K. Samanta, S. C. Kumar, K. Devi, and M. Ebrahim-Zadeh, “Multicrystal, continuous-wave, single-pass second-harmonic generation with 56% efficiency,” Opt. Lett. 35(20), 3513–3515 (2010).
    [CrossRef] [PubMed]
  13. G. Frith, T. McComb, B. Samson, W. Torruellas, M. Dennis, A. Carter, V. Khitrov, and K. Tankala, “Frequency doubling of Tm-doped fiber lasers for efficient 950 nm generation,” in Advanced Solid-State Photonics, (Denver, Colorado, 2009), paper WB5 (Top five downloads, ASSP 2009).
  14. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: Tuning and tolerences,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
    [CrossRef]
  15. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
    [CrossRef]
  16. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, n(e), in congruent lithium niobate,” Opt. Lett. 22(20), 1553–1555 (1997).
    [CrossRef]
  17. R. L. Sutherland, Handbook of nonlinear optics (Marcel Dekker, Inc. 1996), Chap.2.

2010

I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic application at 970 nm wavelength,” Appl. Phys. Lett. 97(8), 081108 (2010).
[CrossRef]

G. K. Samanta, S. C. Kumar, K. Devi, and M. Ebrahim-Zadeh, “Multicrystal, continuous-wave, single-pass second-harmonic generation with 56% efficiency,” Opt. Lett. 35(20), 3513–3515 (2010).
[CrossRef] [PubMed]

2009

S. C. Kumar, G. K. Samanta, and M. Ebrahim-Zadeh, “High-power, single-frequency, continuous-wave second-harmonic-generation of ytterbium fiber laser in PPKTP and MgO:sPPLT,” Opt. Express 17(16), 13711–13726 (2009).
[CrossRef] [PubMed]

F. Demaria, S. Lorch, S. Menzel, M. C. Riedl, F. Rinaldi, R. Rosch, and P. Unger, “Design of highly efficient high-power optically pumped semiconductor disk lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 973–977 (2009).
[CrossRef]

2008

2006

E. Heumann, S. Bar, K. Rademaker, G. Huber, S. Butterworth, A. Diening, and W. Seelert, “Semiconductor-laser-pumped high-power upconversion laser,” Appl. Phys. Lett. 88(6), 061108 (2006).
[CrossRef]

2005

M. Kanskar, T. Earles, T. J. Goodnough, E. Stiers, D. Botez, and L. J. Mawst, “73% cw power conversion efficiency at 50 W from 970 nm diode laser bars,” Electron. Lett. 41(5), 245–247 (2005).
[CrossRef]

2000

X. G. Sun, G. W. Switzer, and J. L. Carlsten, “Blue light generation in an external ring cavity using both cavity and grating feedback,” Appl. Phys. Lett. 76(8), 955–957 (2000).
[CrossRef]

1999

1998

L. J. Al-Muhanna, L. J. Mawst, D. Botez, D. Z. Garbuzov, R. U. Martinelli, and J. C. Connolly, “High-power (>10 W) continuous-wave operation from 100-μm-aperture 0.97-μm-emitting Al-free diode lasers,” Appl. Phys. Lett. 73(9), 1182–1184 (1998).
[CrossRef]

1997

1992

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: Tuning and tolerences,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

1968

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[CrossRef]

Al-Muhanna, L. J.

L. J. Al-Muhanna, L. J. Mawst, D. Botez, D. Z. Garbuzov, R. U. Martinelli, and J. C. Connolly, “High-power (>10 W) continuous-wave operation from 100-μm-aperture 0.97-μm-emitting Al-free diode lasers,” Appl. Phys. Lett. 73(9), 1182–1184 (1998).
[CrossRef]

Bar, S.

E. Heumann, S. Bar, K. Rademaker, G. Huber, S. Butterworth, A. Diening, and W. Seelert, “Semiconductor-laser-pumped high-power upconversion laser,” Appl. Phys. Lett. 88(6), 061108 (2006).
[CrossRef]

Betz, M.

Botez, D.

M. Kanskar, T. Earles, T. J. Goodnough, E. Stiers, D. Botez, and L. J. Mawst, “73% cw power conversion efficiency at 50 W from 970 nm diode laser bars,” Electron. Lett. 41(5), 245–247 (2005).
[CrossRef]

L. J. Al-Muhanna, L. J. Mawst, D. Botez, D. Z. Garbuzov, R. U. Martinelli, and J. C. Connolly, “High-power (>10 W) continuous-wave operation from 100-μm-aperture 0.97-μm-emitting Al-free diode lasers,” Appl. Phys. Lett. 73(9), 1182–1184 (1998).
[CrossRef]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[CrossRef]

Butterworth, S.

E. Heumann, S. Bar, K. Rademaker, G. Huber, S. Butterworth, A. Diening, and W. Seelert, “Semiconductor-laser-pumped high-power upconversion laser,” Appl. Phys. Lett. 88(6), 061108 (2006).
[CrossRef]

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: Tuning and tolerences,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Carlsten, J. L.

X. G. Sun, G. W. Switzer, and J. L. Carlsten, “Blue light generation in an external ring cavity using both cavity and grating feedback,” Appl. Phys. Lett. 76(8), 955–957 (2000).
[CrossRef]

Connolly, J. C.

L. J. Al-Muhanna, L. J. Mawst, D. Botez, D. Z. Garbuzov, R. U. Martinelli, and J. C. Connolly, “High-power (>10 W) continuous-wave operation from 100-μm-aperture 0.97-μm-emitting Al-free diode lasers,” Appl. Phys. Lett. 73(9), 1182–1184 (1998).
[CrossRef]

Demaria, F.

F. Demaria, S. Lorch, S. Menzel, M. C. Riedl, F. Rinaldi, R. Rosch, and P. Unger, “Design of highly efficient high-power optically pumped semiconductor disk lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 973–977 (2009).
[CrossRef]

Desiatov, B.

I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic application at 970 nm wavelength,” Appl. Phys. Lett. 97(8), 081108 (2010).
[CrossRef]

Devi, K.

Diening, A.

E. Heumann, S. Bar, K. Rademaker, G. Huber, S. Butterworth, A. Diening, and W. Seelert, “Semiconductor-laser-pumped high-power upconversion laser,” Appl. Phys. Lett. 88(6), 061108 (2006).
[CrossRef]

T. Sandrock, D. Fischer, P. Glas, M. Leitner, M. Wrage, and A. Diening, “Diode-pumped 1-W Er-doped fluoride glass M-profile fiber laser emitting at 2.8 µm,” Opt. Lett. 24(18), 1284–1286 (1999).
[CrossRef]

Earles, T.

M. Kanskar, T. Earles, T. J. Goodnough, E. Stiers, D. Botez, and L. J. Mawst, “73% cw power conversion efficiency at 50 W from 970 nm diode laser bars,” Electron. Lett. 41(5), 245–247 (2005).
[CrossRef]

Ebrahim-Zadeh, M.

Fejer, M. M.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: Tuning and tolerences,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Fischer, D.

Garbuzov, D. Z.

L. J. Al-Muhanna, L. J. Mawst, D. Botez, D. Z. Garbuzov, R. U. Martinelli, and J. C. Connolly, “High-power (>10 W) continuous-wave operation from 100-μm-aperture 0.97-μm-emitting Al-free diode lasers,” Appl. Phys. Lett. 73(9), 1182–1184 (1998).
[CrossRef]

Glas, P.

Goodnough, T. J.

M. Kanskar, T. Earles, T. J. Goodnough, E. Stiers, D. Botez, and L. J. Mawst, “73% cw power conversion efficiency at 50 W from 970 nm diode laser bars,” Electron. Lett. 41(5), 245–247 (2005).
[CrossRef]

Goykhman, I.

I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic application at 970 nm wavelength,” Appl. Phys. Lett. 97(8), 081108 (2010).
[CrossRef]

Heumann, E.

E. Heumann, S. Bar, K. Rademaker, G. Huber, S. Butterworth, A. Diening, and W. Seelert, “Semiconductor-laser-pumped high-power upconversion laser,” Appl. Phys. Lett. 88(6), 061108 (2006).
[CrossRef]

Huber, G.

E. Heumann, S. Bar, K. Rademaker, G. Huber, S. Butterworth, A. Diening, and W. Seelert, “Semiconductor-laser-pumped high-power upconversion laser,” Appl. Phys. Lett. 88(6), 061108 (2006).
[CrossRef]

Jauregui, C.

Jundt, D. H.

D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, n(e), in congruent lithium niobate,” Opt. Lett. 22(20), 1553–1555 (1997).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: Tuning and tolerences,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Kanskar, M.

M. Kanskar, T. Earles, T. J. Goodnough, E. Stiers, D. Botez, and L. J. Mawst, “73% cw power conversion efficiency at 50 W from 970 nm diode laser bars,” Electron. Lett. 41(5), 245–247 (2005).
[CrossRef]

Kasamatsu, T.

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[CrossRef]

Kumar, S. C.

Kuwano, Y.

Leitner, M.

Levy, U.

I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic application at 970 nm wavelength,” Appl. Phys. Lett. 97(8), 081108 (2010).
[CrossRef]

Limpert, J.

Lorch, S.

F. Demaria, S. Lorch, S. Menzel, M. C. Riedl, F. Rinaldi, R. Rosch, and P. Unger, “Design of highly efficient high-power optically pumped semiconductor disk lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 973–977 (2009).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: Tuning and tolerences,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Martinelli, R. U.

L. J. Al-Muhanna, L. J. Mawst, D. Botez, D. Z. Garbuzov, R. U. Martinelli, and J. C. Connolly, “High-power (>10 W) continuous-wave operation from 100-μm-aperture 0.97-μm-emitting Al-free diode lasers,” Appl. Phys. Lett. 73(9), 1182–1184 (1998).
[CrossRef]

Mawst, L. J.

M. Kanskar, T. Earles, T. J. Goodnough, E. Stiers, D. Botez, and L. J. Mawst, “73% cw power conversion efficiency at 50 W from 970 nm diode laser bars,” Electron. Lett. 41(5), 245–247 (2005).
[CrossRef]

L. J. Al-Muhanna, L. J. Mawst, D. Botez, D. Z. Garbuzov, R. U. Martinelli, and J. C. Connolly, “High-power (>10 W) continuous-wave operation from 100-μm-aperture 0.97-μm-emitting Al-free diode lasers,” Appl. Phys. Lett. 73(9), 1182–1184 (1998).
[CrossRef]

Menzel, S.

F. Demaria, S. Lorch, S. Menzel, M. C. Riedl, F. Rinaldi, R. Rosch, and P. Unger, “Design of highly efficient high-power optically pumped semiconductor disk lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 973–977 (2009).
[CrossRef]

Rademaker, K.

E. Heumann, S. Bar, K. Rademaker, G. Huber, S. Butterworth, A. Diening, and W. Seelert, “Semiconductor-laser-pumped high-power upconversion laser,” Appl. Phys. Lett. 88(6), 061108 (2006).
[CrossRef]

Riedl, M. C.

F. Demaria, S. Lorch, S. Menzel, M. C. Riedl, F. Rinaldi, R. Rosch, and P. Unger, “Design of highly efficient high-power optically pumped semiconductor disk lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 973–977 (2009).
[CrossRef]

Rinaldi, F.

F. Demaria, S. Lorch, S. Menzel, M. C. Riedl, F. Rinaldi, R. Rosch, and P. Unger, “Design of highly efficient high-power optically pumped semiconductor disk lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 973–977 (2009).
[CrossRef]

Rosch, R.

F. Demaria, S. Lorch, S. Menzel, M. C. Riedl, F. Rinaldi, R. Rosch, and P. Unger, “Design of highly efficient high-power optically pumped semiconductor disk lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 973–977 (2009).
[CrossRef]

Roser, F.

Ruppert, C.

Samanta, G. K.

Sandrock, T.

Seelert, W.

E. Heumann, S. Bar, K. Rademaker, G. Huber, S. Butterworth, A. Diening, and W. Seelert, “Semiconductor-laser-pumped high-power upconversion laser,” Appl. Phys. Lett. 88(6), 061108 (2006).
[CrossRef]

Sekita, H.

Stiers, E.

M. Kanskar, T. Earles, T. J. Goodnough, E. Stiers, D. Botez, and L. J. Mawst, “73% cw power conversion efficiency at 50 W from 970 nm diode laser bars,” Electron. Lett. 41(5), 245–247 (2005).
[CrossRef]

Sun, X. G.

X. G. Sun, G. W. Switzer, and J. L. Carlsten, “Blue light generation in an external ring cavity using both cavity and grating feedback,” Appl. Phys. Lett. 76(8), 955–957 (2000).
[CrossRef]

Switzer, G. W.

X. G. Sun, G. W. Switzer, and J. L. Carlsten, “Blue light generation in an external ring cavity using both cavity and grating feedback,” Appl. Phys. Lett. 76(8), 955–957 (2000).
[CrossRef]

Tunnermann, A.

Unger, P.

F. Demaria, S. Lorch, S. Menzel, M. C. Riedl, F. Rinaldi, R. Rosch, and P. Unger, “Design of highly efficient high-power optically pumped semiconductor disk lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 973–977 (2009).
[CrossRef]

Wrage, M.

Appl. Opt.

Appl. Phys. Lett.

I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic application at 970 nm wavelength,” Appl. Phys. Lett. 97(8), 081108 (2010).
[CrossRef]

X. G. Sun, G. W. Switzer, and J. L. Carlsten, “Blue light generation in an external ring cavity using both cavity and grating feedback,” Appl. Phys. Lett. 76(8), 955–957 (2000).
[CrossRef]

L. J. Al-Muhanna, L. J. Mawst, D. Botez, D. Z. Garbuzov, R. U. Martinelli, and J. C. Connolly, “High-power (>10 W) continuous-wave operation from 100-μm-aperture 0.97-μm-emitting Al-free diode lasers,” Appl. Phys. Lett. 73(9), 1182–1184 (1998).
[CrossRef]

E. Heumann, S. Bar, K. Rademaker, G. Huber, S. Butterworth, A. Diening, and W. Seelert, “Semiconductor-laser-pumped high-power upconversion laser,” Appl. Phys. Lett. 88(6), 061108 (2006).
[CrossRef]

Electron. Lett.

M. Kanskar, T. Earles, T. J. Goodnough, E. Stiers, D. Botez, and L. J. Mawst, “73% cw power conversion efficiency at 50 W from 970 nm diode laser bars,” Electron. Lett. 41(5), 245–247 (2005).
[CrossRef]

IEEE J. Quantum Electron.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: Tuning and tolerences,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

F. Demaria, S. Lorch, S. Menzel, M. C. Riedl, F. Rinaldi, R. Rosch, and P. Unger, “Design of highly efficient high-power optically pumped semiconductor disk lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 973–977 (2009).
[CrossRef]

J. Appl. Phys.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[CrossRef]

Opt. Express

Opt. Lett.

Other

R. L. Sutherland, Handbook of nonlinear optics (Marcel Dekker, Inc. 1996), Chap.2.

G. Frith, T. McComb, B. Samson, W. Torruellas, M. Dennis, A. Carter, V. Khitrov, and K. Tankala, “Frequency doubling of Tm-doped fiber lasers for efficient 950 nm generation,” in Advanced Solid-State Photonics, (Denver, Colorado, 2009), paper WB5 (Top five downloads, ASSP 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the experimental setup. FI: Faraday isolator, L: lens, M: Dichroic mirror.

Fig. 2
Fig. 2

(a) SHG efficiency and phase-matching temperature at maximum fundamental power, as a function of focusing parameter, ξ. Solid lines are guide to eye. (b) Theoretically calculated propagation length for divergent components and the corresponding change in phase-matching temperature, as a function of beam waist radius. Inset: theoretically calculated phase-matching temperature, as a function of focusing parameter, ξ.

Fig. 3
Fig. 3

(a) Temperature phase-matching curve for SHG at wο ~45 μm, and (b) Temperature acceptance bandwidth and the corresponding phase-matching temperature under different focusing conditions. Pump power is ~1 W. Solid lines are guide to eye.

Fig. 4
Fig. 4

(a) SHG power and the corresponding conversion efficiency as a function of incident fundamental power at ωο ~45 μm, and (b) Phase-matching temperature versus incident fundamental power. Solid lines are guide to eye. Inset: theoretically calculated change in phase-matching temperature versus fundamental wavelength for Λ=28.2 μm.

Fig. 5
Fig. 5

Time trace at maximum power of (a) generated SHG output, and (b) input fundamental over 1 hour.

Fig. 6
Fig. 6

(a) Spectrum of SHG output at maximum power, and (b) Far-field TEM00 energy distribution of the generated SHG beam. The thin curves are the intensity profiles along the two orthogonal axes.

Metrics