Abstract
Spontaneous emission lifetime distribution in the basic unit cell or on a plane of the excited emitters embedded in woodpile photonics crystals with low refractive index contrast are investigated. It is found that the spontaneous emission lifetime distribution strongly depends on the position and transition frequency of the emitters, and has the same symmetry as that of the unit cell. The lifetimes of emitters near the upper gap edge are longer than that in the center of the pseudogap, which is quite a contrast to the conventional concept. Furthermore, it is revealed that the polarization orientation of the emitters has significant influence on the lifetime distribution, and may result in a high anisotropy factor (defined as the difference between the maximum and minimum values of the lifetime) up to 4.2. These results may be supplied in probing the lifetime distribution or orientationdependent local density of states in future experiments.
© 2011 OSA
Full Article  PDF ArticleOSA Recommended Articles
Mike P. C. Taverne, YingLung D. Ho, and John G. Rarity
J. Opt. Soc. Am. B 32(4) 639648 (2015)
Chao Li, YunSong Zhou, and FuHe Wang
J. Opt. Soc. Am. B 26(12) 22482255 (2009)
Ivan S. Nikolaev, Willem L. Vos, and A. Femius Koenderink
J. Opt. Soc. Am. B 26(5) 987997 (2009)
References
 View by:
 Article Order
 
 Year
 
 Author
 
 Publication
 E. Yablonovitch, “Inhibited spontaneous emission in solidstate physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[PubMed]  S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[PubMed]  E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett. 81(1), 77–80 (1998).
 M. Megens, J. E. G. J. Wijnhoven, A. Lagendijk, and W. L. Vos, “Fluorescence lifetimes and linewidths of dye in photonic crystals,” Phys. Rev. A 59(6), 4727–4731 (1999).
 S. John and J. Wang, “Quantum optics of localized light in a photonic band gap,” Phys. Rev. B Condens. Matter 43(16), 12772–12789 (1991).
[PubMed]  S. Bay, P. Lambropoulos, and K. Mølmer, “Fluorescence into flat and structured radiation continua: an atomic density matrix without a master equation,” Phys. Rev. Lett. 79(14), 2654–2657 (1997).
 S.Y. Zhu, Y. Yang, H. Chen, H. Zheng, and M. S. Zubairy, “Spontaneous radiation and lamb shift in threedimensional photonic crystals,” Phys. Rev. Lett. 84(10), 2136–2139 (2000).
[PubMed]  H.G. Park, S.H. Kim, S.H. Kwon, Y.G. Ju, J.K. Yang, J.H. Baek, S.B. Kim, and Y.H. Lee, “Electrically driven singlecell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[PubMed]  K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dotcavity system,” Nature 445(7130), 896–899 (2007).
[PubMed]  J. J. Wierer, A. David, and M. M. Megens, “IIInitride photoniccrystal lightemitting diodes with high extraction efficiency,” Nat. Photonics 3(3), 163–169 (2009).
 X.H. Wang, R. Wang, B.Y. Gu, and G.Z. Yang, “Decay distribution of spontaneous emission from an assembly of atoms in photonic crystals with pseudogaps,” Phys. Rev. Lett. 88(9), 093902 (2002).
[PubMed]  X.H. Wang, B.Y. Gu, R. Wang, and H.Q. Xu, “Decay kinetic properties of atoms in photonic crystals with absolute gaps,” Phys. Rev. Lett. 91(11), 113904 (2003).
[PubMed]  Z.Y. Li, L.L. Lin, and Z.Q. Zhang, “Spontaneous emission from photonic crystals: full vectorial calculations,” Phys. Rev. Lett. 84(19), 4341–4344 (2000).
[PubMed]  K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layerbylayer periodic structures,” Solid State Commun. 89(5), 413–416 (1994).
 S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A threedimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
 S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full threedimensional photonic bandgap crystals at nearinfrared wavelengths,” Science 289(5479), 604–606 (2000).
[PubMed]  K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor threedimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
[PubMed]  J. Li, B. Jia, G. Zhou, C. Bullen, J. Serbin, and M. Gu, “Spectral redistribution in spontaneous emission from quantumdotinfiltrated 3D woodpile photonic crystals for telecommunications,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3276–3280 (2007).
 M. Gu, B. Jia, J. Li, and M. J. Ventura, “Fabrication of threedimensional photonic crystals in quantumdotbased materials,” Laser Photon. Rev. 4(3), 414–431 (2010).
 S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of threedimensional photonic crystals by a topdown approach,” Nat. Mater. 8(9), 721–725 (2009).
[PubMed]  K. Ishizaki and S. Noda, “Manipulation of photons at the surface of threedimensional photonic crystals,” Nature 460(7253), 367–370 (2009).
[PubMed]  M. J. Ventura and M. Gu, “Engineering spontaneous emission in a quantumdotdoped polymer nanocomposite with threedimensional photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 20(7), 1329–1332 (2008).

L. Tang and T. Yoshie, “HighQ hybrid 3D2D slab3D photonic crystal microcavity,” Opt. Lett. 35(18), 3144–3146 (2010).
[PubMed]  A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a threedimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
 R. Wang, X.H. Wang, B.Y. Gu, and G.Z. Yang, “Local density of states in threedimensional photonic crystals: calculation and enhancement effects,” Phys. Rev. B 67(15), 155114 (2003).
 M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett. 105(1), 013904 (2010).
[PubMed]  V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
 K. Busch and S. John, “Photonic band gap formation in certain selforganizing systems,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(3), 3896–3908 (1998).

I. S. Nikolaev, W. L. Vos, and A. F. Koenderink, “Accurate calculation of the local density of optical states in inverseopal photonic crystals,” J. Opt. Soc. Am. B 26(5), 987–997 (2009).
 J. Liu and X.H. Wang, “Spontaneous emission in micro and nanostructures,” Front. Phys. China 5(3), 245–259 (2010).

Q. Wang, S. Stobbe, H. Thyrrestrup, H. Hofmann, M. Kamp, T. W. Schlereth, S. Höfling, and P. Lodahl, “Highly anisotropic decay rates of single quantum dots in photonic crystal membranes,” Opt. Lett. 35(16), 2768–2770 (2010).
[PubMed]  H. J. Monkhorst and J. D. Pack, “Special points for Brillouinzone integrations,” Phys. Rev. B 13(12), 5188–5192 (1976).
 W. L. Vos, A. F. Koenderink, and I. S. Nikolaev, “Orientationdependent spontaneous emission rates of a twolevel quantum emitter in any nanophotonic environment,” Phys. Rev. A 80(5), 053802 (2009).
2011 (1)
A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a threedimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
2010 (6)
M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett. 105(1), 013904 (2010).
[PubMed]
V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
M. Gu, B. Jia, J. Li, and M. J. Ventura, “Fabrication of threedimensional photonic crystals in quantumdotbased materials,” Laser Photon. Rev. 4(3), 414–431 (2010).
J. Liu and X.H. Wang, “Spontaneous emission in micro and nanostructures,” Front. Phys. China 5(3), 245–259 (2010).
Q. Wang, S. Stobbe, H. Thyrrestrup, H. Hofmann, M. Kamp, T. W. Schlereth, S. Höfling, and P. Lodahl, “Highly anisotropic decay rates of single quantum dots in photonic crystal membranes,” Opt. Lett. 35(16), 2768–2770 (2010).
[PubMed]
L. Tang and T. Yoshie, “HighQ hybrid 3D2D slab3D photonic crystal microcavity,” Opt. Lett. 35(18), 3144–3146 (2010).
[PubMed]
2009 (5)
W. L. Vos, A. F. Koenderink, and I. S. Nikolaev, “Orientationdependent spontaneous emission rates of a twolevel quantum emitter in any nanophotonic environment,” Phys. Rev. A 80(5), 053802 (2009).
S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of threedimensional photonic crystals by a topdown approach,” Nat. Mater. 8(9), 721–725 (2009).
[PubMed]
K. Ishizaki and S. Noda, “Manipulation of photons at the surface of threedimensional photonic crystals,” Nature 460(7253), 367–370 (2009).
[PubMed]
J. J. Wierer, A. David, and M. M. Megens, “IIInitride photoniccrystal lightemitting diodes with high extraction efficiency,” Nat. Photonics 3(3), 163–169 (2009).
2008 (1)
M. J. Ventura and M. Gu, “Engineering spontaneous emission in a quantumdotdoped polymer nanocomposite with threedimensional photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 20(7), 1329–1332 (2008).
2007 (2)
J. Li, B. Jia, G. Zhou, C. Bullen, J. Serbin, and M. Gu, “Spectral redistribution in spontaneous emission from quantumdotinfiltrated 3D woodpile photonic crystals for telecommunications,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3276–3280 (2007).
K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dotcavity system,” Nature 445(7130), 896–899 (2007).
[PubMed]
2004 (1)
H.G. Park, S.H. Kim, S.H. Kwon, Y.G. Ju, J.K. Yang, J.H. Baek, S.B. Kim, and Y.H. Lee, “Electrically driven singlecell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[PubMed]
2003 (3)
K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor threedimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
[PubMed]
X.H. Wang, B.Y. Gu, R. Wang, and H.Q. Xu, “Decay kinetic properties of atoms in photonic crystals with absolute gaps,” Phys. Rev. Lett. 91(11), 113904 (2003).
[PubMed]
R. Wang, X.H. Wang, B.Y. Gu, and G.Z. Yang, “Local density of states in threedimensional photonic crystals: calculation and enhancement effects,” Phys. Rev. B 67(15), 155114 (2003).
2002 (1)
X.H. Wang, R. Wang, B.Y. Gu, and G.Z. Yang, “Decay distribution of spontaneous emission from an assembly of atoms in photonic crystals with pseudogaps,” Phys. Rev. Lett. 88(9), 093902 (2002).
[PubMed]
2000 (3)
Z.Y. Li, L.L. Lin, and Z.Q. Zhang, “Spontaneous emission from photonic crystals: full vectorial calculations,” Phys. Rev. Lett. 84(19), 4341–4344 (2000).
[PubMed]
S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full threedimensional photonic bandgap crystals at nearinfrared wavelengths,” Science 289(5479), 604–606 (2000).
[PubMed]
S.Y. Zhu, Y. Yang, H. Chen, H. Zheng, and M. S. Zubairy, “Spontaneous radiation and lamb shift in threedimensional photonic crystals,” Phys. Rev. Lett. 84(10), 2136–2139 (2000).
[PubMed]
1999 (1)
M. Megens, J. E. G. J. Wijnhoven, A. Lagendijk, and W. L. Vos, “Fluorescence lifetimes and linewidths of dye in photonic crystals,” Phys. Rev. A 59(6), 4727–4731 (1999).
1998 (3)
E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett. 81(1), 77–80 (1998).
S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A threedimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
K. Busch and S. John, “Photonic band gap formation in certain selforganizing systems,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(3), 3896–3908 (1998).
1997 (1)
S. Bay, P. Lambropoulos, and K. Mølmer, “Fluorescence into flat and structured radiation continua: an atomic density matrix without a master equation,” Phys. Rev. Lett. 79(14), 2654–2657 (1997).
1994 (1)
K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layerbylayer periodic structures,” Solid State Commun. 89(5), 413–416 (1994).
1991 (1)
S. John and J. Wang, “Quantum optics of localized light in a photonic band gap,” Phys. Rev. B Condens. Matter 43(16), 12772–12789 (1991).
[PubMed]
1987 (2)
E. Yablonovitch, “Inhibited spontaneous emission in solidstate physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[PubMed]
S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[PubMed]
1976 (1)
H. J. Monkhorst and J. D. Pack, “Special points for Brillouinzone integrations,” Phys. Rev. B 13(12), 5188–5192 (1976).
Aoki, K.
K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor threedimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
[PubMed]
Aoyagi, Y.
K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor threedimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
[PubMed]
Arakawa, Y.
A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a threedimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
Atatüre, M.
K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dotcavity system,” Nature 445(7130), 896–899 (2007).
[PubMed]
Baba, T.
K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor threedimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
[PubMed]
Badolato, A.
K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dotcavity system,” Nature 445(7130), 896–899 (2007).
[PubMed]
Baek, J.H.
H.G. Park, S.H. Kim, S.H. Kwon, Y.G. Ju, J.K. Yang, J.H. Baek, S.B. Kim, and Y.H. Lee, “Electrically driven singlecell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[PubMed]
Bay, S.
S. Bay, P. Lambropoulos, and K. Mølmer, “Fluorescence into flat and structured radiation continua: an atomic density matrix without a master equation,” Phys. Rev. Lett. 79(14), 2654–2657 (1997).
Birowosuto, M. D.
M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett. 105(1), 013904 (2010).
[PubMed]
Biswas, R.
S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A threedimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layerbylayer periodic structures,” Solid State Commun. 89(5), 413–416 (1994).
Bogomolov, V. N.
E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett. 81(1), 77–80 (1998).
Bullen, C.
J. Li, B. Jia, G. Zhou, C. Bullen, J. Serbin, and M. Gu, “Spectral redistribution in spontaneous emission from quantumdotinfiltrated 3D woodpile photonic crystals for telecommunications,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3276–3280 (2007).
Bur, J.
S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A threedimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
Busch, K.
K. Busch and S. John, “Photonic band gap formation in certain selforganizing systems,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(3), 3896–3908 (1998).
Carminati, R.
V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
Castanié, E.
V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
Chan, C. T.
K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layerbylayer periodic structures,” Solid State Commun. 89(5), 413–416 (1994).
Chen, H.
S.Y. Zhu, Y. Yang, H. Chen, H. Zheng, and M. S. Zubairy, “Spontaneous radiation and lamb shift in threedimensional photonic crystals,” Phys. Rev. Lett. 84(10), 2136–2139 (2000).
[PubMed]
Chutinan, A.
S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full threedimensional photonic bandgap crystals at nearinfrared wavelengths,” Science 289(5479), 604–606 (2000).
[PubMed]
David, A.
J. J. Wierer, A. David, and M. M. Megens, “IIInitride photoniccrystal lightemitting diodes with high extraction efficiency,” Nat. Photonics 3(3), 163–169 (2009).
De Wilde, Y.
V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
Fält, S.
K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dotcavity system,” Nature 445(7130), 896–899 (2007).
[PubMed]
Fleming, J. G.
S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A threedimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
Gaponenko, S. V.
E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett. 81(1), 77–80 (1998).
Gerace, D.
K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dotcavity system,” Nature 445(7130), 896–899 (2007).
[PubMed]
Gu, B.Y.
X.H. Wang, B.Y. Gu, R. Wang, and H.Q. Xu, “Decay kinetic properties of atoms in photonic crystals with absolute gaps,” Phys. Rev. Lett. 91(11), 113904 (2003).
[PubMed]
R. Wang, X.H. Wang, B.Y. Gu, and G.Z. Yang, “Local density of states in threedimensional photonic crystals: calculation and enhancement effects,” Phys. Rev. B 67(15), 155114 (2003).
X.H. Wang, R. Wang, B.Y. Gu, and G.Z. Yang, “Decay distribution of spontaneous emission from an assembly of atoms in photonic crystals with pseudogaps,” Phys. Rev. Lett. 88(9), 093902 (2002).
[PubMed]
Gu, M.
M. Gu, B. Jia, J. Li, and M. J. Ventura, “Fabrication of threedimensional photonic crystals in quantumdotbased materials,” Laser Photon. Rev. 4(3), 414–431 (2010).
M. J. Ventura and M. Gu, “Engineering spontaneous emission in a quantumdotdoped polymer nanocomposite with threedimensional photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 20(7), 1329–1332 (2008).
J. Li, B. Jia, G. Zhou, C. Bullen, J. Serbin, and M. Gu, “Spectral redistribution in spontaneous emission from quantumdotinfiltrated 3D woodpile photonic crystals for telecommunications,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3276–3280 (2007).
Guimard, D.
A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a threedimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
Gulde, S.
K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dotcavity system,” Nature 445(7130), 896–899 (2007).
[PubMed]
Hennessy, K.
K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dotcavity system,” Nature 445(7130), 896–899 (2007).
[PubMed]
Hetherington, D. L.
S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A threedimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
Hirayama, H.
K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor threedimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
[PubMed]
Ho, K. M.
S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A threedimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layerbylayer periodic structures,” Solid State Commun. 89(5), 413–416 (1994).
Höfling, S.
Q. Wang, S. Stobbe, H. Thyrrestrup, H. Hofmann, M. Kamp, T. W. Schlereth, S. Höfling, and P. Lodahl, “Highly anisotropic decay rates of single quantum dots in photonic crystal membranes,” Opt. Lett. 35(16), 2768–2770 (2010).
[PubMed]
Hofmann, H.
Q. Wang, S. Stobbe, H. Thyrrestrup, H. Hofmann, M. Kamp, T. W. Schlereth, S. Höfling, and P. Lodahl, “Highly anisotropic decay rates of single quantum dots in photonic crystal membranes,” Opt. Lett. 35(16), 2768–2770 (2010).
[PubMed]
Hu, E. L.
K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dotcavity system,” Nature 445(7130), 896–899 (2007).
[PubMed]
Imada, M.
S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of threedimensional photonic crystals by a topdown approach,” Nat. Mater. 8(9), 721–725 (2009).
[PubMed]
Imamoglu, A.
K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dotcavity system,” Nature 445(7130), 896–899 (2007).
[PubMed]
Inoshita, K.
K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor threedimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
[PubMed]
Ishida, S.
A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a threedimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
Ishizaki, K.
S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of threedimensional photonic crystals by a topdown approach,” Nat. Mater. 8(9), 721–725 (2009).
[PubMed]
K. Ishizaki and S. Noda, “Manipulation of photons at the surface of threedimensional photonic crystals,” Nature 460(7253), 367–370 (2009).
[PubMed]
Iwamoto, S.
A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a threedimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
Jia, B.
M. Gu, B. Jia, J. Li, and M. J. Ventura, “Fabrication of threedimensional photonic crystals in quantumdotbased materials,” Laser Photon. Rev. 4(3), 414–431 (2010).
J. Li, B. Jia, G. Zhou, C. Bullen, J. Serbin, and M. Gu, “Spectral redistribution in spontaneous emission from quantumdotinfiltrated 3D woodpile photonic crystals for telecommunications,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3276–3280 (2007).
John, S.
K. Busch and S. John, “Photonic band gap formation in certain selforganizing systems,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(3), 3896–3908 (1998).
S. John and J. Wang, “Quantum optics of localized light in a photonic band gap,” Phys. Rev. B Condens. Matter 43(16), 12772–12789 (1991).
[PubMed]
S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[PubMed]
Ju, Y.G.
H.G. Park, S.H. Kim, S.H. Kwon, Y.G. Ju, J.K. Yang, J.H. Baek, S.B. Kim, and Y.H. Lee, “Electrically driven singlecell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[PubMed]
Kalosha, I. I.
E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett. 81(1), 77–80 (1998).
Kamp, M.
Q. Wang, S. Stobbe, H. Thyrrestrup, H. Hofmann, M. Kamp, T. W. Schlereth, S. Höfling, and P. Lodahl, “Highly anisotropic decay rates of single quantum dots in photonic crystal membranes,” Opt. Lett. 35(16), 2768–2770 (2010).
[PubMed]
Kim, S.B.
H.G. Park, S.H. Kim, S.H. Kwon, Y.G. Ju, J.K. Yang, J.H. Baek, S.B. Kim, and Y.H. Lee, “Electrically driven singlecell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[PubMed]
Kim, S.H.
H.G. Park, S.H. Kim, S.H. Kwon, Y.G. Ju, J.K. Yang, J.H. Baek, S.B. Kim, and Y.H. Lee, “Electrically driven singlecell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[PubMed]
Koenderink, A. F.
W. L. Vos, A. F. Koenderink, and I. S. Nikolaev, “Orientationdependent spontaneous emission rates of a twolevel quantum emitter in any nanophotonic environment,” Phys. Rev. A 80(5), 053802 (2009).
Krachmalnicoff, V.
V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
Kurtz, S. R.
S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A threedimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
Kwon, S.H.
H.G. Park, S.H. Kim, S.H. Kwon, Y.G. Ju, J.K. Yang, J.H. Baek, S.B. Kim, and Y.H. Lee, “Electrically driven singlecell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[PubMed]
Lagendijk, A.
M. Megens, J. E. G. J. Wijnhoven, A. Lagendijk, and W. L. Vos, “Fluorescence lifetimes and linewidths of dye in photonic crystals,” Phys. Rev. A 59(6), 4727–4731 (1999).
Lambropoulos, P.
S. Bay, P. Lambropoulos, and K. Mølmer, “Fluorescence into flat and structured radiation continua: an atomic density matrix without a master equation,” Phys. Rev. Lett. 79(14), 2654–2657 (1997).
Lee, Y.H.
H.G. Park, S.H. Kim, S.H. Kwon, Y.G. Ju, J.K. Yang, J.H. Baek, S.B. Kim, and Y.H. Lee, “Electrically driven singlecell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[PubMed]
Li, J.
M. Gu, B. Jia, J. Li, and M. J. Ventura, “Fabrication of threedimensional photonic crystals in quantumdotbased materials,” Laser Photon. Rev. 4(3), 414–431 (2010).
J. Li, B. Jia, G. Zhou, C. Bullen, J. Serbin, and M. Gu, “Spectral redistribution in spontaneous emission from quantumdotinfiltrated 3D woodpile photonic crystals for telecommunications,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3276–3280 (2007).
Li, Z.Y.
Z.Y. Li, L.L. Lin, and Z.Q. Zhang, “Spontaneous emission from photonic crystals: full vectorial calculations,” Phys. Rev. Lett. 84(19), 4341–4344 (2000).
[PubMed]
Lin, L.L.
Z.Y. Li, L.L. Lin, and Z.Q. Zhang, “Spontaneous emission from photonic crystals: full vectorial calculations,” Phys. Rev. Lett. 84(19), 4341–4344 (2000).
[PubMed]
Lin, S. Y.
S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A threedimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
Liu, J.
J. Liu and X.H. Wang, “Spontaneous emission in micro and nanostructures,” Front. Phys. China 5(3), 245–259 (2010).
Lodahl, P.
Q. Wang, S. Stobbe, H. Thyrrestrup, H. Hofmann, M. Kamp, T. W. Schlereth, S. Höfling, and P. Lodahl, “Highly anisotropic decay rates of single quantum dots in photonic crystal membranes,” Opt. Lett. 35(16), 2768–2770 (2010).
[PubMed]
Megens, M.
M. Megens, J. E. G. J. Wijnhoven, A. Lagendijk, and W. L. Vos, “Fluorescence lifetimes and linewidths of dye in photonic crystals,” Phys. Rev. A 59(6), 4727–4731 (1999).
Megens, M. M.
J. J. Wierer, A. David, and M. M. Megens, “IIInitride photoniccrystal lightemitting diodes with high extraction efficiency,” Nat. Photonics 3(3), 163–169 (2009).
Miyazaki, H. T.
K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor threedimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
[PubMed]
Mølmer, K.
S. Bay, P. Lambropoulos, and K. Mølmer, “Fluorescence into flat and structured radiation continua: an atomic density matrix without a master equation,” Phys. Rev. Lett. 79(14), 2654–2657 (1997).
Monkhorst, H. J.
H. J. Monkhorst and J. D. Pack, “Special points for Brillouinzone integrations,” Phys. Rev. B 13(12), 5188–5192 (1976).
Mosk, A. P.
M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett. 105(1), 013904 (2010).
[PubMed]
Nakamori, T.
S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of threedimensional photonic crystals by a topdown approach,” Nat. Mater. 8(9), 721–725 (2009).
[PubMed]
Nikolaev, I. S.
W. L. Vos, A. F. Koenderink, and I. S. Nikolaev, “Orientationdependent spontaneous emission rates of a twolevel quantum emitter in any nanophotonic environment,” Phys. Rev. A 80(5), 053802 (2009).
Noda, S.
K. Ishizaki and S. Noda, “Manipulation of photons at the surface of threedimensional photonic crystals,” Nature 460(7253), 367–370 (2009).
[PubMed]
S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of threedimensional photonic crystals by a topdown approach,” Nat. Mater. 8(9), 721–725 (2009).
[PubMed]
S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full threedimensional photonic bandgap crystals at nearinfrared wavelengths,” Science 289(5479), 604–606 (2000).
[PubMed]
Nomura, M.
A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a threedimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
Okano, M.
S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of threedimensional photonic crystals by a topdown approach,” Nat. Mater. 8(9), 721–725 (2009).
[PubMed]
Ota, Y.
S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of threedimensional photonic crystals by a topdown approach,” Nat. Mater. 8(9), 721–725 (2009).
[PubMed]
Pack, J. D.
H. J. Monkhorst and J. D. Pack, “Special points for Brillouinzone integrations,” Phys. Rev. B 13(12), 5188–5192 (1976).
Park, H.G.
H.G. Park, S.H. Kim, S.H. Kwon, Y.G. Ju, J.K. Yang, J.H. Baek, S.B. Kim, and Y.H. Lee, “Electrically driven singlecell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[PubMed]
Petrov, E. P.
E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett. 81(1), 77–80 (1998).
Sakoda, K.
K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor threedimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
[PubMed]
Schlereth, T. W.
Q. Wang, S. Stobbe, H. Thyrrestrup, H. Hofmann, M. Kamp, T. W. Schlereth, S. Höfling, and P. Lodahl, “Highly anisotropic decay rates of single quantum dots in photonic crystal membranes,” Opt. Lett. 35(16), 2768–2770 (2010).
[PubMed]
Serbin, J.
J. Li, B. Jia, G. Zhou, C. Bullen, J. Serbin, and M. Gu, “Spectral redistribution in spontaneous emission from quantumdotinfiltrated 3D woodpile photonic crystals for telecommunications,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3276–3280 (2007).
Shinya, N.
K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor threedimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
[PubMed]
Sigalas, M.
K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layerbylayer periodic structures,” Solid State Commun. 89(5), 413–416 (1994).
Sigalas, M. M.
S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A threedimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
Skipetrov, S. E.
M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett. 105(1), 013904 (2010).
[PubMed]
Smith, B. K.
S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A threedimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
Soukoulis, C. M.
K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layerbylayer periodic structures,” Solid State Commun. 89(5), 413–416 (1994).
Stobbe, S.
Q. Wang, S. Stobbe, H. Thyrrestrup, H. Hofmann, M. Kamp, T. W. Schlereth, S. Höfling, and P. Lodahl, “Highly anisotropic decay rates of single quantum dots in photonic crystal membranes,” Opt. Lett. 35(16), 2768–2770 (2010).
[PubMed]
Suzuki, K.
S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of threedimensional photonic crystals by a topdown approach,” Nat. Mater. 8(9), 721–725 (2009).
[PubMed]
Takahashi, S.
S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of threedimensional photonic crystals by a topdown approach,” Nat. Mater. 8(9), 721–725 (2009).
[PubMed]
Tandaechanurat, A.
A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a threedimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
Tang, L.
L. Tang and T. Yoshie, “HighQ hybrid 3D2D slab3D photonic crystal microcavity,” Opt. Lett. 35(18), 3144–3146 (2010).
[PubMed]
Thyrrestrup, H.
Q. Wang, S. Stobbe, H. Thyrrestrup, H. Hofmann, M. Kamp, T. W. Schlereth, S. Höfling, and P. Lodahl, “Highly anisotropic decay rates of single quantum dots in photonic crystal membranes,” Opt. Lett. 35(16), 2768–2770 (2010).
[PubMed]
Tomoda, K.
S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full threedimensional photonic bandgap crystals at nearinfrared wavelengths,” Science 289(5479), 604–606 (2000).
[PubMed]
Ventura, M. J.
M. Gu, B. Jia, J. Li, and M. J. Ventura, “Fabrication of threedimensional photonic crystals in quantumdotbased materials,” Laser Photon. Rev. 4(3), 414–431 (2010).
M. J. Ventura and M. Gu, “Engineering spontaneous emission in a quantumdotdoped polymer nanocomposite with threedimensional photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 20(7), 1329–1332 (2008).
Vos, W. L.
M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett. 105(1), 013904 (2010).
[PubMed]
W. L. Vos, A. F. Koenderink, and I. S. Nikolaev, “Orientationdependent spontaneous emission rates of a twolevel quantum emitter in any nanophotonic environment,” Phys. Rev. A 80(5), 053802 (2009).
M. Megens, J. E. G. J. Wijnhoven, A. Lagendijk, and W. L. Vos, “Fluorescence lifetimes and linewidths of dye in photonic crystals,” Phys. Rev. A 59(6), 4727–4731 (1999).
Wang, J.
S. John and J. Wang, “Quantum optics of localized light in a photonic band gap,” Phys. Rev. B Condens. Matter 43(16), 12772–12789 (1991).
[PubMed]
Wang, Q.
Q. Wang, S. Stobbe, H. Thyrrestrup, H. Hofmann, M. Kamp, T. W. Schlereth, S. Höfling, and P. Lodahl, “Highly anisotropic decay rates of single quantum dots in photonic crystal membranes,” Opt. Lett. 35(16), 2768–2770 (2010).
[PubMed]
Wang, R.
R. Wang, X.H. Wang, B.Y. Gu, and G.Z. Yang, “Local density of states in threedimensional photonic crystals: calculation and enhancement effects,” Phys. Rev. B 67(15), 155114 (2003).
X.H. Wang, B.Y. Gu, R. Wang, and H.Q. Xu, “Decay kinetic properties of atoms in photonic crystals with absolute gaps,” Phys. Rev. Lett. 91(11), 113904 (2003).
[PubMed]
X.H. Wang, R. Wang, B.Y. Gu, and G.Z. Yang, “Decay distribution of spontaneous emission from an assembly of atoms in photonic crystals with pseudogaps,” Phys. Rev. Lett. 88(9), 093902 (2002).
[PubMed]
Wang, X.H.
J. Liu and X.H. Wang, “Spontaneous emission in micro and nanostructures,” Front. Phys. China 5(3), 245–259 (2010).
R. Wang, X.H. Wang, B.Y. Gu, and G.Z. Yang, “Local density of states in threedimensional photonic crystals: calculation and enhancement effects,” Phys. Rev. B 67(15), 155114 (2003).
X.H. Wang, B.Y. Gu, R. Wang, and H.Q. Xu, “Decay kinetic properties of atoms in photonic crystals with absolute gaps,” Phys. Rev. Lett. 91(11), 113904 (2003).
[PubMed]
X.H. Wang, R. Wang, B.Y. Gu, and G.Z. Yang, “Decay distribution of spontaneous emission from an assembly of atoms in photonic crystals with pseudogaps,” Phys. Rev. Lett. 88(9), 093902 (2002).
[PubMed]
Wierer, J. J.
J. J. Wierer, A. David, and M. M. Megens, “IIInitride photoniccrystal lightemitting diodes with high extraction efficiency,” Nat. Photonics 3(3), 163–169 (2009).
Wijnhoven, J. E. G. J.
M. Megens, J. E. G. J. Wijnhoven, A. Lagendijk, and W. L. Vos, “Fluorescence lifetimes and linewidths of dye in photonic crystals,” Phys. Rev. A 59(6), 4727–4731 (1999).
Winger, M.
K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dotcavity system,” Nature 445(7130), 896–899 (2007).
[PubMed]
Xu, H.Q.
X.H. Wang, B.Y. Gu, R. Wang, and H.Q. Xu, “Decay kinetic properties of atoms in photonic crystals with absolute gaps,” Phys. Rev. Lett. 91(11), 113904 (2003).
[PubMed]
Yablonovitch, E.
E. Yablonovitch, “Inhibited spontaneous emission in solidstate physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[PubMed]
Yamamoto, N.
S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full threedimensional photonic bandgap crystals at nearinfrared wavelengths,” Science 289(5479), 604–606 (2000).
[PubMed]
Yang, G.Z.
R. Wang, X.H. Wang, B.Y. Gu, and G.Z. Yang, “Local density of states in threedimensional photonic crystals: calculation and enhancement effects,” Phys. Rev. B 67(15), 155114 (2003).
X.H. Wang, R. Wang, B.Y. Gu, and G.Z. Yang, “Decay distribution of spontaneous emission from an assembly of atoms in photonic crystals with pseudogaps,” Phys. Rev. Lett. 88(9), 093902 (2002).
[PubMed]
Yang, J.K.
H.G. Park, S.H. Kim, S.H. Kwon, Y.G. Ju, J.K. Yang, J.H. Baek, S.B. Kim, and Y.H. Lee, “Electrically driven singlecell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[PubMed]
Yang, Y.
S.Y. Zhu, Y. Yang, H. Chen, H. Zheng, and M. S. Zubairy, “Spontaneous radiation and lamb shift in threedimensional photonic crystals,” Phys. Rev. Lett. 84(10), 2136–2139 (2000).
[PubMed]
Yoshie, T.
L. Tang and T. Yoshie, “HighQ hybrid 3D2D slab3D photonic crystal microcavity,” Opt. Lett. 35(18), 3144–3146 (2010).
[PubMed]
Zhang, Z.Q.
Z.Y. Li, L.L. Lin, and Z.Q. Zhang, “Spontaneous emission from photonic crystals: full vectorial calculations,” Phys. Rev. Lett. 84(19), 4341–4344 (2000).
[PubMed]
Zheng, H.
S.Y. Zhu, Y. Yang, H. Chen, H. Zheng, and M. S. Zubairy, “Spontaneous radiation and lamb shift in threedimensional photonic crystals,” Phys. Rev. Lett. 84(10), 2136–2139 (2000).
[PubMed]
Zhou, G.
J. Li, B. Jia, G. Zhou, C. Bullen, J. Serbin, and M. Gu, “Spectral redistribution in spontaneous emission from quantumdotinfiltrated 3D woodpile photonic crystals for telecommunications,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3276–3280 (2007).
Zhu, S.Y.
S.Y. Zhu, Y. Yang, H. Chen, H. Zheng, and M. S. Zubairy, “Spontaneous radiation and lamb shift in threedimensional photonic crystals,” Phys. Rev. Lett. 84(10), 2136–2139 (2000).
[PubMed]
Zubairy, M. S.
S.Y. Zhu, Y. Yang, H. Chen, H. Zheng, and M. S. Zubairy, “Spontaneous radiation and lamb shift in threedimensional photonic crystals,” Phys. Rev. Lett. 84(10), 2136–2139 (2000).
[PubMed]
Zubrzycki, W.
S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A threedimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
Adv. Mater. (Deerfield Beach Fla.) (2)
J. Li, B. Jia, G. Zhou, C. Bullen, J. Serbin, and M. Gu, “Spectral redistribution in spontaneous emission from quantumdotinfiltrated 3D woodpile photonic crystals for telecommunications,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3276–3280 (2007).
M. J. Ventura and M. Gu, “Engineering spontaneous emission in a quantumdotdoped polymer nanocomposite with threedimensional photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 20(7), 1329–1332 (2008).
Front. Phys. China (1)
J. Liu and X.H. Wang, “Spontaneous emission in micro and nanostructures,” Front. Phys. China 5(3), 245–259 (2010).
J. Opt. Soc. Am. B (1)
Laser Photon. Rev. (1)
M. Gu, B. Jia, J. Li, and M. J. Ventura, “Fabrication of threedimensional photonic crystals in quantumdotbased materials,” Laser Photon. Rev. 4(3), 414–431 (2010).
Nat. Mater. (2)
S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of threedimensional photonic crystals by a topdown approach,” Nat. Mater. 8(9), 721–725 (2009).
[PubMed]
K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor threedimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
[PubMed]
Nat. Photonics (2)
A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a threedimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
J. J. Wierer, A. David, and M. M. Megens, “IIInitride photoniccrystal lightemitting diodes with high extraction efficiency,” Nat. Photonics 3(3), 163–169 (2009).
Nature (3)
K. Ishizaki and S. Noda, “Manipulation of photons at the surface of threedimensional photonic crystals,” Nature 460(7253), 367–370 (2009).
[PubMed]
S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A threedimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dotcavity system,” Nature 445(7130), 896–899 (2007).
[PubMed]
Opt. Lett. (2)
L. Tang and T. Yoshie, “HighQ hybrid 3D2D slab3D photonic crystal microcavity,” Opt. Lett. 35(18), 3144–3146 (2010).
[PubMed]
Q. Wang, S. Stobbe, H. Thyrrestrup, H. Hofmann, M. Kamp, T. W. Schlereth, S. Höfling, and P. Lodahl, “Highly anisotropic decay rates of single quantum dots in photonic crystal membranes,” Opt. Lett. 35(16), 2768–2770 (2010).
[PubMed]
Phys. Rev. A (2)
W. L. Vos, A. F. Koenderink, and I. S. Nikolaev, “Orientationdependent spontaneous emission rates of a twolevel quantum emitter in any nanophotonic environment,” Phys. Rev. A 80(5), 053802 (2009).
M. Megens, J. E. G. J. Wijnhoven, A. Lagendijk, and W. L. Vos, “Fluorescence lifetimes and linewidths of dye in photonic crystals,” Phys. Rev. A 59(6), 4727–4731 (1999).
Phys. Rev. B (2)
H. J. Monkhorst and J. D. Pack, “Special points for Brillouinzone integrations,” Phys. Rev. B 13(12), 5188–5192 (1976).
R. Wang, X.H. Wang, B.Y. Gu, and G.Z. Yang, “Local density of states in threedimensional photonic crystals: calculation and enhancement effects,” Phys. Rev. B 67(15), 155114 (2003).
Phys. Rev. B Condens. Matter (1)
S. John and J. Wang, “Quantum optics of localized light in a photonic band gap,” Phys. Rev. B Condens. Matter 43(16), 12772–12789 (1991).
[PubMed]
Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)
K. Busch and S. John, “Photonic band gap formation in certain selforganizing systems,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(3), 3896–3908 (1998).
Phys. Rev. Lett. (10)
M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett. 105(1), 013904 (2010).
[PubMed]
V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
S. Bay, P. Lambropoulos, and K. Mølmer, “Fluorescence into flat and structured radiation continua: an atomic density matrix without a master equation,” Phys. Rev. Lett. 79(14), 2654–2657 (1997).
S.Y. Zhu, Y. Yang, H. Chen, H. Zheng, and M. S. Zubairy, “Spontaneous radiation and lamb shift in threedimensional photonic crystals,” Phys. Rev. Lett. 84(10), 2136–2139 (2000).
[PubMed]
X.H. Wang, R. Wang, B.Y. Gu, and G.Z. Yang, “Decay distribution of spontaneous emission from an assembly of atoms in photonic crystals with pseudogaps,” Phys. Rev. Lett. 88(9), 093902 (2002).
[PubMed]
X.H. Wang, B.Y. Gu, R. Wang, and H.Q. Xu, “Decay kinetic properties of atoms in photonic crystals with absolute gaps,” Phys. Rev. Lett. 91(11), 113904 (2003).
[PubMed]
Z.Y. Li, L.L. Lin, and Z.Q. Zhang, “Spontaneous emission from photonic crystals: full vectorial calculations,” Phys. Rev. Lett. 84(19), 4341–4344 (2000).
[PubMed]
E. Yablonovitch, “Inhibited spontaneous emission in solidstate physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[PubMed]
S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[PubMed]
E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett. 81(1), 77–80 (1998).
Science (2)
S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full threedimensional photonic bandgap crystals at nearinfrared wavelengths,” Science 289(5479), 604–606 (2000).
[PubMed]
H.G. Park, S.H. Kim, S.H. Kwon, Y.G. Ju, J.K. Yang, J.H. Baek, S.B. Kim, and Y.H. Lee, “Electrically driven singlecell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[PubMed]
Solid State Commun. (1)
K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layerbylayer periodic structures,” Solid State Commun. 89(5), 413–416 (1994).
Cited By
OSA participates in Crossref's CitedBy Linking service. Citing articles from OSA journals and other participating publishers are listed here.
Alert me when this article is cited.
Figures (4)
Sketch of a woodpile structure and the Brillouin zone.
Averaged lifetime distributions of the emitters in woodpile PCs with different transition frequencies
Averaged lifetime distribution of emitters with a reduced transition frequency 0.658 and lying on the planes (a) z = 0; (b) z = a /4; (c) z = a /2; (d) z = 3a/4.
Orientationdependent emission lifetime distributions for an emitter at a fixed position in woodpile PCs. (a) Curves (I) and (II) are emission lifetime distributions of an emitter located at the points (0.055a, 0, 0) and (0, 0.122a, 0.25a) at a frequency
Equations (6)
Equations on this page are rendered with MathJax. Learn more.