B.-C. Lau, C.-Y. Liu, H.-Y. Lin, C.-H. Huang, H.-C. Chui, and Y. Tzeng, “Electrochemical fabrication of anodic aluminum oxide films with encapsulated silver nanoparticles as plasmonic photoconductors,” Electrochem. Solid-State Lett. 14(5), E15–E17 (2011).
[Crossref]
K. G. Stamplecoskie, J. C. Scaiano, V. S. Tiwari, and H. Anis, “Optimal size of silver nanoparticles for surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 115(5), 1403–1409 (2011).
[Crossref]
T. Qiu, J. Jiang, W. Zhang, X. Lang, X. Yu, and P. K. Chu, “High-sensitivity and stable cellular fluorescence imaging by patterned silver nanocap arrays,” ACS Appl. Mater. Interfaces 2(8), 2465–2470 (2010).
[Crossref]
[PubMed]
H. Y. Lin, C. H. Huang, C. H. Chang, Y. C. Lan, and H. C. Chui, “Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs,” Opt. Express 18(1), 165–172 (2010).
[Crossref]
[PubMed]
C. H. Huang, H. Y. Lin, B. C. Lau, C. Y. Liu, H. C. Chui, and Y. Tzeng, “Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays,” Opt. Express 18(26), 27891–27899 (2010).
[Crossref]
C. H. Huang, H. Y. Lin, C. H. Lin, H. C. Chui, Y. C. Lan, and S. W. Chu, “The phase-response effect of size-dependent optical enhancement in a single nanoparticle,” Opt. Express 16(13), 9580–9586 (2008).
[Crossref]
[PubMed]
G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[Crossref]
H. W. Gao, J. Henzie, M. H. Lee, and T. W. Odom, “Screening plasmonic materials using pyramidal gratings,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20146–20151 (2008).
[Crossref]
[PubMed]
N. C. Lindquist, W. A. Luhman, S. H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008).
[Crossref]
V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[Crossref]
R. Alvarez-Puebla, B. Cui, J.-P. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances,” J. Phys. Chem. C 111(18), 6720–6723 (2007).
[Crossref]
J. M. McLellan, Z.-Y. Li, A. R. Siekkinen, and Y. Xia, “The SERS activity of a supported Ag nanocube strongly depends on its orientation relative to laser polarization,” Nano Lett. 7(4), 1013–1017 (2007).
[Crossref]
[PubMed]
V. S. Tiwari, T. Oleg, G. K. Darbha, W. Hardy, J. P. Singh, and P. C. Ray, “Non-resonance: SERS effects of silver colloids with different shapes,” Chem. Phys. Lett. 446(1-3), 77–82 (2007).
[Crossref]
H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[Crossref]
X. Q. Zou and S. J. Dong, “Surface-enhanced Raman scattering studies on aggregated silver nanoplates in aqueous solution,” J. Phys. Chem. B 110(43), 21545–21550 (2006).
[Crossref]
[PubMed]
G. T. Duan, W. P. Cai, Y. Y. Luo, Z. G. Li, and Y. Li, “Electrochemically induced flowerlike gold nanoarchitectures and their strong surface-enhanced Raman scattering effect,” Appl. Phys. Lett. 89(21), 211905 (2006).
[Crossref]
J. Zhang, X. Li, X. Sun, and Y. Li, “Surface enhanced Raman scattering effects of silver colloids with different shapes,” J. Phys. Chem. B 109(25), 12544–12548 (2005).
[Crossref]
A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[Crossref]
S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, A. D. Stafford, S. R. Bishop, U. K. Lincoln, and J. V. Coe, “Use of the extraordinary infrared transmission of metallic subwavelength arrays to study the catalyzed reaction of methanol to formaldehyde on copper oxide,” J. Phys. Chem. B 108(31), 11833–11837 (2004).
[Crossref]
E. C. Le Ru and P. G. Etchegoin, “Sub-wavelength localization of hot-spots in SERS,” Chem. Phys. Lett. 396(4-6), 393–397 (2004).
[Crossref]
M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
[Crossref]
[PubMed]
J. B. Jackson and N. J. Halas, “Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates,” Proc. Natl. Acad. Sci. U.S.A. 101(52), 17930–17935 (2004).
[Crossref]
[PubMed]
B. Dragnea, C. Chen, E.-S. Kwak, B. Stein, and C. C. Kao, “Gold nanoparticles as spectroscopic enhancers for in vitro studies on single viruses,” J. Am. Chem. Soc. 125(21), 6374–6375 (2003).
[Crossref]
[PubMed]
A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir−Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[Crossref]
T. T. Xu, R. D. Piner, and R. S. Ruoff, “An improved method to strip aluminum from porous anodic alumina films,” Langmuir 19(4), 1443–1445 (2003).
[Crossref]
B. Giese and D. McNaughton, “Surface-enhanced Raman spectroscopic and density functional theory study of adenine adsorption to silver surfaces,” J. Phys. Chem. B 106(1), 101–112 (2002).
[Crossref]
L. Rivas, S. Sanchez-Cortes, J. V. Garcia-Ramos, and G. Morcillo, “Mixed silver/gold colloids: a study of their formation, morphology, and surface-enhanced Raman activity,” Langmuir 16(25), 9722–9728 (2000).
[Crossref]
K. Nielsch, F. Muller, A. P. Li, and U. Gosele, “Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition,” Adv. Mater. (Deerfield Beach Fla.) 12(8), 582–586 (2000).
[Crossref]
K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[Crossref]
B. J. Kennedy, S. Spaeth, M. Dickey, and K. T. Carron, “Determination of the distance dependence and experimental effects for modified SERS substrates based on self-assembled monolayers formed using alkanethiols,” J. Phys. Chem. B 103(18), 3640–3646 (1999).
[Crossref]
A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]
S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref]
[PubMed]
F. J. García-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77(6), 1163–1166 (1996).
[Crossref]
[PubMed]
J. A. Creighton and D. G. Eadon, “Ultraviolet-visible absorption spectra of the colloidal metallic elements,” J. Chem. Soc., Faraday Trans. 87(24), 3881–3891 (1991).
[Crossref]
I. Mrozek and A. Otto, “Long- and short-range effects in SERS from silver,” Europhys. Lett. 11(3), 243–248 (1990).
[Crossref]
S. P. A. Fodor, R. P. Rava, T. R. Hays, and T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107(6), 1520–1529 (1985).
[Crossref]
H. Seki, “SERS of pyridine on Ag island films prepared on a sapphire substrate,” J. Vac. Sci. Technol. 18(2), 633–637 (1981).
[Crossref]
R. Alvarez-Puebla, B. Cui, J.-P. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances,” J. Phys. Chem. C 111(18), 6720–6723 (2007).
[Crossref]
K. G. Stamplecoskie, J. C. Scaiano, V. S. Tiwari, and H. Anis, “Optimal size of silver nanoparticles for surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 115(5), 1403–1409 (2011).
[Crossref]
M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
[Crossref]
[PubMed]
V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[Crossref]
S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, A. D. Stafford, S. R. Bishop, U. K. Lincoln, and J. V. Coe, “Use of the extraordinary infrared transmission of metallic subwavelength arrays to study the catalyzed reaction of methanol to formaldehyde on copper oxide,” J. Phys. Chem. B 108(31), 11833–11837 (2004).
[Crossref]
R. Alvarez-Puebla, B. Cui, J.-P. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances,” J. Phys. Chem. C 111(18), 6720–6723 (2007).
[Crossref]
G. T. Duan, W. P. Cai, Y. Y. Luo, Z. G. Li, and Y. Li, “Electrochemically induced flowerlike gold nanoarchitectures and their strong surface-enhanced Raman scattering effect,” Appl. Phys. Lett. 89(21), 211905 (2006).
[Crossref]
A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]
B. J. Kennedy, S. Spaeth, M. Dickey, and K. T. Carron, “Determination of the distance dependence and experimental effects for modified SERS substrates based on self-assembled monolayers formed using alkanethiols,” J. Phys. Chem. B 103(18), 3640–3646 (1999).
[Crossref]
G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[Crossref]
H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[Crossref]
B. Dragnea, C. Chen, E.-S. Kwak, B. Stein, and C. C. Kao, “Gold nanoparticles as spectroscopic enhancers for in vitro studies on single viruses,” J. Am. Chem. Soc. 125(21), 6374–6375 (2003).
[Crossref]
[PubMed]
T. Qiu, J. Jiang, W. Zhang, X. Lang, X. Yu, and P. K. Chu, “High-sensitivity and stable cellular fluorescence imaging by patterned silver nanocap arrays,” ACS Appl. Mater. Interfaces 2(8), 2465–2470 (2010).
[Crossref]
[PubMed]
H. Y. Lin, C. H. Huang, C. H. Chang, Y. C. Lan, and H. C. Chui, “Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs,” Opt. Express 18(1), 165–172 (2010).
[Crossref]
[PubMed]
C. H. Huang, H. Y. Lin, B. C. Lau, C. Y. Liu, H. C. Chui, and Y. Tzeng, “Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays,” Opt. Express 18(26), 27891–27899 (2010).
[Crossref]
C. H. Huang, H. Y. Lin, C. H. Lin, H. C. Chui, Y. C. Lan, and S. W. Chu, “The phase-response effect of size-dependent optical enhancement in a single nanoparticle,” Opt. Express 16(13), 9580–9586 (2008).
[Crossref]
[PubMed]
B.-C. Lau, C.-Y. Liu, H.-Y. Lin, C.-H. Huang, H.-C. Chui, and Y. Tzeng, “Electrochemical fabrication of anodic aluminum oxide films with encapsulated silver nanoparticles as plasmonic photoconductors,” Electrochem. Solid-State Lett. 14(5), E15–E17 (2011).
[Crossref]
S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, A. D. Stafford, S. R. Bishop, U. K. Lincoln, and J. V. Coe, “Use of the extraordinary infrared transmission of metallic subwavelength arrays to study the catalyzed reaction of methanol to formaldehyde on copper oxide,” J. Phys. Chem. B 108(31), 11833–11837 (2004).
[Crossref]
J. A. Creighton and D. G. Eadon, “Ultraviolet-visible absorption spectra of the colloidal metallic elements,” J. Chem. Soc., Faraday Trans. 87(24), 3881–3891 (1991).
[Crossref]
R. Alvarez-Puebla, B. Cui, J.-P. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances,” J. Phys. Chem. C 111(18), 6720–6723 (2007).
[Crossref]
M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
[Crossref]
[PubMed]
V. S. Tiwari, T. Oleg, G. K. Darbha, W. Hardy, J. P. Singh, and P. C. Ray, “Non-resonance: SERS effects of silver colloids with different shapes,” Chem. Phys. Lett. 446(1-3), 77–82 (2007).
[Crossref]
K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[Crossref]
B. J. Kennedy, S. Spaeth, M. Dickey, and K. T. Carron, “Determination of the distance dependence and experimental effects for modified SERS substrates based on self-assembled monolayers formed using alkanethiols,” J. Phys. Chem. B 103(18), 3640–3646 (1999).
[Crossref]
X. Q. Zou and S. J. Dong, “Surface-enhanced Raman scattering studies on aggregated silver nanoplates in aqueous solution,” J. Phys. Chem. B 110(43), 21545–21550 (2006).
[Crossref]
[PubMed]
B. Dragnea, C. Chen, E.-S. Kwak, B. Stein, and C. C. Kao, “Gold nanoparticles as spectroscopic enhancers for in vitro studies on single viruses,” J. Am. Chem. Soc. 125(21), 6374–6375 (2003).
[Crossref]
[PubMed]
G. T. Duan, W. P. Cai, Y. Y. Luo, Z. G. Li, and Y. Li, “Electrochemically induced flowerlike gold nanoarchitectures and their strong surface-enhanced Raman scattering effect,” Appl. Phys. Lett. 89(21), 211905 (2006).
[Crossref]
G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[Crossref]
J. A. Creighton and D. G. Eadon, “Ultraviolet-visible absorption spectra of the colloidal metallic elements,” J. Chem. Soc., Faraday Trans. 87(24), 3881–3891 (1991).
[Crossref]
A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[Crossref]
S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref]
[PubMed]
E. C. Le Ru and P. G. Etchegoin, “Sub-wavelength localization of hot-spots in SERS,” Chem. Phys. Lett. 396(4-6), 393–397 (2004).
[Crossref]
K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[Crossref]
R. Alvarez-Puebla, B. Cui, J.-P. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances,” J. Phys. Chem. C 111(18), 6720–6723 (2007).
[Crossref]
V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[Crossref]
S. P. A. Fodor, R. P. Rava, T. R. Hays, and T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107(6), 1520–1529 (1985).
[Crossref]
H. W. Gao, J. Henzie, M. H. Lee, and T. W. Odom, “Screening plasmonic materials using pyramidal gratings,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20146–20151 (2008).
[Crossref]
[PubMed]
L. Rivas, S. Sanchez-Cortes, J. V. Garcia-Ramos, and G. Morcillo, “Mixed silver/gold colloids: a study of their formation, morphology, and surface-enhanced Raman activity,” Langmuir 16(25), 9722–9728 (2000).
[Crossref]
F. J. García-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77(6), 1163–1166 (1996).
[Crossref]
[PubMed]
B. Giese and D. McNaughton, “Surface-enhanced Raman spectroscopic and density functional theory study of adenine adsorption to silver surfaces,” J. Phys. Chem. B 106(1), 101–112 (2002).
[Crossref]
A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir−Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[Crossref]
K. Nielsch, F. Muller, A. P. Li, and U. Gosele, “Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition,” Adv. Mater. (Deerfield Beach Fla.) 12(8), 582–586 (2000).
[Crossref]
J. B. Jackson and N. J. Halas, “Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates,” Proc. Natl. Acad. Sci. U.S.A. 101(52), 17930–17935 (2004).
[Crossref]
[PubMed]
V. S. Tiwari, T. Oleg, G. K. Darbha, W. Hardy, J. P. Singh, and P. C. Ray, “Non-resonance: SERS effects of silver colloids with different shapes,” Chem. Phys. Lett. 446(1-3), 77–82 (2007).
[Crossref]
S. P. A. Fodor, R. P. Rava, T. R. Hays, and T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107(6), 1520–1529 (1985).
[Crossref]
A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir−Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[Crossref]
H. W. Gao, J. Henzie, M. H. Lee, and T. W. Odom, “Screening plasmonic materials using pyramidal gratings,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20146–20151 (2008).
[Crossref]
[PubMed]
A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir−Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[Crossref]
N. C. Lindquist, W. A. Luhman, S. H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008).
[Crossref]
H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[Crossref]
C. H. Huang, H. Y. Lin, B. C. Lau, C. Y. Liu, H. C. Chui, and Y. Tzeng, “Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays,” Opt. Express 18(26), 27891–27899 (2010).
[Crossref]
H. Y. Lin, C. H. Huang, C. H. Chang, Y. C. Lan, and H. C. Chui, “Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs,” Opt. Express 18(1), 165–172 (2010).
[Crossref]
[PubMed]
C. H. Huang, H. Y. Lin, C. H. Lin, H. C. Chui, Y. C. Lan, and S. W. Chu, “The phase-response effect of size-dependent optical enhancement in a single nanoparticle,” Opt. Express 16(13), 9580–9586 (2008).
[Crossref]
[PubMed]
B.-C. Lau, C.-Y. Liu, H.-Y. Lin, C.-H. Huang, H.-C. Chui, and Y. Tzeng, “Electrochemical fabrication of anodic aluminum oxide films with encapsulated silver nanoparticles as plasmonic photoconductors,” Electrochem. Solid-State Lett. 14(5), E15–E17 (2011).
[Crossref]
K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[Crossref]
J. B. Jackson and N. J. Halas, “Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates,” Proc. Natl. Acad. Sci. U.S.A. 101(52), 17930–17935 (2004).
[Crossref]
[PubMed]
T. Qiu, J. Jiang, W. Zhang, X. Lang, X. Yu, and P. K. Chu, “High-sensitivity and stable cellular fluorescence imaging by patterned silver nanocap arrays,” ACS Appl. Mater. Interfaces 2(8), 2465–2470 (2010).
[Crossref]
[PubMed]
A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]
B. Dragnea, C. Chen, E.-S. Kwak, B. Stein, and C. C. Kao, “Gold nanoparticles as spectroscopic enhancers for in vitro studies on single viruses,” J. Am. Chem. Soc. 125(21), 6374–6375 (2003).
[Crossref]
[PubMed]
B. J. Kennedy, S. Spaeth, M. Dickey, and K. T. Carron, “Determination of the distance dependence and experimental effects for modified SERS substrates based on self-assembled monolayers formed using alkanethiols,” J. Phys. Chem. B 103(18), 3640–3646 (1999).
[Crossref]
A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir−Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[Crossref]
K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[Crossref]
K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[Crossref]
B. Dragnea, C. Chen, E.-S. Kwak, B. Stein, and C. C. Kao, “Gold nanoparticles as spectroscopic enhancers for in vitro studies on single viruses,” J. Am. Chem. Soc. 125(21), 6374–6375 (2003).
[Crossref]
[PubMed]
H. Y. Lin, C. H. Huang, C. H. Chang, Y. C. Lan, and H. C. Chui, “Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs,” Opt. Express 18(1), 165–172 (2010).
[Crossref]
[PubMed]
C. H. Huang, H. Y. Lin, C. H. Lin, H. C. Chui, Y. C. Lan, and S. W. Chu, “The phase-response effect of size-dependent optical enhancement in a single nanoparticle,” Opt. Express 16(13), 9580–9586 (2008).
[Crossref]
[PubMed]
T. Qiu, J. Jiang, W. Zhang, X. Lang, X. Yu, and P. K. Chu, “High-sensitivity and stable cellular fluorescence imaging by patterned silver nanocap arrays,” ACS Appl. Mater. Interfaces 2(8), 2465–2470 (2010).
[Crossref]
[PubMed]
B.-C. Lau, C.-Y. Liu, H.-Y. Lin, C.-H. Huang, H.-C. Chui, and Y. Tzeng, “Electrochemical fabrication of anodic aluminum oxide films with encapsulated silver nanoparticles as plasmonic photoconductors,” Electrochem. Solid-State Lett. 14(5), E15–E17 (2011).
[Crossref]
E. C. Le Ru and P. G. Etchegoin, “Sub-wavelength localization of hot-spots in SERS,” Chem. Phys. Lett. 396(4-6), 393–397 (2004).
[Crossref]
H. W. Gao, J. Henzie, M. H. Lee, and T. W. Odom, “Screening plasmonic materials using pyramidal gratings,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20146–20151 (2008).
[Crossref]
[PubMed]
K. Nielsch, F. Muller, A. P. Li, and U. Gosele, “Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition,” Adv. Mater. (Deerfield Beach Fla.) 12(8), 582–586 (2000).
[Crossref]
J. Zhang, X. Li, X. Sun, and Y. Li, “Surface enhanced Raman scattering effects of silver colloids with different shapes,” J. Phys. Chem. B 109(25), 12544–12548 (2005).
[Crossref]
G. T. Duan, W. P. Cai, Y. Y. Luo, Z. G. Li, and Y. Li, “Electrochemically induced flowerlike gold nanoarchitectures and their strong surface-enhanced Raman scattering effect,” Appl. Phys. Lett. 89(21), 211905 (2006).
[Crossref]
J. Zhang, X. Li, X. Sun, and Y. Li, “Surface enhanced Raman scattering effects of silver colloids with different shapes,” J. Phys. Chem. B 109(25), 12544–12548 (2005).
[Crossref]
G. T. Duan, W. P. Cai, Y. Y. Luo, Z. G. Li, and Y. Li, “Electrochemically induced flowerlike gold nanoarchitectures and their strong surface-enhanced Raman scattering effect,” Appl. Phys. Lett. 89(21), 211905 (2006).
[Crossref]
J. M. McLellan, Z.-Y. Li, A. R. Siekkinen, and Y. Xia, “The SERS activity of a supported Ag nanocube strongly depends on its orientation relative to laser polarization,” Nano Lett. 7(4), 1013–1017 (2007).
[Crossref]
[PubMed]
H. Y. Lin, C. H. Huang, C. H. Chang, Y. C. Lan, and H. C. Chui, “Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs,” Opt. Express 18(1), 165–172 (2010).
[Crossref]
[PubMed]
C. H. Huang, H. Y. Lin, B. C. Lau, C. Y. Liu, H. C. Chui, and Y. Tzeng, “Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays,” Opt. Express 18(26), 27891–27899 (2010).
[Crossref]
C. H. Huang, H. Y. Lin, C. H. Lin, H. C. Chui, Y. C. Lan, and S. W. Chu, “The phase-response effect of size-dependent optical enhancement in a single nanoparticle,” Opt. Express 16(13), 9580–9586 (2008).
[Crossref]
[PubMed]
B.-C. Lau, C.-Y. Liu, H.-Y. Lin, C.-H. Huang, H.-C. Chui, and Y. Tzeng, “Electrochemical fabrication of anodic aluminum oxide films with encapsulated silver nanoparticles as plasmonic photoconductors,” Electrochem. Solid-State Lett. 14(5), E15–E17 (2011).
[Crossref]
S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, A. D. Stafford, S. R. Bishop, U. K. Lincoln, and J. V. Coe, “Use of the extraordinary infrared transmission of metallic subwavelength arrays to study the catalyzed reaction of methanol to formaldehyde on copper oxide,” J. Phys. Chem. B 108(31), 11833–11837 (2004).
[Crossref]
N. C. Lindquist, W. A. Luhman, S. H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008).
[Crossref]
C. H. Huang, H. Y. Lin, B. C. Lau, C. Y. Liu, H. C. Chui, and Y. Tzeng, “Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays,” Opt. Express 18(26), 27891–27899 (2010).
[Crossref]
H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[Crossref]
B.-C. Lau, C.-Y. Liu, H.-Y. Lin, C.-H. Huang, H.-C. Chui, and Y. Tzeng, “Electrochemical fabrication of anodic aluminum oxide films with encapsulated silver nanoparticles as plasmonic photoconductors,” Electrochem. Solid-State Lett. 14(5), E15–E17 (2011).
[Crossref]
H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[Crossref]
N. C. Lindquist, W. A. Luhman, S. H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008).
[Crossref]
G. T. Duan, W. P. Cai, Y. Y. Luo, Z. G. Li, and Y. Li, “Electrochemically induced flowerlike gold nanoarchitectures and their strong surface-enhanced Raman scattering effect,” Appl. Phys. Lett. 89(21), 211905 (2006).
[Crossref]
J. M. McLellan, Z.-Y. Li, A. R. Siekkinen, and Y. Xia, “The SERS activity of a supported Ag nanocube strongly depends on its orientation relative to laser polarization,” Nano Lett. 7(4), 1013–1017 (2007).
[Crossref]
[PubMed]
B. Giese and D. McNaughton, “Surface-enhanced Raman spectroscopic and density functional theory study of adenine adsorption to silver surfaces,” J. Phys. Chem. B 106(1), 101–112 (2002).
[Crossref]
L. Rivas, S. Sanchez-Cortes, J. V. Garcia-Ramos, and G. Morcillo, “Mixed silver/gold colloids: a study of their formation, morphology, and surface-enhanced Raman activity,” Langmuir 16(25), 9722–9728 (2000).
[Crossref]
I. Mrozek and A. Otto, “Long- and short-range effects in SERS from silver,” Europhys. Lett. 11(3), 243–248 (1990).
[Crossref]
K. Nielsch, F. Muller, A. P. Li, and U. Gosele, “Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition,” Adv. Mater. (Deerfield Beach Fla.) 12(8), 582–586 (2000).
[Crossref]
S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref]
[PubMed]
K. Nielsch, F. Muller, A. P. Li, and U. Gosele, “Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition,” Adv. Mater. (Deerfield Beach Fla.) 12(8), 582–586 (2000).
[Crossref]
H. W. Gao, J. Henzie, M. H. Lee, and T. W. Odom, “Screening plasmonic materials using pyramidal gratings,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20146–20151 (2008).
[Crossref]
[PubMed]
N. C. Lindquist, W. A. Luhman, S. H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008).
[Crossref]
V. S. Tiwari, T. Oleg, G. K. Darbha, W. Hardy, J. P. Singh, and P. C. Ray, “Non-resonance: SERS effects of silver colloids with different shapes,” Chem. Phys. Lett. 446(1-3), 77–82 (2007).
[Crossref]
I. Mrozek and A. Otto, “Long- and short-range effects in SERS from silver,” Europhys. Lett. 11(3), 243–248 (1990).
[Crossref]
V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[Crossref]
F. J. García-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77(6), 1163–1166 (1996).
[Crossref]
[PubMed]
H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[Crossref]
T. T. Xu, R. D. Piner, and R. S. Ruoff, “An improved method to strip aluminum from porous anodic alumina films,” Langmuir 19(4), 1443–1445 (2003).
[Crossref]
T. Qiu, J. Jiang, W. Zhang, X. Lang, X. Yu, and P. K. Chu, “High-sensitivity and stable cellular fluorescence imaging by patterned silver nanocap arrays,” ACS Appl. Mater. Interfaces 2(8), 2465–2470 (2010).
[Crossref]
[PubMed]
S. P. A. Fodor, R. P. Rava, T. R. Hays, and T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107(6), 1520–1529 (1985).
[Crossref]
V. S. Tiwari, T. Oleg, G. K. Darbha, W. Hardy, J. P. Singh, and P. C. Ray, “Non-resonance: SERS effects of silver colloids with different shapes,” Chem. Phys. Lett. 446(1-3), 77–82 (2007).
[Crossref]
L. Rivas, S. Sanchez-Cortes, J. V. Garcia-Ramos, and G. Morcillo, “Mixed silver/gold colloids: a study of their formation, morphology, and surface-enhanced Raman activity,” Langmuir 16(25), 9722–9728 (2000).
[Crossref]
S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, A. D. Stafford, S. R. Bishop, U. K. Lincoln, and J. V. Coe, “Use of the extraordinary infrared transmission of metallic subwavelength arrays to study the catalyzed reaction of methanol to formaldehyde on copper oxide,” J. Phys. Chem. B 108(31), 11833–11837 (2004).
[Crossref]
T. T. Xu, R. D. Piner, and R. S. Ruoff, “An improved method to strip aluminum from porous anodic alumina films,” Langmuir 19(4), 1443–1445 (2003).
[Crossref]
L. Rivas, S. Sanchez-Cortes, J. V. Garcia-Ramos, and G. Morcillo, “Mixed silver/gold colloids: a study of their formation, morphology, and surface-enhanced Raman activity,” Langmuir 16(25), 9722–9728 (2000).
[Crossref]
K. G. Stamplecoskie, J. C. Scaiano, V. S. Tiwari, and H. Anis, “Optimal size of silver nanoparticles for surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 115(5), 1403–1409 (2011).
[Crossref]
G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[Crossref]
A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[Crossref]
H. Seki, “SERS of pyridine on Ag island films prepared on a sapphire substrate,” J. Vac. Sci. Technol. 18(2), 633–637 (1981).
[Crossref]
J. M. McLellan, Z.-Y. Li, A. R. Siekkinen, and Y. Xia, “The SERS activity of a supported Ag nanocube strongly depends on its orientation relative to laser polarization,” Nano Lett. 7(4), 1013–1017 (2007).
[Crossref]
[PubMed]
V. S. Tiwari, T. Oleg, G. K. Darbha, W. Hardy, J. P. Singh, and P. C. Ray, “Non-resonance: SERS effects of silver colloids with different shapes,” Chem. Phys. Lett. 446(1-3), 77–82 (2007).
[Crossref]
B. J. Kennedy, S. Spaeth, M. Dickey, and K. T. Carron, “Determination of the distance dependence and experimental effects for modified SERS substrates based on self-assembled monolayers formed using alkanethiols,” J. Phys. Chem. B 103(18), 3640–3646 (1999).
[Crossref]
S. P. A. Fodor, R. P. Rava, T. R. Hays, and T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107(6), 1520–1529 (1985).
[Crossref]
S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, A. D. Stafford, S. R. Bishop, U. K. Lincoln, and J. V. Coe, “Use of the extraordinary infrared transmission of metallic subwavelength arrays to study the catalyzed reaction of methanol to formaldehyde on copper oxide,” J. Phys. Chem. B 108(31), 11833–11837 (2004).
[Crossref]
A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[Crossref]
K. G. Stamplecoskie, J. C. Scaiano, V. S. Tiwari, and H. Anis, “Optimal size of silver nanoparticles for surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 115(5), 1403–1409 (2011).
[Crossref]
B. Dragnea, C. Chen, E.-S. Kwak, B. Stein, and C. C. Kao, “Gold nanoparticles as spectroscopic enhancers for in vitro studies on single viruses,” J. Am. Chem. Soc. 125(21), 6374–6375 (2003).
[Crossref]
[PubMed]
J. Zhang, X. Li, X. Sun, and Y. Li, “Surface enhanced Raman scattering effects of silver colloids with different shapes,” J. Phys. Chem. B 109(25), 12544–12548 (2005).
[Crossref]
A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir−Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[Crossref]
V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[Crossref]
A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir−Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[Crossref]
S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, A. D. Stafford, S. R. Bishop, U. K. Lincoln, and J. V. Coe, “Use of the extraordinary infrared transmission of metallic subwavelength arrays to study the catalyzed reaction of methanol to formaldehyde on copper oxide,” J. Phys. Chem. B 108(31), 11833–11837 (2004).
[Crossref]
K. G. Stamplecoskie, J. C. Scaiano, V. S. Tiwari, and H. Anis, “Optimal size of silver nanoparticles for surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 115(5), 1403–1409 (2011).
[Crossref]
V. S. Tiwari, T. Oleg, G. K. Darbha, W. Hardy, J. P. Singh, and P. C. Ray, “Non-resonance: SERS effects of silver colloids with different shapes,” Chem. Phys. Lett. 446(1-3), 77–82 (2007).
[Crossref]
B.-C. Lau, C.-Y. Liu, H.-Y. Lin, C.-H. Huang, H.-C. Chui, and Y. Tzeng, “Electrochemical fabrication of anodic aluminum oxide films with encapsulated silver nanoparticles as plasmonic photoconductors,” Electrochem. Solid-State Lett. 14(5), E15–E17 (2011).
[Crossref]
C. H. Huang, H. Y. Lin, B. C. Lau, C. Y. Liu, H. C. Chui, and Y. Tzeng, “Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays,” Opt. Express 18(26), 27891–27899 (2010).
[Crossref]
A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[Crossref]
R. Alvarez-Puebla, B. Cui, J.-P. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances,” J. Phys. Chem. C 111(18), 6720–6723 (2007).
[Crossref]
H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[Crossref]
H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[Crossref]
H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[Crossref]
A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[Crossref]
S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, A. D. Stafford, S. R. Bishop, U. K. Lincoln, and J. V. Coe, “Use of the extraordinary infrared transmission of metallic subwavelength arrays to study the catalyzed reaction of methanol to formaldehyde on copper oxide,” J. Phys. Chem. B 108(31), 11833–11837 (2004).
[Crossref]
H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[Crossref]
J. M. McLellan, Z.-Y. Li, A. R. Siekkinen, and Y. Xia, “The SERS activity of a supported Ag nanocube strongly depends on its orientation relative to laser polarization,” Nano Lett. 7(4), 1013–1017 (2007).
[Crossref]
[PubMed]
A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir−Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[Crossref]
T. T. Xu, R. D. Piner, and R. S. Ruoff, “An improved method to strip aluminum from porous anodic alumina films,” Langmuir 19(4), 1443–1445 (2003).
[Crossref]
A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir−Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[Crossref]
T. Qiu, J. Jiang, W. Zhang, X. Lang, X. Yu, and P. K. Chu, “High-sensitivity and stable cellular fluorescence imaging by patterned silver nanocap arrays,” ACS Appl. Mater. Interfaces 2(8), 2465–2470 (2010).
[Crossref]
[PubMed]
J. Zhang, X. Li, X. Sun, and Y. Li, “Surface enhanced Raman scattering effects of silver colloids with different shapes,” J. Phys. Chem. B 109(25), 12544–12548 (2005).
[Crossref]
T. Qiu, J. Jiang, W. Zhang, X. Lang, X. Yu, and P. K. Chu, “High-sensitivity and stable cellular fluorescence imaging by patterned silver nanocap arrays,” ACS Appl. Mater. Interfaces 2(8), 2465–2470 (2010).
[Crossref]
[PubMed]
G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[Crossref]
A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[Crossref]
A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[Crossref]
X. Q. Zou and S. J. Dong, “Surface-enhanced Raman scattering studies on aggregated silver nanoplates in aqueous solution,” J. Phys. Chem. B 110(43), 21545–21550 (2006).
[Crossref]
[PubMed]
T. Qiu, J. Jiang, W. Zhang, X. Lang, X. Yu, and P. K. Chu, “High-sensitivity and stable cellular fluorescence imaging by patterned silver nanocap arrays,” ACS Appl. Mater. Interfaces 2(8), 2465–2470 (2010).
[Crossref]
[PubMed]
H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[Crossref]
K. Nielsch, F. Muller, A. P. Li, and U. Gosele, “Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition,” Adv. Mater. (Deerfield Beach Fla.) 12(8), 582–586 (2000).
[Crossref]
G. T. Duan, W. P. Cai, Y. Y. Luo, Z. G. Li, and Y. Li, “Electrochemically induced flowerlike gold nanoarchitectures and their strong surface-enhanced Raman scattering effect,” Appl. Phys. Lett. 89(21), 211905 (2006).
[Crossref]
N. C. Lindquist, W. A. Luhman, S. H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008).
[Crossref]
V. S. Tiwari, T. Oleg, G. K. Darbha, W. Hardy, J. P. Singh, and P. C. Ray, “Non-resonance: SERS effects of silver colloids with different shapes,” Chem. Phys. Lett. 446(1-3), 77–82 (2007).
[Crossref]
E. C. Le Ru and P. G. Etchegoin, “Sub-wavelength localization of hot-spots in SERS,” Chem. Phys. Lett. 396(4-6), 393–397 (2004).
[Crossref]
K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[Crossref]
M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
[Crossref]
[PubMed]
A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]
B.-C. Lau, C.-Y. Liu, H.-Y. Lin, C.-H. Huang, H.-C. Chui, and Y. Tzeng, “Electrochemical fabrication of anodic aluminum oxide films with encapsulated silver nanoparticles as plasmonic photoconductors,” Electrochem. Solid-State Lett. 14(5), E15–E17 (2011).
[Crossref]
I. Mrozek and A. Otto, “Long- and short-range effects in SERS from silver,” Europhys. Lett. 11(3), 243–248 (1990).
[Crossref]
S. P. A. Fodor, R. P. Rava, T. R. Hays, and T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107(6), 1520–1529 (1985).
[Crossref]
B. Dragnea, C. Chen, E.-S. Kwak, B. Stein, and C. C. Kao, “Gold nanoparticles as spectroscopic enhancers for in vitro studies on single viruses,” J. Am. Chem. Soc. 125(21), 6374–6375 (2003).
[Crossref]
[PubMed]
J. A. Creighton and D. G. Eadon, “Ultraviolet-visible absorption spectra of the colloidal metallic elements,” J. Chem. Soc., Faraday Trans. 87(24), 3881–3891 (1991).
[Crossref]
X. Q. Zou and S. J. Dong, “Surface-enhanced Raman scattering studies on aggregated silver nanoplates in aqueous solution,” J. Phys. Chem. B 110(43), 21545–21550 (2006).
[Crossref]
[PubMed]
S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, A. D. Stafford, S. R. Bishop, U. K. Lincoln, and J. V. Coe, “Use of the extraordinary infrared transmission of metallic subwavelength arrays to study the catalyzed reaction of methanol to formaldehyde on copper oxide,” J. Phys. Chem. B 108(31), 11833–11837 (2004).
[Crossref]
J. Zhang, X. Li, X. Sun, and Y. Li, “Surface enhanced Raman scattering effects of silver colloids with different shapes,” J. Phys. Chem. B 109(25), 12544–12548 (2005).
[Crossref]
B. Giese and D. McNaughton, “Surface-enhanced Raman spectroscopic and density functional theory study of adenine adsorption to silver surfaces,” J. Phys. Chem. B 106(1), 101–112 (2002).
[Crossref]
B. J. Kennedy, S. Spaeth, M. Dickey, and K. T. Carron, “Determination of the distance dependence and experimental effects for modified SERS substrates based on self-assembled monolayers formed using alkanethiols,” J. Phys. Chem. B 103(18), 3640–3646 (1999).
[Crossref]
A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[Crossref]
R. Alvarez-Puebla, B. Cui, J.-P. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances,” J. Phys. Chem. C 111(18), 6720–6723 (2007).
[Crossref]
G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[Crossref]
K. G. Stamplecoskie, J. C. Scaiano, V. S. Tiwari, and H. Anis, “Optimal size of silver nanoparticles for surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 115(5), 1403–1409 (2011).
[Crossref]
H. Seki, “SERS of pyridine on Ag island films prepared on a sapphire substrate,” J. Vac. Sci. Technol. 18(2), 633–637 (1981).
[Crossref]
T. T. Xu, R. D. Piner, and R. S. Ruoff, “An improved method to strip aluminum from porous anodic alumina films,” Langmuir 19(4), 1443–1445 (2003).
[Crossref]
L. Rivas, S. Sanchez-Cortes, J. V. Garcia-Ramos, and G. Morcillo, “Mixed silver/gold colloids: a study of their formation, morphology, and surface-enhanced Raman activity,” Langmuir 16(25), 9722–9728 (2000).
[Crossref]
V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[Crossref]
A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir−Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[Crossref]
J. M. McLellan, Z.-Y. Li, A. R. Siekkinen, and Y. Xia, “The SERS activity of a supported Ag nanocube strongly depends on its orientation relative to laser polarization,” Nano Lett. 7(4), 1013–1017 (2007).
[Crossref]
[PubMed]
C. H. Huang, H. Y. Lin, C. H. Lin, H. C. Chui, Y. C. Lan, and S. W. Chu, “The phase-response effect of size-dependent optical enhancement in a single nanoparticle,” Opt. Express 16(13), 9580–9586 (2008).
[Crossref]
[PubMed]
H. Y. Lin, C. H. Huang, C. H. Chang, Y. C. Lan, and H. C. Chui, “Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs,” Opt. Express 18(1), 165–172 (2010).
[Crossref]
[PubMed]
C. H. Huang, H. Y. Lin, B. C. Lau, C. Y. Liu, H. C. Chui, and Y. Tzeng, “Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays,” Opt. Express 18(26), 27891–27899 (2010).
[Crossref]
F. J. García-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77(6), 1163–1166 (1996).
[Crossref]
[PubMed]
H. W. Gao, J. Henzie, M. H. Lee, and T. W. Odom, “Screening plasmonic materials using pyramidal gratings,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20146–20151 (2008).
[Crossref]
[PubMed]
J. B. Jackson and N. J. Halas, “Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates,” Proc. Natl. Acad. Sci. U.S.A. 101(52), 17930–17935 (2004).
[Crossref]
[PubMed]
S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref]
[PubMed]