Abstract

We study, and illustrate with numerical calculations, transmission enhancement by subwavelength 2D slits due to the dominant role played by the excitation of the eigenmodes of plasmonic cylinders when they are placed at the aperture entrance; and also due to reinforced and highly localized energy in the slit as a consequence of the formation of a nanojet. We show that, providing the illumination is chosen such that an aperture transmitting eigenmode is generated, the phenomenon is independent of whether or not the slit alone produces extraordinary transmission; although in the former case this enhancement will add to this slit supertransmission. We address several particle sizes, and emphasize the universality of this phenomenon with different materials.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. J. Garcia de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
    [CrossRef]
  2. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82729–787 (2010).
    [CrossRef]
  3. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
    [CrossRef]
  4. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
    [CrossRef]
  5. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
    [CrossRef] [PubMed]
  6. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
    [CrossRef] [PubMed]
  7. F. J. Garcia de Abajo, “Light transmission through a single cylindrical hole in a metallic film,” Opt. Express 10, 1475–1484 (2002).
    [PubMed]
  8. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
    [CrossRef] [PubMed]
  9. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission throughelliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
    [CrossRef] [PubMed]
  10. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single sub-wavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
    [CrossRef]
  11. H. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651 (2004).
    [CrossRef] [PubMed]
  12. F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95, 103901 (2005).
    [CrossRef] [PubMed]
  13. K. J. Webb and J. Li, “Analysis of transmission through small apertures in conducting films,” Phys. Rev. B 73, 033401 (2006).
    [CrossRef]
  14. A. Alu, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antennas Propag . 54, 1632–1643 (2006).
    [CrossRef]
  15. J. Gomez-Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68, 201306 (2003).
    [CrossRef]
  16. A. O. Cakmak, K. Aydin, E. Colak, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Enhanced transmission through a subwavelength aperture using metamaterials,” Appl. Phys. Lett. 95, 052103 (2009).
    [CrossRef]
  17. K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102, 013904 (2009).
    [CrossRef] [PubMed]
  18. D. Ates, A. O. Cakmak, E. Colak, R. Zhao, C. M. Soukoulis, and E. Ozbay, “Transmission enhancement through deep subwavelength apertures using connected split ring resonators,” Opt. Express 18, 3952–3966 (2010).
    [CrossRef] [PubMed]
  19. Y. Q. Ye and Y. Jin, “Enhanced transmission of transverse electric waves through subwavelength slits in a thin metallic film,” Phys. Rev. E 80, 036606 (2009).
    [CrossRef]
  20. E. Di Gennaro, I. Gallina, A. Andreone, G. Castaldi, and V. Galdi, “Experimental evidence of cut-wire-induced enhanced transmission of transverse-electric fields through sub-wavelength slits in a thin metallic screen,” Opt. Express 18, 26769–26774 (2010).
    [CrossRef]
  21. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a poetential novel visible-light ultramicroscopy technique,” Opt. Express 12, 1214–1220 (2004).
    [CrossRef] [PubMed]
  22. X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13, 526–533 (2005).
    [CrossRef] [PubMed]
  23. Z. Chen, A. Taflove, X. Li, and V. Backman, “Superenhanced backscattering of light by nanoparticles,” Opt. Lett. 31, 196–198 (2006).
    [CrossRef] [PubMed]
  24. A. Heifetz, S. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci. 6, 1979–1992 (2009).
    [CrossRef] [PubMed]
  25. M. K. Chin, D. Y. Chu, and S. T. Ho, “Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes,” J. Appl. Phys. 75, 3302–3307 (1994).
    [CrossRef]
  26. J. L. Garcia-Pomar and M. Nieto-Vesperinas, “Waveguiding, collimation and subwavelength concentration in photonic crystals,” Opt. Express 13, 7997–8007 (2005).
    [CrossRef] [PubMed]
  27. F. J. Valdivia-Valero and M. Nieto-Vesperinas, “Resonance excitation and light concentration in sets of dielectric nanocylinders in front of a subwavelength aperture. Effects on extraordinary transmission,” Opt. Express 18, 6740–6754 (2010).
    [CrossRef] [PubMed]
  28. J. D. Jackson, Classical Electrodynamics (Wiley, 1999).
  29. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
    [CrossRef]
  30. N. Garcia and M. Nieto-Vesperinas, “Theory of electromagnetic wave transmission through metallic gratings of subwavelength slits,” J. Opt. A: Pure Appl. Opt. J. Opt. A, Pure Appl. Opt . 9, 490–495 (2007).
  31. F. J. Valdivia-Valero and M. Nieto-Vesperinas, “Whispering gallery mode propagation in photonic crystals in front of subwavelength slit arrays. Interplay with extraordinary transmission,” Opt. Commun. 284, 1726–1733 (2011).
    [CrossRef]
  32. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  33. J. Wenger, P. F. Lenne, E. Popov, H. Rigneault, J. Dintinger, and T. Ebbesen, “Single molecule fluorescence in rectangular nano-apertures,” Opt. Express 13, 7035–7044 (2005).
    [CrossRef] [PubMed]
  34. H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett. 95, 117401 (2005).
    [CrossRef] [PubMed]
  35. J. Wenger, D. Gerard, J. Dintinger, O. Mahboub, N. Bonod, E. Popov, T. W. Ebbesen, and H. Rigneault, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 5, 3008–3020 (2008).
    [CrossRef]
  36. B. D. Terris, H. J. Manin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near - field optical data storage using a solid inmersionlens,” Appl. Phys. Lett. 85, 25–27 (1994).
  37. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
    [CrossRef]

2011

F. J. Valdivia-Valero and M. Nieto-Vesperinas, “Whispering gallery mode propagation in photonic crystals in front of subwavelength slit arrays. Interplay with extraordinary transmission,” Opt. Commun. 284, 1726–1733 (2011).
[CrossRef]

2010

2009

A. O. Cakmak, K. Aydin, E. Colak, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Enhanced transmission through a subwavelength aperture using metamaterials,” Appl. Phys. Lett. 95, 052103 (2009).
[CrossRef]

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102, 013904 (2009).
[CrossRef] [PubMed]

Y. Q. Ye and Y. Jin, “Enhanced transmission of transverse electric waves through subwavelength slits in a thin metallic film,” Phys. Rev. E 80, 036606 (2009).
[CrossRef]

A. Heifetz, S. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci. 6, 1979–1992 (2009).
[CrossRef] [PubMed]

2008

J. Wenger, D. Gerard, J. Dintinger, O. Mahboub, N. Bonod, E. Popov, T. W. Ebbesen, and H. Rigneault, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 5, 3008–3020 (2008).
[CrossRef]

2007

N. Garcia and M. Nieto-Vesperinas, “Theory of electromagnetic wave transmission through metallic gratings of subwavelength slits,” J. Opt. A: Pure Appl. Opt. J. Opt. A, Pure Appl. Opt . 9, 490–495 (2007).

F. J. Garcia de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[CrossRef]

2006

K. J. Webb and J. Li, “Analysis of transmission through small apertures in conducting films,” Phys. Rev. B 73, 033401 (2006).
[CrossRef]

A. Alu, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antennas Propag . 54, 1632–1643 (2006).
[CrossRef]

Z. Chen, A. Taflove, X. Li, and V. Backman, “Superenhanced backscattering of light by nanoparticles,” Opt. Lett. 31, 196–198 (2006).
[CrossRef] [PubMed]

2005

2004

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission throughelliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single sub-wavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[CrossRef]

Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a poetential novel visible-light ultramicroscopy technique,” Opt. Express 12, 1214–1220 (2004).
[CrossRef] [PubMed]

H. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651 (2004).
[CrossRef] [PubMed]

2003

J. Gomez-Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68, 201306 (2003).
[CrossRef]

2002

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

F. J. Garcia de Abajo, “Light transmission through a single cylindrical hole in a metallic film,” Opt. Express 10, 1475–1484 (2002).
[PubMed]

2001

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

1999

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

1994

M. K. Chin, D. Y. Chu, and S. T. Ho, “Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes,” J. Appl. Phys. 75, 3302–3307 (1994).
[CrossRef]

B. D. Terris, H. J. Manin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near - field optical data storage using a solid inmersionlens,” Appl. Phys. Lett. 85, 25–27 (1994).

1944

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Alu, A.

A. Alu, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antennas Propag . 54, 1632–1643 (2006).
[CrossRef]

Andreone, A.

Ates, D.

Aydin, K.

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102, 013904 (2009).
[CrossRef] [PubMed]

A. O. Cakmak, K. Aydin, E. Colak, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Enhanced transmission through a subwavelength aperture using metamaterials,” Appl. Phys. Lett. 95, 052103 (2009).
[CrossRef]

Backman, V.

Barnes, W. L.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Bethe, H. A.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Bilotti, F.

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102, 013904 (2009).
[CrossRef] [PubMed]

A. O. Cakmak, K. Aydin, E. Colak, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Enhanced transmission through a subwavelength aperture using metamaterials,” Appl. Phys. Lett. 95, 052103 (2009).
[CrossRef]

A. Alu, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antennas Propag . 54, 1632–1643 (2006).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
[CrossRef]

Bolivar, P. H.

J. Gomez-Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68, 201306 (2003).
[CrossRef]

Bonod, N.

J. Wenger, D. Gerard, J. Dintinger, O. Mahboub, N. Bonod, E. Popov, T. W. Ebbesen, and H. Rigneault, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 5, 3008–3020 (2008).
[CrossRef]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef] [PubMed]

Brolo, A. G.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission throughelliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

Cakmak, A. O.

D. Ates, A. O. Cakmak, E. Colak, R. Zhao, C. M. Soukoulis, and E. Ozbay, “Transmission enhancement through deep subwavelength apertures using connected split ring resonators,” Opt. Express 18, 3952–3966 (2010).
[CrossRef] [PubMed]

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102, 013904 (2009).
[CrossRef] [PubMed]

A. O. Cakmak, K. Aydin, E. Colak, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Enhanced transmission through a subwavelength aperture using metamaterials,” Appl. Phys. Lett. 95, 052103 (2009).
[CrossRef]

Capoulade, J.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef] [PubMed]

Castaldi, G.

Chen, Z.

Chin, M. K.

M. K. Chin, D. Y. Chu, and S. T. Ho, “Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes,” J. Appl. Phys. 75, 3302–3307 (1994).
[CrossRef]

Chu, D. Y.

M. K. Chin, D. Y. Chu, and S. T. Ho, “Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes,” J. Appl. Phys. 75, 3302–3307 (1994).
[CrossRef]

Colak, E.

D. Ates, A. O. Cakmak, E. Colak, R. Zhao, C. M. Soukoulis, and E. Ozbay, “Transmission enhancement through deep subwavelength apertures using connected split ring resonators,” Opt. Express 18, 3952–3966 (2010).
[CrossRef] [PubMed]

A. O. Cakmak, K. Aydin, E. Colak, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Enhanced transmission through a subwavelength aperture using metamaterials,” Appl. Phys. Lett. 95, 052103 (2009).
[CrossRef]

Degiron, A.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single sub-wavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Devaux, E.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Di Gennaro, E.

Dintinger, J.

J. Wenger, D. Gerard, J. Dintinger, O. Mahboub, N. Bonod, E. Popov, T. W. Ebbesen, and H. Rigneault, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 5, 3008–3020 (2008).
[CrossRef]

J. Wenger, P. F. Lenne, E. Popov, H. Rigneault, J. Dintinger, and T. Ebbesen, “Single molecule fluorescence in rectangular nano-apertures,” Opt. Express 13, 7035–7044 (2005).
[CrossRef] [PubMed]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef] [PubMed]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Ebbesen, T.

Ebbesen, T. W.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82729–787 (2010).
[CrossRef]

J. Wenger, D. Gerard, J. Dintinger, O. Mahboub, N. Bonod, E. Popov, T. W. Ebbesen, and H. Rigneault, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 5, 3008–3020 (2008).
[CrossRef]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef] [PubMed]

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single sub-wavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[CrossRef]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

Engheta, N.

A. Alu, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antennas Propag . 54, 1632–1643 (2006).
[CrossRef]

Galdi, V.

Gallina, I.

Garcia, N.

N. Garcia and M. Nieto-Vesperinas, “Theory of electromagnetic wave transmission through metallic gratings of subwavelength slits,” J. Opt. A: Pure Appl. Opt. J. Opt. A, Pure Appl. Opt . 9, 490–495 (2007).

Garcia de Abajo, F. J.

F. J. Garcia de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[CrossRef]

F. J. Garcia de Abajo, “Light transmission through a single cylindrical hole in a metallic film,” Opt. Express 10, 1475–1484 (2002).
[PubMed]

Garcia-Pomar, J. L.

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82729–787 (2010).
[CrossRef]

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Gerard, D.

J. Wenger, D. Gerard, J. Dintinger, O. Mahboub, N. Bonod, E. Popov, T. W. Ebbesen, and H. Rigneault, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 5, 3008–3020 (2008).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

Gomez-Rivas, J.

J. Gomez-Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68, 201306 (2003).
[CrossRef]

Gordon, R.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission throughelliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

Heifetz, A.

A. Heifetz, S. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci. 6, 1979–1992 (2009).
[CrossRef] [PubMed]

Ho, S. T.

M. K. Chin, D. Y. Chu, and S. T. Ho, “Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes,” J. Appl. Phys. 75, 3302–3307 (1994).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, 1999).

Jin, Y.

Y. Q. Ye and Y. Jin, “Enhanced transmission of transverse electric waves through subwavelength slits in a thin metallic film,” Phys. Rev. E 80, 036606 (2009).
[CrossRef]

Kavanagh, K. L.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission throughelliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

Kino, G. S.

B. D. Terris, H. J. Manin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near - field optical data storage using a solid inmersionlens,” Appl. Phys. Lett. 85, 25–27 (1994).

Kong, S.

A. Heifetz, S. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci. 6, 1979–1992 (2009).
[CrossRef] [PubMed]

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82729–787 (2010).
[CrossRef]

Kurz, H.

J. Gomez-Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68, 201306 (2003).
[CrossRef]

Leathem, B.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission throughelliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

Lenne, P. F.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef] [PubMed]

J. Wenger, P. F. Lenne, E. Popov, H. Rigneault, J. Dintinger, and T. Ebbesen, “Single molecule fluorescence in rectangular nano-apertures,” Opt. Express 13, 7035–7044 (2005).
[CrossRef] [PubMed]

Lezec, H.

Lezec, H. J.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single sub-wavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

Li, J.

K. J. Webb and J. Li, “Analysis of transmission through small apertures in conducting films,” Phys. Rev. B 73, 033401 (2006).
[CrossRef]

Li, X.

Li, Z.

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102, 013904 (2009).
[CrossRef] [PubMed]

A. O. Cakmak, K. Aydin, E. Colak, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Enhanced transmission through a subwavelength aperture using metamaterials,” Appl. Phys. Lett. 95, 052103 (2009).
[CrossRef]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Mahboub, O.

J. Wenger, D. Gerard, J. Dintinger, O. Mahboub, N. Bonod, E. Popov, T. W. Ebbesen, and H. Rigneault, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 5, 3008–3020 (2008).
[CrossRef]

Manin, H. J.

B. D. Terris, H. J. Manin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near - field optical data storage using a solid inmersionlens,” Appl. Phys. Lett. 85, 25–27 (1994).

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82729–787 (2010).
[CrossRef]

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

McKinnon, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission throughelliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

Moreno, E.

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef] [PubMed]

Murray, W. A.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Nieto-Vesperinas, M.

F. J. Valdivia-Valero and M. Nieto-Vesperinas, “Whispering gallery mode propagation in photonic crystals in front of subwavelength slit arrays. Interplay with extraordinary transmission,” Opt. Commun. 284, 1726–1733 (2011).
[CrossRef]

F. J. Valdivia-Valero and M. Nieto-Vesperinas, “Resonance excitation and light concentration in sets of dielectric nanocylinders in front of a subwavelength aperture. Effects on extraordinary transmission,” Opt. Express 18, 6740–6754 (2010).
[CrossRef] [PubMed]

N. Garcia and M. Nieto-Vesperinas, “Theory of electromagnetic wave transmission through metallic gratings of subwavelength slits,” J. Opt. A: Pure Appl. Opt. J. Opt. A, Pure Appl. Opt . 9, 490–495 (2007).

J. L. Garcia-Pomar and M. Nieto-Vesperinas, “Waveguiding, collimation and subwavelength concentration in photonic crystals,” Opt. Express 13, 7997–8007 (2005).
[CrossRef] [PubMed]

Ozbay, E.

D. Ates, A. O. Cakmak, E. Colak, R. Zhao, C. M. Soukoulis, and E. Ozbay, “Transmission enhancement through deep subwavelength apertures using connected split ring resonators,” Opt. Express 18, 3952–3966 (2010).
[CrossRef] [PubMed]

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102, 013904 (2009).
[CrossRef] [PubMed]

A. O. Cakmak, K. Aydin, E. Colak, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Enhanced transmission through a subwavelength aperture using metamaterials,” Appl. Phys. Lett. 95, 052103 (2009).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

Pellerin, K. M.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

Pendry, J. B.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Popov, E.

J. Wenger, D. Gerard, J. Dintinger, O. Mahboub, N. Bonod, E. Popov, T. W. Ebbesen, and H. Rigneault, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 5, 3008–3020 (2008).
[CrossRef]

J. Wenger, P. F. Lenne, E. Popov, H. Rigneault, J. Dintinger, and T. Ebbesen, “Single molecule fluorescence in rectangular nano-apertures,” Opt. Express 13, 7035–7044 (2005).
[CrossRef] [PubMed]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef] [PubMed]

Porto, J. A.

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Rajora, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission throughelliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

Rigneault, H.

J. Wenger, D. Gerard, J. Dintinger, O. Mahboub, N. Bonod, E. Popov, T. W. Ebbesen, and H. Rigneault, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 5, 3008–3020 (2008).
[CrossRef]

J. Wenger, P. F. Lenne, E. Popov, H. Rigneault, J. Dintinger, and T. Ebbesen, “Single molecule fluorescence in rectangular nano-apertures,” Opt. Express 13, 7035–7044 (2005).
[CrossRef] [PubMed]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef] [PubMed]

Rugar, D.

B. D. Terris, H. J. Manin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near - field optical data storage using a solid inmersionlens,” Appl. Phys. Lett. 85, 25–27 (1994).

Sahakian, A. V.

A. Heifetz, S. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci. 6, 1979–1992 (2009).
[CrossRef] [PubMed]

Sahin, L.

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102, 013904 (2009).
[CrossRef] [PubMed]

Schotsch, C.

J. Gomez-Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68, 201306 (2003).
[CrossRef]

Soukoulis, C. M.

Studenmund, W. R.

B. D. Terris, H. J. Manin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near - field optical data storage using a solid inmersionlens,” Appl. Phys. Lett. 85, 25–27 (1994).

Taflove, A.

Terris, B. D.

B. D. Terris, H. J. Manin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near - field optical data storage using a solid inmersionlens,” Appl. Phys. Lett. 85, 25–27 (1994).

Thio, T.

H. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651 (2004).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

Valdivia-Valero, F. J.

F. J. Valdivia-Valero and M. Nieto-Vesperinas, “Whispering gallery mode propagation in photonic crystals in front of subwavelength slit arrays. Interplay with extraordinary transmission,” Opt. Commun. 284, 1726–1733 (2011).
[CrossRef]

F. J. Valdivia-Valero and M. Nieto-Vesperinas, “Resonance excitation and light concentration in sets of dielectric nanocylinders in front of a subwavelength aperture. Effects on extraordinary transmission,” Opt. Express 18, 6740–6754 (2010).
[CrossRef] [PubMed]

Vegni, L.

A. O. Cakmak, K. Aydin, E. Colak, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Enhanced transmission through a subwavelength aperture using metamaterials,” Appl. Phys. Lett. 95, 052103 (2009).
[CrossRef]

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102, 013904 (2009).
[CrossRef] [PubMed]

A. Alu, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antennas Propag . 54, 1632–1643 (2006).
[CrossRef]

Webb, K. J.

K. J. Webb and J. Li, “Analysis of transmission through small apertures in conducting films,” Phys. Rev. B 73, 033401 (2006).
[CrossRef]

Wenger, J.

J. Wenger, D. Gerard, J. Dintinger, O. Mahboub, N. Bonod, E. Popov, T. W. Ebbesen, and H. Rigneault, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 5, 3008–3020 (2008).
[CrossRef]

J. Wenger, P. F. Lenne, E. Popov, H. Rigneault, J. Dintinger, and T. Ebbesen, “Single molecule fluorescence in rectangular nano-apertures,” Opt. Express 13, 7035–7044 (2005).
[CrossRef] [PubMed]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

Yamamoto, N.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single sub-wavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[CrossRef]

Ye, Y. Q.

Y. Q. Ye and Y. Jin, “Enhanced transmission of transverse electric waves through subwavelength slits in a thin metallic film,” Phys. Rev. E 80, 036606 (2009).
[CrossRef]

Zhao, R.

Appl. Phys. Lett.

A. O. Cakmak, K. Aydin, E. Colak, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Enhanced transmission through a subwavelength aperture using metamaterials,” Appl. Phys. Lett. 95, 052103 (2009).
[CrossRef]

B. D. Terris, H. J. Manin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near - field optical data storage using a solid inmersionlens,” Appl. Phys. Lett. 85, 25–27 (1994).

IEEE Trans. Antennas Propag

A. Alu, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antennas Propag . 54, 1632–1643 (2006).
[CrossRef]

J. Appl. Phys.

M. K. Chin, D. Y. Chu, and S. T. Ho, “Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes,” J. Appl. Phys. 75, 3302–3307 (1994).
[CrossRef]

J. Comput. Theor. Nanosci.

A. Heifetz, S. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci. 6, 1979–1992 (2009).
[CrossRef] [PubMed]

J. Opt. A: Pure Appl. Opt. J. Opt. A, Pure Appl. Opt

N. Garcia and M. Nieto-Vesperinas, “Theory of electromagnetic wave transmission through metallic gratings of subwavelength slits,” J. Opt. A: Pure Appl. Opt. J. Opt. A, Pure Appl. Opt . 9, 490–495 (2007).

Nature (London)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

Opt. Commun.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single sub-wavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[CrossRef]

F. J. Valdivia-Valero and M. Nieto-Vesperinas, “Whispering gallery mode propagation in photonic crystals in front of subwavelength slit arrays. Interplay with extraordinary transmission,” Opt. Commun. 284, 1726–1733 (2011).
[CrossRef]

Opt. Express

J. Wenger, D. Gerard, J. Dintinger, O. Mahboub, N. Bonod, E. Popov, T. W. Ebbesen, and H. Rigneault, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 5, 3008–3020 (2008).
[CrossRef]

D. Ates, A. O. Cakmak, E. Colak, R. Zhao, C. M. Soukoulis, and E. Ozbay, “Transmission enhancement through deep subwavelength apertures using connected split ring resonators,” Opt. Express 18, 3952–3966 (2010).
[CrossRef] [PubMed]

F. J. Valdivia-Valero and M. Nieto-Vesperinas, “Resonance excitation and light concentration in sets of dielectric nanocylinders in front of a subwavelength aperture. Effects on extraordinary transmission,” Opt. Express 18, 6740–6754 (2010).
[CrossRef] [PubMed]

E. Di Gennaro, I. Gallina, A. Andreone, G. Castaldi, and V. Galdi, “Experimental evidence of cut-wire-induced enhanced transmission of transverse-electric fields through sub-wavelength slits in a thin metallic screen,” Opt. Express 18, 26769–26774 (2010).
[CrossRef]

F. J. Garcia de Abajo, “Light transmission through a single cylindrical hole in a metallic film,” Opt. Express 10, 1475–1484 (2002).
[PubMed]

Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a poetential novel visible-light ultramicroscopy technique,” Opt. Express 12, 1214–1220 (2004).
[CrossRef] [PubMed]

H. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651 (2004).
[CrossRef] [PubMed]

X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13, 526–533 (2005).
[CrossRef] [PubMed]

J. Wenger, P. F. Lenne, E. Popov, H. Rigneault, J. Dintinger, and T. Ebbesen, “Single molecule fluorescence in rectangular nano-apertures,” Opt. Express 13, 7035–7044 (2005).
[CrossRef] [PubMed]

J. L. Garcia-Pomar and M. Nieto-Vesperinas, “Waveguiding, collimation and subwavelength concentration in photonic crystals,” Opt. Express 13, 7997–8007 (2005).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Phys. Rev. B

J. Gomez-Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68, 201306 (2003).
[CrossRef]

K. J. Webb and J. Li, “Analysis of transmission through small apertures in conducting films,” Phys. Rev. B 73, 033401 (2006).
[CrossRef]

Phys. Rev. E

Y. Q. Ye and Y. Jin, “Enhanced transmission of transverse electric waves through subwavelength slits in a thin metallic film,” Phys. Rev. E 80, 036606 (2009).
[CrossRef]

Phys. Rev. Lett.

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102, 013904 (2009).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95, 103901 (2005).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission throughelliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[CrossRef] [PubMed]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Rev. Mod. Phys.

F. J. Garcia de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82729–787 (2010).
[CrossRef]

Science

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Other

J. D. Jackson, Classical Electrodynamics (Wiley, 1999).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Al slab (refractive index n Al = 0.280 +i3.64; slab width D = 2.61μm; slab thickness h = 23.76nm; slit width d = 39.59nm) illuminated by a p - polarized Gaussian beam (|Hz0 | = 1A/m; spot size 21/2 σ = 55.99nm) at λ = 302.4nm (i. e. exciting the TE 10 slit mode). The light is incident upwards from below the slab. Magnetic field norm |Hz (r)| (in A/m (SI units)), in colors, and time - averaged energy flow < S(r) >, in arrows (maximum arrow length = 998.41eV/(nm 2 · s)). (b) Slab transmission evaluated as | < S(r) > |, averaged over a square monitor area A = ((3/2)d)2 = 3526.58nm 2 placed at the exit of the slit (see Fig. 1(a)). In this range of wavelengths, the highest transmission peak appears at λ = 302.4nm. (c) Detail of the electric near field E(r) (in V/m (SI units)) spatial distribution in both norm (colors) and vector (arrows) for the same configuration as in Fig. 1(a) at λ = 302.4nm.

Fig. 2
Fig. 2

(a) Response vs. wavelength of an isolated Ag cylinder (refractive index n Ag = 0.259 + i1.12; radius r = 30nm) to a p - polarized Gaussian beam of the same σ as in incident from below with |Hz0 | = 1A/m and 21/2 σ = 59.99nm, in time - averaged energy flow | < S(r) > |, averaged in the area A = π(332 – 302)nm 2 = 593.76nm 2 of an annulus surrounding the particle (see the two concentric circles of Fig. 2(b)). The resonance peak occurs at λ = 339.7nm (corresponding to the LSP 21 cylinder mode). (b) Ag cylinder of Fig. 2(a), illuminated at λ = 339.7nm. Spatial distribution of magnetic field norm |Hz (r)| (in A/m (SI units)) in colors, and time - averaged energy flow < S(r) > in arrows (maximum arrow length = 59071.36eV/(nm 2 · s)). (c) Detail of the electric near field E(r) (in V/m (SI units)) distribution in both norm (colors) and vector (arrows) at λ = 339.7nm.

Fig. 3
Fig. 3

(a) Transmission of the slit of Fig. 1(a) in presence of the plasmonic cylinder of Fig. 2(b), placed below the entrance of this slit as shown in Fig. 3(b). Time - averaged energy flow norm | < S(r) > |, averaged over the area of the square monitor shown in Fig. 3(b), (which is the same as in Fig. 1(a)1(b)). The p - polarized light beam with the same σ as in Figs. 1, incides upwards from below the slab. The highest peak transmission appears at λ = 344.4nm (corresponding to a red-shifted LSP 21 cylinder resonance). (b) The Ag cylinder and aperture illuminated at λ = 344.4nm (refractive index n Al = 0.364 + i4.17; n Ag = 0.238 + i1.24; showing the magnetic field norm |Hz (r)| (in A/m (SI units)) in colors, and time - averaged energy flow < S(r) > in arrows (maximum arrow length = 946829.51eV/(nm 2 · s)). (c) Detail of the electric near field E(r) (in V/m (SI units)) distribution in both norm (colors) and vector (arrows) for the same configuration as in Fig. 3(b).

Fig. 4
Fig. 4

(a) Ag cylinder (radius r = 200nm) illuminated by the same beam as in Figs. 3(a)3(c) at λ = 300.0nm (refractive index n Ag = 1.513 + i0.955; LSP 42 cylinder resonance). Magnetic field norm |Hz (r)| (in A/m (SI units))in colors, and time - averaged energy flow < S(r) > in arrows (maximum arrow length = 3067.37eV/(nm 2 · s)). (b) Cylinder response in time - averaged energy flow norm | < S(r) > |, averaged over the area A = π(2202 – 2002)nm 2 = 26389.38nm 2) of an annulus surrounding the particle (see the two concentric circles in Fig. 4(a)) versus wavelength. The shown plasmon resonance peaks are: LSP 42, LSP 32 and LSP 51 located at λ = 300.0nm, 317.9nm and 357.3nm respectively. (c) Detail of the electric near field E(r) (in V/m (SI units)) distribution in both norm (colors) and vector (arrows) for the same situation as in Fig. 4(a).

Fig. 5
Fig. 5

(a) Response of the cylinder - slit/slab combination (i. e. those in Figs. 1(a) and 4(a)) in time - averaged energy flow norm | < S(r) > |, averaged over the area of the same square monitor as in Figs. 1(a)1(b) and 3(a)3(b) (see the square of Fig. 5(c)). The shown resonance peaks are: LSP 42 (it reaches the value of ≈ 120000eV/(nm 2 · s)), LSP 32 and LSP 51 located at λ = 310.0nm, 317.9nm and 359.4nm, respectively. The illumination beam has the same σ as in Figs. 1(a)1(c). (b) Magnetic near field norm |Hz (r)| (in A/m (SI units)) in colors, and averaged energy flow < S(r) > in arrows on illumination as in Fig. 5(a) at λ = 310.0nm (refractive index n Al = 0.294 + i3.74; n Ag = 1.323 + i0.647; the LSP 42 cylinder resonance is excited). This particle is placed at a distance of 5nm between its surface and the entrance plane of the Al slab. (c) Detail of Fig. 5(b). Magnetic field norm |Hz (r)| (in A/m (SI units)) in colors, and time - averaged energy flow < S(r) > in arrows (maximum arrow length = 979909.24eV/(nm 2 · s)). (d) Detail of the electric near field E(r) (in V/m (SI units)) distribution in both norm (colors) and vector (arrows) for the same configuration as in Fig. 5(c).

Fig. 6
Fig. 6

(a) Spatial distribution of magnetic field norm |Hz (r)| (in A/m (SI units)) in colors. Time - averaged energy flow (amplitude | < S > | = 19364.69eV/(nm 2 s) for the hottest point of the nanojet whose width is w ≈ 120nm) in an αcrystalline Si02 cylinder (refractive index n silica = 1.558; cylinder radius r = 1.9μm) illuminated from below by a p - polarized unit amplitude rectangular beam (width w = 6μm) at λ = 400.0nm. The slab and slit to be used later have been drawn to see their relative positions in the following figures. (b) Transmission of an isolated metallic Al layer (width D = 6μm; thickness h = 258.30nm; slit width d = 129.15nm) in time - averaged energy flow norm | < S(r) > |, averaged in the rectangular monitor of area A = ((3/2)d)d = 25019.58nm 2 at the exit of the aperture (see rectangle of Fig. 6(c)). A supertransmission peak arises at λ = 400.0nm (corresponding to the slit TE 10 mode). (c) Detail of the aperture whose response is studied in Fig. 6(b), illuminated at λ = 400.0nm (refractive index n Al = 0.490 + i4.86). Magnetic field norm |Hz (r)| (in A/m (SI units)) in colors, and < S(r) > in arrows (maximum arrow length = 4829.44eV/(nm 2 · s)).

Fig. 7
Fig. 7

(a) Response of the cylinder - slab combined system in time - averaged energy flow norm | < S(r) > |, averaged in the same monitor as in Fig. 6(b). The system reaches its highest transmission at λ = 442.8nm. (b) Detail of transmission in the aperture evaluated as in Fig. 6(b) when the combined cylinder - slab system is illuminated as before at λ = 442.8nm (refractive index n Al = 0.598 + i5.38; n silica = 1.553). Magnetic field norm |Hz (r)| (in A/m (SI units)) in colors, and < S(r) > in arrows (maximum arrow length = 43480.41eV/(nm 2 · s)). The distance between the cylinder surface and the entrance plane of the Al slab is 20nm.

Metrics