Abstract

We report on the fabrication of binary Fresnel lenses by femtosecond laser surface ablation of poly(methyl methacrylate) (PMMA) substrates. Tight focusing of the laser pulses produced a minimum ablated feature size of 600 nm, enabling the creation of lenses with numerical apertures as high as 0.5 and focal lengths ranging from 500 µm to 5 mm. A precise control of the ablation depth allowed the achievement of a 30% focusing efficiency, close to the maximum theoretical value for this kind of lenses.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Jahns and S. J. Walker, “Two-dimensional array of diffractive microlenses fabricated by thin film deposition,” Appl. Opt. 29(7), 931–936 (1990).
    [CrossRef] [PubMed]
  2. K. Miyamoto, “The phase Fresnel lens,” J. Opt. Soc. Am. 51(1), 17–20 (1961).
    [CrossRef]
  3. E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10(7), 852–856 (2010).
    [CrossRef] [PubMed]
  4. E. Schonbrun, P. E. Steinvurzel, and K. B. Crozier, “A microfluidic fluorescence measurement system using an astigmatic diffractive microlens array,” Opt. Express 19(2), 1385–1394 (2011).
    [CrossRef] [PubMed]
  5. L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
    [CrossRef]
  6. P. Rai-Choudhury, Handbook of Microlithography, Micromachining, and Microfabrication (SPIE-International Society for Optical Engineering Press, 1997), Vol. 2.
  7. S. Turri, M. Levi, E. Emilitri, R. Suriano, and R. Bongiovanni, “Direct photopolymerisation of PEG-methacrylate oligomers for an easy prototyping of microfluidic structures,” Macromol. Chem. Phys. 211, 879–887 (2010).
  8. H. Klank, J. P. Kutter, and O. Geschke, “CO(2)-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems,” Lab Chip 2(4), 242–246 (2002).
    [CrossRef]
  9. B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
    [CrossRef]
  10. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [CrossRef]
  11. J. Krüger and W. Kautek, “Femto- and nanosecond laser treatment of doped polymethylmethacrylate,” Adv. Polym. Sci. 168, 247–289 (2004).
  12. S. Baudach, J. Bonse, J. Krüger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci. 154–155, 155–560 (2000).
  13. D. Klinger, R. Sobierajski, R. Nietubyć, J. Krzywiński, J. Pełka, L. Juha, M. Jurek, D. Źymierska, S. Guizard, and H. Merdji, “Surface modification of polymethylmethacrylate irradiated with 60fs single laser pulses,” Radiat. Phys. Chem. 78(10), S71–S74 (2009).
    [CrossRef]
  14. C. De Marco, S. M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, and R. Osellame, “Surface properties of femtosecond laser ablated PMMA,” ACS Appl. Mater. Interfaces 2(8), 2377–2384 (2010).
    [CrossRef]
  15. Y. Li, K. Yamada, T. Ishizuka, W. Watanabe, K. Itoh, and Z. Zhou, “Single femtosecond pulse holography using polymethyl methacrylate,” Opt. Express 10(21), 1173–1178 (2002).
    [PubMed]
  16. D. Day and M. Gu, “Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses,” Opt. Express 13(16), 5939–5946 (2005).
    [CrossRef] [PubMed]
  17. D. L. N. Kallepalli, N. R. Desai, and V. R. Soma, “Fabrication and optical characterization of microstructures in poly(methylmethacrylate) and poly(dimethylsiloxane) using femtosecond pulses for photonic and microfluidic applications,” Appl. Opt. 49(13), 2475–2489 (2010).
    [CrossRef]
  18. S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14(1), 291–297 (2006).
    [CrossRef] [PubMed]
  19. A. Zoubir, C. Lopez, M. Richardson, and K. Richardson, “Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate),” Opt. Lett. 29(16), 1840–1842 (2004).
    [CrossRef] [PubMed]
  20. S. Hirono, M. Kasuya, K. Matsuda, Y. Ozeki, K. Itoh, H. Mochizuki, and W. Watanabe, “Increasing diffraction efficiency by heating phase gratings formed by femtosecond laser irradiation in poly(methyl methacrylate),” Appl. Phys. Lett. 94(24), 241122 (2009).
    [CrossRef]
  21. W. Watanabe, D. Kuroda, K. Itoh, and J. Nishii, “Fabrication of Fresnel zone plate embedded in silica glass by femtosecond laser pulses,” Opt. Express 10(19), 978–983 (2002).
    [PubMed]
  22. E. Bricchi, J. D. Mills, P. G. Kazansky, B. G. Klappauf, and J. J. Baumberg, “Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining,” Opt. Lett. 27(24), 2200–2202 (2002).
    [CrossRef]
  23. K. Yamada, W. Watanabe, Y. Li, K. Itoh, and J. Nishii, “Multilevel phase-type diffractive lenses in silica glass induced by filamentation of femtosecond laser pulses,” Opt. Lett. 29(16), 1846–1848 (2004).
    [CrossRef] [PubMed]
  24. P. Srisungsitthisunti, O. K. Ersoy, and X. Xu, “Laser direct writing of volume modified Fresnel zone plates,” J. Opt. Soc. Am. B 24(9), 2090–2096 (2007).
    [CrossRef]
  25. P. Srisungsitthisunti, O. K. Ersoy, and X. Xu, “Optimization of modified volume Fresnel zone plates,” J. Opt. Soc. Am. A 26(10), 2114–2120 (2009).
    [CrossRef]
  26. R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
    [CrossRef] [PubMed]
  27. S. Sinzinger and J. Jahns, Microoptics (Wiley –VCH, 2003), Chap. 6.
  28. F. Träger, Handbook of Lasers and Optics (Springer, 2007).
  29. A. Killi, A. Steinmann, J. Dörring, U. Morgner, M. J. Lederer, D. Kopf, and C. Fallnich, “High-peak-power pulses from a cavity-dumped Yb:KY(WO4)2 oscillator,” Opt. Lett. 30(14), 1891–1893 (2005).
    [CrossRef] [PubMed]
  30. S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Crystal. Solids (2011). doi:.
    [CrossRef]
  31. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008).
    [CrossRef] [PubMed]

2011

E. Schonbrun, P. E. Steinvurzel, and K. B. Crozier, “A microfluidic fluorescence measurement system using an astigmatic diffractive microlens array,” Opt. Express 19(2), 1385–1394 (2011).
[CrossRef] [PubMed]

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Crystal. Solids (2011). doi:.
[CrossRef]

2010

S. Turri, M. Levi, E. Emilitri, R. Suriano, and R. Bongiovanni, “Direct photopolymerisation of PEG-methacrylate oligomers for an easy prototyping of microfluidic structures,” Macromol. Chem. Phys. 211, 879–887 (2010).

E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10(7), 852–856 (2010).
[CrossRef] [PubMed]

C. De Marco, S. M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, and R. Osellame, “Surface properties of femtosecond laser ablated PMMA,” ACS Appl. Mater. Interfaces 2(8), 2377–2384 (2010).
[CrossRef]

D. L. N. Kallepalli, N. R. Desai, and V. R. Soma, “Fabrication and optical characterization of microstructures in poly(methylmethacrylate) and poly(dimethylsiloxane) using femtosecond pulses for photonic and microfluidic applications,” Appl. Opt. 49(13), 2475–2489 (2010).
[CrossRef]

2009

S. Hirono, M. Kasuya, K. Matsuda, Y. Ozeki, K. Itoh, H. Mochizuki, and W. Watanabe, “Increasing diffraction efficiency by heating phase gratings formed by femtosecond laser irradiation in poly(methyl methacrylate),” Appl. Phys. Lett. 94(24), 241122 (2009).
[CrossRef]

D. Klinger, R. Sobierajski, R. Nietubyć, J. Krzywiński, J. Pełka, L. Juha, M. Jurek, D. Źymierska, S. Guizard, and H. Merdji, “Surface modification of polymethylmethacrylate irradiated with 60fs single laser pulses,” Radiat. Phys. Chem. 78(10), S71–S74 (2009).
[CrossRef]

P. Srisungsitthisunti, O. K. Ersoy, and X. Xu, “Optimization of modified volume Fresnel zone plates,” J. Opt. Soc. Am. A 26(10), 2114–2120 (2009).
[CrossRef]

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[CrossRef] [PubMed]

2008

2007

2006

2005

2004

2002

2000

S. Baudach, J. Bonse, J. Krüger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci. 154–155, 155–560 (2000).

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
[CrossRef]

1996

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

1990

1961

Abate, A. R.

E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10(7), 852–856 (2010).
[CrossRef] [PubMed]

Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

Baudach, S.

S. Baudach, J. Bonse, J. Krüger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci. 154–155, 155–560 (2000).

Baumberg, J. J.

Bongiovanni, R.

S. Turri, M. Levi, E. Emilitri, R. Suriano, and R. Bongiovanni, “Direct photopolymerisation of PEG-methacrylate oligomers for an easy prototyping of microfluidic structures,” Macromol. Chem. Phys. 211, 879–887 (2010).

Bonse, J.

S. Baudach, J. Bonse, J. Krüger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci. 154–155, 155–560 (2000).

Bricchi, E.

Cerullo, G.

C. De Marco, S. M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, and R. Osellame, “Surface properties of femtosecond laser ablated PMMA,” ACS Appl. Mater. Interfaces 2(8), 2377–2384 (2010).
[CrossRef]

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[CrossRef] [PubMed]

Chen, W.-J.

Chichkov, B. N.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

Crozier, K. B.

E. Schonbrun, P. E. Steinvurzel, and K. B. Crozier, “A microfluidic fluorescence measurement system using an astigmatic diffractive microlens array,” Opt. Express 19(2), 1385–1394 (2011).
[CrossRef] [PubMed]

E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10(7), 852–856 (2010).
[CrossRef] [PubMed]

Day, D.

De Marco, C.

C. De Marco, S. M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, and R. Osellame, “Surface properties of femtosecond laser ablated PMMA,” ACS Appl. Mater. Interfaces 2(8), 2377–2384 (2010).
[CrossRef]

Desai, N. R.

Dongre, C.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[CrossRef] [PubMed]

Dörring, J.

Eaton, S. M.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Crystal. Solids (2011). doi:.
[CrossRef]

C. De Marco, S. M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, and R. Osellame, “Surface properties of femtosecond laser ablated PMMA,” ACS Appl. Mater. Interfaces 2(8), 2377–2384 (2010).
[CrossRef]

S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008).
[CrossRef] [PubMed]

Eldada, L.

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
[CrossRef]

Emilitri, E.

S. Turri, M. Levi, E. Emilitri, R. Suriano, and R. Bongiovanni, “Direct photopolymerisation of PEG-methacrylate oligomers for an easy prototyping of microfluidic structures,” Macromol. Chem. Phys. 211, 879–887 (2010).

Ersoy, O. K.

Fallnich, C.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Geschke, O.

H. Klank, J. P. Kutter, and O. Geschke, “CO(2)-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems,” Lab Chip 2(4), 242–246 (2002).
[CrossRef]

Gu, M.

Guizard, S.

D. Klinger, R. Sobierajski, R. Nietubyć, J. Krzywiński, J. Pełka, L. Juha, M. Jurek, D. Źymierska, S. Guizard, and H. Merdji, “Surface modification of polymethylmethacrylate irradiated with 60fs single laser pulses,” Radiat. Phys. Chem. 78(10), S71–S74 (2009).
[CrossRef]

Herman, P. R.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Crystal. Solids (2011). doi:.
[CrossRef]

S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008).
[CrossRef] [PubMed]

Hirono, S.

S. Hirono, M. Kasuya, K. Matsuda, Y. Ozeki, K. Itoh, H. Mochizuki, and W. Watanabe, “Increasing diffraction efficiency by heating phase gratings formed by femtosecond laser irradiation in poly(methyl methacrylate),” Appl. Phys. Lett. 94(24), 241122 (2009).
[CrossRef]

Ho, S.

Ishizuka, T.

Itoh, K.

Jahns, J.

Juha, L.

D. Klinger, R. Sobierajski, R. Nietubyć, J. Krzywiński, J. Pełka, L. Juha, M. Jurek, D. Źymierska, S. Guizard, and H. Merdji, “Surface modification of polymethylmethacrylate irradiated with 60fs single laser pulses,” Radiat. Phys. Chem. 78(10), S71–S74 (2009).
[CrossRef]

Jurek, M.

D. Klinger, R. Sobierajski, R. Nietubyć, J. Krzywiński, J. Pełka, L. Juha, M. Jurek, D. Źymierska, S. Guizard, and H. Merdji, “Surface modification of polymethylmethacrylate irradiated with 60fs single laser pulses,” Radiat. Phys. Chem. 78(10), S71–S74 (2009).
[CrossRef]

Kallepalli, D. L. N.

Kasuya, M.

S. Hirono, M. Kasuya, K. Matsuda, Y. Ozeki, K. Itoh, H. Mochizuki, and W. Watanabe, “Increasing diffraction efficiency by heating phase gratings formed by femtosecond laser irradiation in poly(methyl methacrylate),” Appl. Phys. Lett. 94(24), 241122 (2009).
[CrossRef]

Kautek, W.

J. Krüger and W. Kautek, “Femto- and nanosecond laser treatment of doped polymethylmethacrylate,” Adv. Polym. Sci. 168, 247–289 (2004).

S. Baudach, J. Bonse, J. Krüger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci. 154–155, 155–560 (2000).

Kazansky, P. G.

Killi, A.

Klank, H.

H. Klank, J. P. Kutter, and O. Geschke, “CO(2)-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems,” Lab Chip 2(4), 242–246 (2002).
[CrossRef]

Klappauf, B. G.

Klinger, D.

D. Klinger, R. Sobierajski, R. Nietubyć, J. Krzywiński, J. Pełka, L. Juha, M. Jurek, D. Źymierska, S. Guizard, and H. Merdji, “Surface modification of polymethylmethacrylate irradiated with 60fs single laser pulses,” Radiat. Phys. Chem. 78(10), S71–S74 (2009).
[CrossRef]

Kopf, D.

Krüger, J.

J. Krüger and W. Kautek, “Femto- and nanosecond laser treatment of doped polymethylmethacrylate,” Adv. Polym. Sci. 168, 247–289 (2004).

S. Baudach, J. Bonse, J. Krüger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci. 154–155, 155–560 (2000).

Krzywinski, J.

D. Klinger, R. Sobierajski, R. Nietubyć, J. Krzywiński, J. Pełka, L. Juha, M. Jurek, D. Źymierska, S. Guizard, and H. Merdji, “Surface modification of polymethylmethacrylate irradiated with 60fs single laser pulses,” Radiat. Phys. Chem. 78(10), S71–S74 (2009).
[CrossRef]

Kuroda, D.

Kutter, J. P.

H. Klank, J. P. Kutter, and O. Geschke, “CO(2)-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems,” Lab Chip 2(4), 242–246 (2002).
[CrossRef]

Lederer, M. J.

Levi, M.

S. Turri, M. Levi, E. Emilitri, R. Suriano, and R. Bongiovanni, “Direct photopolymerisation of PEG-methacrylate oligomers for an easy prototyping of microfluidic structures,” Macromol. Chem. Phys. 211, 879–887 (2010).

C. De Marco, S. M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, and R. Osellame, “Surface properties of femtosecond laser ablated PMMA,” ACS Appl. Mater. Interfaces 2(8), 2377–2384 (2010).
[CrossRef]

Li, J.

Li, Y.

Lopez, C.

Matsuda, K.

S. Hirono, M. Kasuya, K. Matsuda, Y. Ozeki, K. Itoh, H. Mochizuki, and W. Watanabe, “Increasing diffraction efficiency by heating phase gratings formed by femtosecond laser irradiation in poly(methyl methacrylate),” Appl. Phys. Lett. 94(24), 241122 (2009).
[CrossRef]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Merdji, H.

D. Klinger, R. Sobierajski, R. Nietubyć, J. Krzywiński, J. Pełka, L. Juha, M. Jurek, D. Źymierska, S. Guizard, and H. Merdji, “Surface modification of polymethylmethacrylate irradiated with 60fs single laser pulses,” Radiat. Phys. Chem. 78(10), S71–S74 (2009).
[CrossRef]

Mills, J. D.

Miyamoto, K.

Mochizuki, H.

S. Hirono, M. Kasuya, K. Matsuda, Y. Ozeki, K. Itoh, H. Mochizuki, and W. Watanabe, “Increasing diffraction efficiency by heating phase gratings formed by femtosecond laser irradiation in poly(methyl methacrylate),” Appl. Phys. Lett. 94(24), 241122 (2009).
[CrossRef]

Momma, C.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

Morgner, U.

Ng, M. L.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Crystal. Solids (2011). doi:.
[CrossRef]

S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008).
[CrossRef] [PubMed]

Nietubyc, R.

D. Klinger, R. Sobierajski, R. Nietubyć, J. Krzywiński, J. Pełka, L. Juha, M. Jurek, D. Źymierska, S. Guizard, and H. Merdji, “Surface modification of polymethylmethacrylate irradiated with 60fs single laser pulses,” Radiat. Phys. Chem. 78(10), S71–S74 (2009).
[CrossRef]

Nishii, J.

Nolli, D.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[CrossRef] [PubMed]

Nolte, S.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

Osellame, R.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Crystal. Solids (2011). doi:.
[CrossRef]

C. De Marco, S. M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, and R. Osellame, “Surface properties of femtosecond laser ablated PMMA,” ACS Appl. Mater. Interfaces 2(8), 2377–2384 (2010).
[CrossRef]

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[CrossRef] [PubMed]

Ozeki, Y.

S. Hirono, M. Kasuya, K. Matsuda, Y. Ozeki, K. Itoh, H. Mochizuki, and W. Watanabe, “Increasing diffraction efficiency by heating phase gratings formed by femtosecond laser irradiation in poly(methyl methacrylate),” Appl. Phys. Lett. 94(24), 241122 (2009).
[CrossRef]

Pelka, J.

D. Klinger, R. Sobierajski, R. Nietubyć, J. Krzywiński, J. Pełka, L. Juha, M. Jurek, D. Źymierska, S. Guizard, and H. Merdji, “Surface modification of polymethylmethacrylate irradiated with 60fs single laser pulses,” Radiat. Phys. Chem. 78(10), S71–S74 (2009).
[CrossRef]

Pollnau, M.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[CrossRef] [PubMed]

Ramponi, R.

C. De Marco, S. M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, and R. Osellame, “Surface properties of femtosecond laser ablated PMMA,” ACS Appl. Mater. Interfaces 2(8), 2377–2384 (2010).
[CrossRef]

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[CrossRef] [PubMed]

Richardson, K.

Richardson, M.

Schonbrun, E.

E. Schonbrun, P. E. Steinvurzel, and K. B. Crozier, “A microfluidic fluorescence measurement system using an astigmatic diffractive microlens array,” Opt. Express 19(2), 1385–1394 (2011).
[CrossRef] [PubMed]

E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10(7), 852–856 (2010).
[CrossRef] [PubMed]

Shacklette, L. W.

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
[CrossRef]

Sobierajski, R.

D. Klinger, R. Sobierajski, R. Nietubyć, J. Krzywiński, J. Pełka, L. Juha, M. Jurek, D. Źymierska, S. Guizard, and H. Merdji, “Surface modification of polymethylmethacrylate irradiated with 60fs single laser pulses,” Radiat. Phys. Chem. 78(10), S71–S74 (2009).
[CrossRef]

Soma, V. R.

Sowa, S.

Srisungsitthisunti, P.

Steinmann, A.

Steinvurzel, P. E.

E. Schonbrun, P. E. Steinvurzel, and K. B. Crozier, “A microfluidic fluorescence measurement system using an astigmatic diffractive microlens array,” Opt. Express 19(2), 1385–1394 (2011).
[CrossRef] [PubMed]

E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10(7), 852–856 (2010).
[CrossRef] [PubMed]

Suriano, R.

S. Turri, M. Levi, E. Emilitri, R. Suriano, and R. Bongiovanni, “Direct photopolymerisation of PEG-methacrylate oligomers for an easy prototyping of microfluidic structures,” Macromol. Chem. Phys. 211, 879–887 (2010).

C. De Marco, S. M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, and R. Osellame, “Surface properties of femtosecond laser ablated PMMA,” ACS Appl. Mater. Interfaces 2(8), 2377–2384 (2010).
[CrossRef]

Tamaki, T.

Tünnermann, A.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

Turri, S.

S. Turri, M. Levi, E. Emilitri, R. Suriano, and R. Bongiovanni, “Direct photopolymerisation of PEG-methacrylate oligomers for an easy prototyping of microfluidic structures,” Macromol. Chem. Phys. 211, 879–887 (2010).

C. De Marco, S. M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, and R. Osellame, “Surface properties of femtosecond laser ablated PMMA,” ACS Appl. Mater. Interfaces 2(8), 2377–2384 (2010).
[CrossRef]

van den Vlekkert, H.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[CrossRef] [PubMed]

Vazquez, R. M.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[CrossRef] [PubMed]

Walker, S. J.

Watanabe, W.

Weitz, D. A.

E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10(7), 852–856 (2010).
[CrossRef] [PubMed]

Xu, X.

Yamada, K.

Zhang, H.

Zhou, Z.

Zoubir, A.

Zymierska, D.

D. Klinger, R. Sobierajski, R. Nietubyć, J. Krzywiński, J. Pełka, L. Juha, M. Jurek, D. Źymierska, S. Guizard, and H. Merdji, “Surface modification of polymethylmethacrylate irradiated with 60fs single laser pulses,” Radiat. Phys. Chem. 78(10), S71–S74 (2009).
[CrossRef]

ACS Appl. Mater. Interfaces

C. De Marco, S. M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, and R. Osellame, “Surface properties of femtosecond laser ablated PMMA,” ACS Appl. Mater. Interfaces 2(8), 2377–2384 (2010).
[CrossRef]

Adv. Polym. Sci.

J. Krüger and W. Kautek, “Femto- and nanosecond laser treatment of doped polymethylmethacrylate,” Adv. Polym. Sci. 168, 247–289 (2004).

Appl. Opt.

Appl. Phys. Lett.

S. Hirono, M. Kasuya, K. Matsuda, Y. Ozeki, K. Itoh, H. Mochizuki, and W. Watanabe, “Increasing diffraction efficiency by heating phase gratings formed by femtosecond laser irradiation in poly(methyl methacrylate),” Appl. Phys. Lett. 94(24), 241122 (2009).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

Appl. Surf. Sci.

S. Baudach, J. Bonse, J. Krüger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci. 154–155, 155–560 (2000).

IEEE J. Sel. Top. Quantum Electron.

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
[CrossRef]

J. Non-Crystal. Solids

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Crystal. Solids (2011). doi:.
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Lab Chip

E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10(7), 852–856 (2010).
[CrossRef] [PubMed]

H. Klank, J. P. Kutter, and O. Geschke, “CO(2)-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems,” Lab Chip 2(4), 242–246 (2002).
[CrossRef]

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[CrossRef] [PubMed]

Macromol. Chem. Phys.

S. Turri, M. Levi, E. Emilitri, R. Suriano, and R. Bongiovanni, “Direct photopolymerisation of PEG-methacrylate oligomers for an easy prototyping of microfluidic structures,” Macromol. Chem. Phys. 211, 879–887 (2010).

Nat. Photonics

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Radiat. Phys. Chem.

D. Klinger, R. Sobierajski, R. Nietubyć, J. Krzywiński, J. Pełka, L. Juha, M. Jurek, D. Źymierska, S. Guizard, and H. Merdji, “Surface modification of polymethylmethacrylate irradiated with 60fs single laser pulses,” Radiat. Phys. Chem. 78(10), S71–S74 (2009).
[CrossRef]

Other

P. Rai-Choudhury, Handbook of Microlithography, Micromachining, and Microfabrication (SPIE-International Society for Optical Engineering Press, 1997), Vol. 2.

S. Sinzinger and J. Jahns, Microoptics (Wiley –VCH, 2003), Chap. 6.

F. Träger, Handbook of Lasers and Optics (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the femtosecond laser micromachining setup. The lower regions in the alternating Fresnel zones are fabricated by ablating circles of increasing radius.

Fig. 2
Fig. 2

Transmission microscope images of three BFLs fabricated with the femtosecond laser, designed to have a focal length of (a) 0.5 mm, (b) 1.5 mm and (c) 5 mm, at a wavelength of 633nm.

Fig. 3
Fig. 3

Contact profilometer scan of the first 8 zones of a BFL, with 500 µm focal length at 633 nm, fabricated (a) with the laser always focused at the substrate surface and (b) with an improved depth control.

Fig. 4
Fig. 4

(a) focal spot of a He-Ne beam focused by a 500-µm focal length BFL and imaged by a 20 × microscope objective onto a CCD camera. The scale bar refers to the focal plane of the BFL. (b) Photograph of white light focused by a BFL; focal length dispersion separates the different spectral components at the red light focal spot.

Fig. 5
Fig. 5

Image of a paperclip produced by a 500-µm focal length BFL.

Tables (1)

Tables Icon

Table 1 Expected and Obtained Focal Lengths of the Fabricated FZPs

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R 2 = 2 m λ f
d = λ / ( 2 ( n 1 ) )

Metrics