L. Z. Y. Qiangquiang, S. Huanfeng, and L. Pingxiang, “Adaptative multi-frame image super-resolution based on U-curve,” IEEE Trans. Image Process. ; e-pub ahead of print (2010).

[CrossRef]

N. Ducros, A. Da Silva, L. Hervé, J.-M. Dinten, and F. Peyrin, “A comprehensive study of the use of temporal moments in time-resolved diffuse optical tomography: part II. three-dimensional reconstructions,” Phys. Med. Biol. 54(23), 7107–7119 (2009).

[CrossRef]
[PubMed]

A. J. Chaudhari, S. Ahn, R. Levenson, R. D. Badawi, S. R. Cherry, and R. M. Leahy, “Excitation spectroscopy in multispectral optical fluorescence tomography: methodology, feasibility and computer simulation studies,” Phys. Med. Biol. 54(15), 4687–4704 (2009).

[CrossRef]
[PubMed]

T. Correia, A. Gibson, M. Schweiger, and J. Hebden, “Selection of regularization parameter for optical topography,” J. Biomed. Opt. 14(3), 034044 (2009).

[CrossRef]
[PubMed]

A. Martin, J. Aguirre, A. Sarasa-Renedo, D. Tsoukatou, A. Garofalakis, H. Meyer, C. Mamalaki, J. Ripoll, and A. M. Planas, “Imaging changes in lymphoid organs in vivo after brain ischemia with three-dimensional fluorescence molecular tomography in transgenic mice expressing green fluorescent protein in T lymphocytes,” Mol. Imaging 7(4), 157–167 (2008).

J. F. Abascal, S. R. Arridge, R. H. Bayford, and D. S. Holder, “Comparison of methods for optimal choice of the regularization parameter for linear electrical impedance tomography of brain function,” Physiol. Meas. 29(11), 1319–1334 (2008).

[CrossRef]
[PubMed]

D. Krawczyk-Stańdo and M. Rudnicki, “The use of L-curve and U-curve in inverse electromagnetic modelling,” Intell. Comput. Tech. Appl. Electromagn. 119, 73–82 (2008).

[CrossRef]

D. Krawczyk-Stańdo and M. Rudnicki, “Regularization parameter selection in discrete ill-posed problems-the use of the U-curve,” Int. J. Appl. Math. Comput. Sci. 17(2), 157–164 (2007).

[CrossRef]

T. Lasser and V. Ntziachristos, “Optimization of 360° projection fluorescence molecular tomography,” Med. Image Anal. 11(4), 389–399 (2007).

[CrossRef]
[PubMed]

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15(11), 6696–6716 (2007).

[CrossRef]
[PubMed]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).

[CrossRef]
[PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24(10), 1377–1386 (2005).

[CrossRef]
[PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30(2), 235–247 (2003).

[CrossRef]
[PubMed]

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30(6), 1039–1047 (2003).

[CrossRef]
[PubMed]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42(25), 5181–5190 (2003).

[CrossRef]
[PubMed]

Y. Xu, X. J. Gu, L. L. Fajardo, and H. B. Jiang, “In vivo breast imaging with diffuse optical tomography based on higher-order diffusion equations,” Appl. Opt. 42(16), 3163–3169 (2003).

[CrossRef]
[PubMed]

J. Ripoll, R. B. Schulz, and V. Ntziachristos, “Free-space propagation of diffuse light: theory and experiments,” Phys. Rev. Lett. 91(10), 103901 (2003).

[CrossRef]
[PubMed]

V. A. Markel and J. C. Schotland, “Inverse problem in optical diffusion tomography. II. role of boundary conditions,” J. Opt. Soc. Am. A 19(3), 558–566 (2002).

[CrossRef]

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Mol. Imaging 1(2), 82–88 (2002).

[CrossRef]

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38(13), 2950–2961 (1999).

[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).

[CrossRef]

H. R. Busby and D. M. Trujillo, “Optimal regularization of an inverse dynamics problem,” Comput. Struc. 63(2), 243–248 (1997).

[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).

[CrossRef]
[PubMed]

M. Hanke, “Limitations of the L-curve method in ill-posed problems,” BIT 36(2), 287–301 (1996).

[CrossRef]

C. R. Vogel, “Non-convergence of the L-curve regularization parameter selection method,” Inverse Probl. 12(4), 535–548 (1996).

[CrossRef]

P. C. Hansen and D. P. O’Leary, “The use of L-curve in the regularization of discrete ill-posed problems,” SIAM J. Sci. Comput. 14(6), 1487–1503 (1993).

[CrossRef]

Hanke and Hansen, “Regularization methods for large scale problems,” Surv. Math. Ind. 3, 253–315 (1993).

P. C. Hansen, “Analysis of discrete ill-posed problems by means of the L-curve,” SIAM Rev. 34(4), 561–580 (1992).

[CrossRef]

P. C. Hansen, “The discrete Picard condition for discrete ill-posed problems,” BIT 30(4), 658–672 (1990).

[CrossRef]

I. Freund, M. Kaveh, and M. Rosenbluh, “Dynamic multiple scattering: Ballistic photons and the breakdown of the photon-diffusion approximation,” Phys. Rev. Lett. 60(12), 1130–1133 (1988).

[CrossRef]
[PubMed]

P. C. Hansen, “The truncated SVD as a method for regularization,” BIT Num. Math. 27(4), 534–553 (1987).

[CrossRef]

J. F. Abascal, S. R. Arridge, R. H. Bayford, and D. S. Holder, “Comparison of methods for optimal choice of the regularization parameter for linear electrical impedance tomography of brain function,” Physiol. Meas. 29(11), 1319–1334 (2008).

[CrossRef]
[PubMed]

A. Martin, J. Aguirre, A. Sarasa-Renedo, D. Tsoukatou, A. Garofalakis, H. Meyer, C. Mamalaki, J. Ripoll, and A. M. Planas, “Imaging changes in lymphoid organs in vivo after brain ischemia with three-dimensional fluorescence molecular tomography in transgenic mice expressing green fluorescent protein in T lymphocytes,” Mol. Imaging 7(4), 157–167 (2008).

A. J. Chaudhari, S. Ahn, R. Levenson, R. D. Badawi, S. R. Cherry, and R. M. Leahy, “Excitation spectroscopy in multispectral optical fluorescence tomography: methodology, feasibility and computer simulation studies,” Phys. Med. Biol. 54(15), 4687–4704 (2009).

[CrossRef]
[PubMed]

J. F. Abascal, S. R. Arridge, R. H. Bayford, and D. S. Holder, “Comparison of methods for optimal choice of the regularization parameter for linear electrical impedance tomography of brain function,” Physiol. Meas. 29(11), 1319–1334 (2008).

[CrossRef]
[PubMed]

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15(11), 6696–6716 (2007).

[CrossRef]
[PubMed]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).

[CrossRef]

S. R. Arridge, “Photon-measurement density functions. part I: analytical forms,” Appl. Opt. 34(31), 7395–7409 (1995).

[CrossRef]
[PubMed]

A. J. Chaudhari, S. Ahn, R. Levenson, R. D. Badawi, S. R. Cherry, and R. M. Leahy, “Excitation spectroscopy in multispectral optical fluorescence tomography: methodology, feasibility and computer simulation studies,” Phys. Med. Biol. 54(15), 4687–4704 (2009).

[CrossRef]
[PubMed]

J. F. Abascal, S. R. Arridge, R. H. Bayford, and D. S. Holder, “Comparison of methods for optimal choice of the regularization parameter for linear electrical impedance tomography of brain function,” Physiol. Meas. 29(11), 1319–1334 (2008).

[CrossRef]
[PubMed]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42(25), 5181–5190 (2003).

[CrossRef]
[PubMed]

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Mol. Imaging 1(2), 82–88 (2002).

[CrossRef]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42(25), 5181–5190 (2003).

[CrossRef]
[PubMed]

H. R. Busby and D. M. Trujillo, “Optimal regularization of an inverse dynamics problem,” Comput. Struc. 63(2), 243–248 (1997).

[CrossRef]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30(2), 235–247 (2003).

[CrossRef]
[PubMed]

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30(6), 1039–1047 (2003).

[CrossRef]
[PubMed]

A. J. Chaudhari, S. Ahn, R. Levenson, R. D. Badawi, S. R. Cherry, and R. M. Leahy, “Excitation spectroscopy in multispectral optical fluorescence tomography: methodology, feasibility and computer simulation studies,” Phys. Med. Biol. 54(15), 4687–4704 (2009).

[CrossRef]
[PubMed]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42(25), 5181–5190 (2003).

[CrossRef]
[PubMed]

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30(6), 1039–1047 (2003).

[CrossRef]
[PubMed]

A. J. Chaudhari, S. Ahn, R. Levenson, R. D. Badawi, S. R. Cherry, and R. M. Leahy, “Excitation spectroscopy in multispectral optical fluorescence tomography: methodology, feasibility and computer simulation studies,” Phys. Med. Biol. 54(15), 4687–4704 (2009).

[CrossRef]
[PubMed]

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15(11), 6696–6716 (2007).

[CrossRef]
[PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30(2), 235–247 (2003).

[CrossRef]
[PubMed]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42(25), 5181–5190 (2003).

[CrossRef]
[PubMed]

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15(11), 6696–6716 (2007).

[CrossRef]
[PubMed]

T. Correia, A. Gibson, M. Schweiger, and J. Hebden, “Selection of regularization parameter for optical topography,” J. Biomed. Opt. 14(3), 034044 (2009).

[CrossRef]
[PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).

[CrossRef]
[PubMed]

E. E. Graves, J. P. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography,” J. Opt. Soc. Am. A 21(2), 231–241 (2004).

[CrossRef]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30(2), 235–247 (2003).

[CrossRef]
[PubMed]

J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, “Optimization of optode arrangements for diffuse optical tomography: A singular-value analysis,” Opt. Lett. 26(10), 701–703 (2001).

[CrossRef]

N. Ducros, A. Da Silva, L. Hervé, J.-M. Dinten, and F. Peyrin, “A comprehensive study of the use of temporal moments in time-resolved diffuse optical tomography: part II. three-dimensional reconstructions,” Phys. Med. Biol. 54(23), 7107–7119 (2009).

[CrossRef]
[PubMed]

N. Ducros, A. Da Silva, L. Hervé, J.-M. Dinten, and F. Peyrin, “A comprehensive study of the use of temporal moments in time-resolved diffuse optical tomography: part II. three-dimensional reconstructions,” Phys. Med. Biol. 54(23), 7107–7119 (2009).

[CrossRef]
[PubMed]

N. Ducros, A. Da Silva, L. Hervé, J.-M. Dinten, and F. Peyrin, “A comprehensive study of the use of temporal moments in time-resolved diffuse optical tomography: part II. three-dimensional reconstructions,” Phys. Med. Biol. 54(23), 7107–7119 (2009).

[CrossRef]
[PubMed]

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15(11), 6696–6716 (2007).

[CrossRef]
[PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30(2), 235–247 (2003).

[CrossRef]
[PubMed]

I. Freund, M. Kaveh, and M. Rosenbluh, “Dynamic multiple scattering: Ballistic photons and the breakdown of the photon-diffusion approximation,” Phys. Rev. Lett. 60(12), 1130–1133 (1988).

[CrossRef]
[PubMed]

A. Martin, J. Aguirre, A. Sarasa-Renedo, D. Tsoukatou, A. Garofalakis, H. Meyer, C. Mamalaki, J. Ripoll, and A. M. Planas, “Imaging changes in lymphoid organs in vivo after brain ischemia with three-dimensional fluorescence molecular tomography in transgenic mice expressing green fluorescent protein in T lymphocytes,” Mol. Imaging 7(4), 157–167 (2008).

T. Correia, A. Gibson, M. Schweiger, and J. Hebden, “Selection of regularization parameter for optical topography,” J. Biomed. Opt. 14(3), 034044 (2009).

[CrossRef]
[PubMed]

E. E. Graves, J. P. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography,” J. Opt. Soc. Am. A 21(2), 231–241 (2004).

[CrossRef]

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Mol. Imaging 1(2), 82–88 (2002).

[CrossRef]

Hanke and Hansen, “Regularization methods for large scale problems,” Surv. Math. Ind. 3, 253–315 (1993).

M. Hanke, “Limitations of the L-curve method in ill-posed problems,” BIT 36(2), 287–301 (1996).

[CrossRef]

Hanke and Hansen, “Regularization methods for large scale problems,” Surv. Math. Ind. 3, 253–315 (1993).

P. C. Hansen and D. P. O’Leary, “The use of L-curve in the regularization of discrete ill-posed problems,” SIAM J. Sci. Comput. 14(6), 1487–1503 (1993).

[CrossRef]

P. C. Hansen, “Analysis of discrete ill-posed problems by means of the L-curve,” SIAM Rev. 34(4), 561–580 (1992).

[CrossRef]

P. C. Hansen, “The discrete Picard condition for discrete ill-posed problems,” BIT 30(4), 658–672 (1990).

[CrossRef]

P. C. Hansen, “The truncated SVD as a method for regularization,” BIT Num. Math. 27(4), 534–553 (1987).

[CrossRef]

T. Correia, A. Gibson, M. Schweiger, and J. Hebden, “Selection of regularization parameter for optical topography,” J. Biomed. Opt. 14(3), 034044 (2009).

[CrossRef]
[PubMed]

N. Ducros, A. Da Silva, L. Hervé, J.-M. Dinten, and F. Peyrin, “A comprehensive study of the use of temporal moments in time-resolved diffuse optical tomography: part II. three-dimensional reconstructions,” Phys. Med. Biol. 54(23), 7107–7119 (2009).

[CrossRef]
[PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30(2), 235–247 (2003).

[CrossRef]
[PubMed]

J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, “Optimization of optode arrangements for diffuse optical tomography: A singular-value analysis,” Opt. Lett. 26(10), 701–703 (2001).

[CrossRef]

J. F. Abascal, S. R. Arridge, R. H. Bayford, and D. S. Holder, “Comparison of methods for optimal choice of the regularization parameter for linear electrical impedance tomography of brain function,” Physiol. Meas. 29(11), 1319–1334 (2008).

[CrossRef]
[PubMed]

L. Z. Y. Qiangquiang, S. Huanfeng, and L. Pingxiang, “Adaptative multi-frame image super-resolution based on U-curve,” IEEE Trans. Image Process. ; e-pub ahead of print (2010).

[CrossRef]

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30(6), 1039–1047 (2003).

[CrossRef]
[PubMed]

I. Freund, M. Kaveh, and M. Rosenbluh, “Dynamic multiple scattering: Ballistic photons and the breakdown of the photon-diffusion approximation,” Phys. Rev. Lett. 60(12), 1130–1133 (1988).

[CrossRef]
[PubMed]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42(25), 5181–5190 (2003).

[CrossRef]
[PubMed]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42(25), 5181–5190 (2003).

[CrossRef]
[PubMed]

D. Krawczyk-Stańdo and M. Rudnicki, “The use of L-curve and U-curve in inverse electromagnetic modelling,” Intell. Comput. Tech. Appl. Electromagn. 119, 73–82 (2008).

[CrossRef]

D. Krawczyk-Stańdo and M. Rudnicki, “Regularization parameter selection in discrete ill-posed problems-the use of the U-curve,” Int. J. Appl. Math. Comput. Sci. 17(2), 157–164 (2007).

[CrossRef]

T. Lasser and V. Ntziachristos, “Optimization of 360° projection fluorescence molecular tomography,” Med. Image Anal. 11(4), 389–399 (2007).

[CrossRef]
[PubMed]

A. J. Chaudhari, S. Ahn, R. Levenson, R. D. Badawi, S. R. Cherry, and R. M. Leahy, “Excitation spectroscopy in multispectral optical fluorescence tomography: methodology, feasibility and computer simulation studies,” Phys. Med. Biol. 54(15), 4687–4704 (2009).

[CrossRef]
[PubMed]

A. J. Chaudhari, S. Ahn, R. Levenson, R. D. Badawi, S. R. Cherry, and R. M. Leahy, “Excitation spectroscopy in multispectral optical fluorescence tomography: methodology, feasibility and computer simulation studies,” Phys. Med. Biol. 54(15), 4687–4704 (2009).

[CrossRef]
[PubMed]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42(25), 5181–5190 (2003).

[CrossRef]
[PubMed]

A. Martin, J. Aguirre, A. Sarasa-Renedo, D. Tsoukatou, A. Garofalakis, H. Meyer, C. Mamalaki, J. Ripoll, and A. M. Planas, “Imaging changes in lymphoid organs in vivo after brain ischemia with three-dimensional fluorescence molecular tomography in transgenic mice expressing green fluorescent protein in T lymphocytes,” Mol. Imaging 7(4), 157–167 (2008).

A. Martin, J. Aguirre, A. Sarasa-Renedo, D. Tsoukatou, A. Garofalakis, H. Meyer, C. Mamalaki, J. Ripoll, and A. M. Planas, “Imaging changes in lymphoid organs in vivo after brain ischemia with three-dimensional fluorescence molecular tomography in transgenic mice expressing green fluorescent protein in T lymphocytes,” Mol. Imaging 7(4), 157–167 (2008).

A. Martin, J. Aguirre, A. Sarasa-Renedo, D. Tsoukatou, A. Garofalakis, H. Meyer, C. Mamalaki, J. Ripoll, and A. M. Planas, “Imaging changes in lymphoid organs in vivo after brain ischemia with three-dimensional fluorescence molecular tomography in transgenic mice expressing green fluorescent protein in T lymphocytes,” Mol. Imaging 7(4), 157–167 (2008).

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42(25), 5181–5190 (2003).

[CrossRef]
[PubMed]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42(25), 5181–5190 (2003).

[CrossRef]
[PubMed]

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30(6), 1039–1047 (2003).

[CrossRef]
[PubMed]

T. Lasser and V. Ntziachristos, “Optimization of 360° projection fluorescence molecular tomography,” Med. Image Anal. 11(4), 389–399 (2007).

[CrossRef]
[PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24(10), 1377–1386 (2005).

[CrossRef]
[PubMed]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).

[CrossRef]
[PubMed]

E. E. Graves, J. P. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography,” J. Opt. Soc. Am. A 21(2), 231–241 (2004).

[CrossRef]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30(2), 235–247 (2003).

[CrossRef]
[PubMed]

J. Ripoll, R. B. Schulz, and V. Ntziachristos, “Free-space propagation of diffuse light: theory and experiments,” Phys. Rev. Lett. 91(10), 103901 (2003).

[CrossRef]
[PubMed]

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Mol. Imaging 1(2), 82–88 (2002).

[CrossRef]

J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, “Optimization of optode arrangements for diffuse optical tomography: A singular-value analysis,” Opt. Lett. 26(10), 701–703 (2001).

[CrossRef]

P. C. Hansen and D. P. O’Leary, “The use of L-curve in the regularization of discrete ill-posed problems,” SIAM J. Sci. Comput. 14(6), 1487–1503 (1993).

[CrossRef]

N. Ducros, A. Da Silva, L. Hervé, J.-M. Dinten, and F. Peyrin, “A comprehensive study of the use of temporal moments in time-resolved diffuse optical tomography: part II. three-dimensional reconstructions,” Phys. Med. Biol. 54(23), 7107–7119 (2009).

[CrossRef]
[PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).

[CrossRef]
[PubMed]

L. Z. Y. Qiangquiang, S. Huanfeng, and L. Pingxiang, “Adaptative multi-frame image super-resolution based on U-curve,” IEEE Trans. Image Process. ; e-pub ahead of print (2010).

[CrossRef]

A. Martin, J. Aguirre, A. Sarasa-Renedo, D. Tsoukatou, A. Garofalakis, H. Meyer, C. Mamalaki, J. Ripoll, and A. M. Planas, “Imaging changes in lymphoid organs in vivo after brain ischemia with three-dimensional fluorescence molecular tomography in transgenic mice expressing green fluorescent protein in T lymphocytes,” Mol. Imaging 7(4), 157–167 (2008).

L. Z. Y. Qiangquiang, S. Huanfeng, and L. Pingxiang, “Adaptative multi-frame image super-resolution based on U-curve,” IEEE Trans. Image Process. ; e-pub ahead of print (2010).

[CrossRef]

A. Martin, J. Aguirre, A. Sarasa-Renedo, D. Tsoukatou, A. Garofalakis, H. Meyer, C. Mamalaki, J. Ripoll, and A. M. Planas, “Imaging changes in lymphoid organs in vivo after brain ischemia with three-dimensional fluorescence molecular tomography in transgenic mice expressing green fluorescent protein in T lymphocytes,” Mol. Imaging 7(4), 157–167 (2008).

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).

[CrossRef]
[PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24(10), 1377–1386 (2005).

[CrossRef]
[PubMed]

E. E. Graves, J. P. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography,” J. Opt. Soc. Am. A 21(2), 231–241 (2004).

[CrossRef]

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30(6), 1039–1047 (2003).

[CrossRef]
[PubMed]

J. Ripoll, R. B. Schulz, and V. Ntziachristos, “Free-space propagation of diffuse light: theory and experiments,” Phys. Rev. Lett. 91(10), 103901 (2003).

[CrossRef]
[PubMed]

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Mol. Imaging 1(2), 82–88 (2002).

[CrossRef]

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15(11), 6696–6716 (2007).

[CrossRef]
[PubMed]

I. Freund, M. Kaveh, and M. Rosenbluh, “Dynamic multiple scattering: Ballistic photons and the breakdown of the photon-diffusion approximation,” Phys. Rev. Lett. 60(12), 1130–1133 (1988).

[CrossRef]
[PubMed]

D. Krawczyk-Stańdo and M. Rudnicki, “The use of L-curve and U-curve in inverse electromagnetic modelling,” Intell. Comput. Tech. Appl. Electromagn. 119, 73–82 (2008).

[CrossRef]

D. Krawczyk-Stańdo and M. Rudnicki, “Regularization parameter selection in discrete ill-posed problems-the use of the U-curve,” Int. J. Appl. Math. Comput. Sci. 17(2), 157–164 (2007).

[CrossRef]

A. Martin, J. Aguirre, A. Sarasa-Renedo, D. Tsoukatou, A. Garofalakis, H. Meyer, C. Mamalaki, J. Ripoll, and A. M. Planas, “Imaging changes in lymphoid organs in vivo after brain ischemia with three-dimensional fluorescence molecular tomography in transgenic mice expressing green fluorescent protein in T lymphocytes,” Mol. Imaging 7(4), 157–167 (2008).

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15(11), 6696–6716 (2007).

[CrossRef]
[PubMed]

J. Ripoll, R. B. Schulz, and V. Ntziachristos, “Free-space propagation of diffuse light: theory and experiments,” Phys. Rev. Lett. 91(10), 103901 (2003).

[CrossRef]
[PubMed]

T. Correia, A. Gibson, M. Schweiger, and J. Hebden, “Selection of regularization parameter for optical topography,” J. Biomed. Opt. 14(3), 034044 (2009).

[CrossRef]
[PubMed]

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15(11), 6696–6716 (2007).

[CrossRef]
[PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30(2), 235–247 (2003).

[CrossRef]
[PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24(10), 1377–1386 (2005).

[CrossRef]
[PubMed]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42(25), 5181–5190 (2003).

[CrossRef]
[PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).

[CrossRef]
[PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).

[CrossRef]
[PubMed]

H. R. Busby and D. M. Trujillo, “Optimal regularization of an inverse dynamics problem,” Comput. Struc. 63(2), 243–248 (1997).

[CrossRef]

A. Martin, J. Aguirre, A. Sarasa-Renedo, D. Tsoukatou, A. Garofalakis, H. Meyer, C. Mamalaki, J. Ripoll, and A. M. Planas, “Imaging changes in lymphoid organs in vivo after brain ischemia with three-dimensional fluorescence molecular tomography in transgenic mice expressing green fluorescent protein in T lymphocytes,” Mol. Imaging 7(4), 157–167 (2008).

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).

[CrossRef]
[PubMed]

C. R. Vogel, “Non-convergence of the L-curve regularization parameter selection method,” Inverse Probl. 12(4), 535–548 (1996).

[CrossRef]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).

[CrossRef]
[PubMed]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).

[CrossRef]
[PubMed]

E. E. Graves, J. P. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography,” J. Opt. Soc. Am. A 21(2), 231–241 (2004).

[CrossRef]

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Mol. Imaging 1(2), 82–88 (2002).

[CrossRef]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42(25), 5181–5190 (2003).

[CrossRef]
[PubMed]

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15(11), 6696–6716 (2007).

[CrossRef]
[PubMed]

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30(6), 1039–1047 (2003).

[CrossRef]
[PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30(2), 235–247 (2003).

[CrossRef]
[PubMed]

J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, “Optimization of optode arrangements for diffuse optical tomography: A singular-value analysis,” Opt. Lett. 26(10), 701–703 (2001).

[CrossRef]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42(25), 5181–5190 (2003).

[CrossRef]
[PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30(2), 235–247 (2003).

[CrossRef]
[PubMed]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42(25), 5181–5190 (2003).

[CrossRef]
[PubMed]

Y. Xu, X. J. Gu, L. L. Fajardo, and H. B. Jiang, “In vivo breast imaging with diffuse optical tomography based on higher-order diffusion equations,” Appl. Opt. 42(16), 3163–3169 (2003).

[CrossRef]
[PubMed]

S. R. Arridge, “Photon-measurement density functions. part I: analytical forms,” Appl. Opt. 34(31), 7395–7409 (1995).

[CrossRef]
[PubMed]

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38(13), 2950–2961 (1999).

[CrossRef]

M. Hanke, “Limitations of the L-curve method in ill-posed problems,” BIT 36(2), 287–301 (1996).

[CrossRef]

P. C. Hansen, “The discrete Picard condition for discrete ill-posed problems,” BIT 30(4), 658–672 (1990).

[CrossRef]

P. C. Hansen, “The truncated SVD as a method for regularization,” BIT Num. Math. 27(4), 534–553 (1987).

[CrossRef]

H. R. Busby and D. M. Trujillo, “Optimal regularization of an inverse dynamics problem,” Comput. Struc. 63(2), 243–248 (1997).

[CrossRef]

L. Z. Y. Qiangquiang, S. Huanfeng, and L. Pingxiang, “Adaptative multi-frame image super-resolution based on U-curve,” IEEE Trans. Image Process. ; e-pub ahead of print (2010).

[CrossRef]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24(10), 1377–1386 (2005).

[CrossRef]
[PubMed]

D. Krawczyk-Stańdo and M. Rudnicki, “Regularization parameter selection in discrete ill-posed problems-the use of the U-curve,” Int. J. Appl. Math. Comput. Sci. 17(2), 157–164 (2007).

[CrossRef]

D. Krawczyk-Stańdo and M. Rudnicki, “The use of L-curve and U-curve in inverse electromagnetic modelling,” Intell. Comput. Tech. Appl. Electromagn. 119, 73–82 (2008).

[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).

[CrossRef]

C. R. Vogel, “Non-convergence of the L-curve regularization parameter selection method,” Inverse Probl. 12(4), 535–548 (1996).

[CrossRef]

T. Correia, A. Gibson, M. Schweiger, and J. Hebden, “Selection of regularization parameter for optical topography,” J. Biomed. Opt. 14(3), 034044 (2009).

[CrossRef]
[PubMed]

V. A. Markel and J. C. Schotland, “Inverse problem in optical diffusion tomography. II. role of boundary conditions,” J. Opt. Soc. Am. A 19(3), 558–566 (2002).

[CrossRef]

E. E. Graves, J. P. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography,” J. Opt. Soc. Am. A 21(2), 231–241 (2004).

[CrossRef]

T. Lasser and V. Ntziachristos, “Optimization of 360° projection fluorescence molecular tomography,” Med. Image Anal. 11(4), 389–399 (2007).

[CrossRef]
[PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30(2), 235–247 (2003).

[CrossRef]
[PubMed]

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys. 30(6), 1039–1047 (2003).

[CrossRef]
[PubMed]

A. Martin, J. Aguirre, A. Sarasa-Renedo, D. Tsoukatou, A. Garofalakis, H. Meyer, C. Mamalaki, J. Ripoll, and A. M. Planas, “Imaging changes in lymphoid organs in vivo after brain ischemia with three-dimensional fluorescence molecular tomography in transgenic mice expressing green fluorescent protein in T lymphocytes,” Mol. Imaging 7(4), 157–167 (2008).

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Mol. Imaging 1(2), 82–88 (2002).

[CrossRef]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).

[CrossRef]
[PubMed]

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15(11), 6696–6716 (2007).

[CrossRef]
[PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).

[CrossRef]
[PubMed]

N. Ducros, A. Da Silva, L. Hervé, J.-M. Dinten, and F. Peyrin, “A comprehensive study of the use of temporal moments in time-resolved diffuse optical tomography: part II. three-dimensional reconstructions,” Phys. Med. Biol. 54(23), 7107–7119 (2009).

[CrossRef]
[PubMed]

A. J. Chaudhari, S. Ahn, R. Levenson, R. D. Badawi, S. R. Cherry, and R. M. Leahy, “Excitation spectroscopy in multispectral optical fluorescence tomography: methodology, feasibility and computer simulation studies,” Phys. Med. Biol. 54(15), 4687–4704 (2009).

[CrossRef]
[PubMed]

I. Freund, M. Kaveh, and M. Rosenbluh, “Dynamic multiple scattering: Ballistic photons and the breakdown of the photon-diffusion approximation,” Phys. Rev. Lett. 60(12), 1130–1133 (1988).

[CrossRef]
[PubMed]

J. Ripoll, R. B. Schulz, and V. Ntziachristos, “Free-space propagation of diffuse light: theory and experiments,” Phys. Rev. Lett. 91(10), 103901 (2003).

[CrossRef]
[PubMed]

J. F. Abascal, S. R. Arridge, R. H. Bayford, and D. S. Holder, “Comparison of methods for optimal choice of the regularization parameter for linear electrical impedance tomography of brain function,” Physiol. Meas. 29(11), 1319–1334 (2008).

[CrossRef]
[PubMed]

P. C. Hansen and D. P. O’Leary, “The use of L-curve in the regularization of discrete ill-posed problems,” SIAM J. Sci. Comput. 14(6), 1487–1503 (1993).

[CrossRef]

P. C. Hansen, “Analysis of discrete ill-posed problems by means of the L-curve,” SIAM Rev. 34(4), 561–580 (1992).

[CrossRef]

Hanke and Hansen, “Regularization methods for large scale problems,” Surv. Math. Ind. 3, 253–315 (1993).

C. R. Vogel, ed., Computational Methods for Inverse Problems (SIAM, 2002).

A. Serdaroglu, B. Yazici, and V. Ntziachristos, "Fluorescence molecular tomography based on a priori information," in Biomedical Optics, Technical Digest (CD) (Optical Society of America, 2006), paper SH46, http://www.opticsinfobase.org/abstract.cfm?URI=BIO-2006-SH46 .

Z. Xu, J. Yan, and J. Bai, “Determining the regularization parameter: a hybrid reconstruction technique in fluorescence molecular tomography,” in Communications and Photonics Conference and Exhibition (ACP),2009Asia 2009), 1 - 2.

J. Hadamard, “Sur les problèmes aux dérivées partielles et leur signification physique,” Princeton University Bulletin, 49–52 (1902).

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978) vol. 1.

J. Aguirre, A. Sisniega, J. Ripoll, M. Desco, and J. J. Vaquero, “Co-planar FMT-CT,” in 2008 World Molecular Imaging Congress (WMIC), (2008).

J. Aguirre, A. Sisniega, J. Ripoll, M. Desco, and J. J. Vaquero, “Design and development of a co-planar fluorescence and X-ray tomograph,” 2008 IEEE Nuclear Science Symposium Conference Record, 5412–5413 (2008).

M. Born and E. Wolf, Principles of Optics (University Press, 1999).

G. H. Golub and C. F. Van Loan, Matrix computations (Johns Hopkins University Press, 1996), p. 694.

P. C. Hansen, Regularization Tools Version 4.0 for MATLAB 7.3 (Springer, 2007), pp. 189–194.

J. Chamorro, J. Aguirre, J. Ripoll, J. J. Vaquero, and M. Desco, “FDOT setting optimization and reconstruction using singular value analysis with automatic thresholding,” in Nuclear Science Symposium and Medical Imaging Conference (IEEE), (2009).

J. Chamorro-Servent, J. Aguirre, J. Ripoll, J. J. Vaquero, and M. Desco, “Maximizing the information content in acquired measurements of a parallel plate non-contact FDOT while minimizing the computational cost: singular value analysis,” in 4th European Molecular Imaging Meeting (ESMI), (2009).