Abstract

A novel SERS sensor for adenine molecules is fabricated electrochemically using an ordered two-dimensional array of self-aligned silver nanoparticles encapsulated by alumina. Silver is electro-deposited on the interior surfaces at the bottom of nano-channels in a porous anodic aluminum oxide (AAO) film. After etching aluminum, the back-end alumina serves as a SERS substrate. SERS enhancement factor greater than 106 is measured by 532 nm illumination. It exhibits robust chemical stability and emits reproducible Raman signals from repetitive uses for eight weeks. The inexpensive mass production process makes this reliable, durable and sensitive plasmon based optical device promising for many applications.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
    [CrossRef] [PubMed]
  2. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
    [CrossRef]
  3. B. Dragnea, C. Chen, E.-S. Kwak, B. Stein, and C. C. Kao, “Gold nanoparticles as spectroscopic enhancers for in vitro studies on single viruses,” J. Am. Chem. Soc. 125(21), 6374–6375 (2003).
    [CrossRef] [PubMed]
  4. T. Qiu, J. Jiang, W. Zhang, X. Lang, X. Yu, and P. K. Chu, “High-sensitivity and stable cellular fluorescence imaging by patterned silver nanocap arrays,” ACS Appl. Mater. Interfaces 2(8), 2465–2470 (2010).
    [CrossRef] [PubMed]
  5. H. Seki, “SERS of pyridine on Ag island films prepared on a sapphire substrate,” J. Vac. Sci. Technol. 18(2), 633–637 (1981).
    [CrossRef]
  6. A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
    [CrossRef]
  7. M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
    [CrossRef] [PubMed]
  8. J. B. Jackson and N. J. Halas, “Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates,” Proc. Natl. Acad. Sci. U.S.A. 101(52), 17930–17935 (2004).
    [CrossRef] [PubMed]
  9. J. Zhang, X. Li, X. Sun, and Y. Li, “Surface enhanced Raman scattering effects of silver colloids with different shapes,” J. Phys. Chem. B 109(25), 12544–12548 (2005).
    [CrossRef]
  10. C. H. Huang, H. Y. Lin, C. H. Lin, H. C. Chui, Y. C. Lan, and S. W. Chu, “The phase-response effect of size-dependent optical enhancement in a single nanoparticle,” Opt. Express 16(13), 9580–9586 (2008).
    [CrossRef] [PubMed]
  11. F. J. García-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77(6), 1163–1166 (1996).
    [CrossRef] [PubMed]
  12. E. C. Le Ru and P. G. Etchegoin, “Sub-wavelength localization of hot-spots in SERS,” Chem. Phys. Lett. 396(4-6), 393–397 (2004).
    [CrossRef]
  13. H. Y. Lin, C. H. Huang, C. H. Chang, Y. C. Lan, and H. C. Chui, “Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs,” Opt. Express 18(1), 165–172 (2010).
    [CrossRef] [PubMed]
  14. R. Alvarez-Puebla, B. Cui, J.-P. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances,” J. Phys. Chem. C 111(18), 6720–6723 (2007).
    [CrossRef]
  15. A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir−Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
    [CrossRef]
  16. J. M. McLellan, Z.-Y. Li, A. R. Siekkinen, and Y. Xia, “The SERS activity of a supported Ag nanocube strongly depends on its orientation relative to laser polarization,” Nano Lett. 7(4), 1013–1017 (2007).
    [CrossRef] [PubMed]
  17. G. T. Duan, W. P. Cai, Y. Y. Luo, Z. G. Li, and Y. Li, “Electrochemically induced flowerlike gold nanoarchitectures and their strong surface-enhanced Raman scattering effect,” Appl. Phys. Lett. 89(21), 211905 (2006).
    [CrossRef]
  18. V. S. Tiwari, T. Oleg, G. K. Darbha, W. Hardy, J. P. Singh, and P. C. Ray, “Non-resonance: SERS effects of silver colloids with different shapes,” Chem. Phys. Lett. 446(1-3), 77–82 (2007).
    [CrossRef]
  19. H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
    [CrossRef]
  20. S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, A. D. Stafford, S. R. Bishop, U. K. Lincoln, and J. V. Coe, “Use of the extraordinary infrared transmission of metallic subwavelength arrays to study the catalyzed reaction of methanol to formaldehyde on copper oxide,” J. Phys. Chem. B 108(31), 11833–11837 (2004).
    [CrossRef]
  21. G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
    [CrossRef]
  22. H. W. Gao, J. Henzie, M. H. Lee, and T. W. Odom, “Screening plasmonic materials using pyramidal gratings,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20146–20151 (2008).
    [CrossRef] [PubMed]
  23. N. C. Lindquist, W. A. Luhman, S. H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008).
    [CrossRef]
  24. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
    [CrossRef]
  25. K. Nielsch, F. Muller, A. P. Li, and U. Gosele, “Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition,” Adv. Mater. (Deerfield Beach Fla.) 12(8), 582–586 (2000).
    [CrossRef]
  26. C. H. Huang, H. Y. Lin, B. C. Lau, C. Y. Liu, H. C. Chui, and Y. Tzeng, “Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays,” Opt. Express 18(26), 27891–27899 (2010).
    [CrossRef]
  27. A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
    [CrossRef]
  28. B.-C. Lau, C.-Y. Liu, H.-Y. Lin, C.-H. Huang, H.-C. Chui, and Y. Tzeng, “Electrochemical fabrication of anodic aluminum oxide films with encapsulated silver nanoparticles as plasmonic photoconductors,” Electrochem. Solid-State Lett. 14(5), E15–E17 (2011).
    [CrossRef]
  29. T. T. Xu, R. D. Piner, and R. S. Ruoff, “An improved method to strip aluminum from porous anodic alumina films,” Langmuir 19(4), 1443–1445 (2003).
    [CrossRef]
  30. J. A. Creighton and D. G. Eadon, “Ultraviolet-visible absorption spectra of the colloidal metallic elements,” J. Chem. Soc., Faraday Trans. 87(24), 3881–3891 (1991).
    [CrossRef]
  31. S. P. A. Fodor, R. P. Rava, T. R. Hays, and T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107(6), 1520–1529 (1985).
    [CrossRef]
  32. B. Giese and D. McNaughton, “Surface-enhanced Raman spectroscopic and density functional theory study of adenine adsorption to silver surfaces,” J. Phys. Chem. B 106(1), 101–112 (2002).
    [CrossRef]
  33. I. Mrozek and A. Otto, “Long- and short-range effects in SERS from silver,” Europhys. Lett. 11(3), 243–248 (1990).
    [CrossRef]
  34. B. J. Kennedy, S. Spaeth, M. Dickey, and K. T. Carron, “Determination of the distance dependence and experimental effects for modified SERS substrates based on self-assembled monolayers formed using alkanethiols,” J. Phys. Chem. B 103(18), 3640–3646 (1999).
    [CrossRef]
  35. L. Rivas, S. Sanchez-Cortes, J. V. Garcia-Ramos, and G. Morcillo, “Mixed silver/gold colloids: a study of their formation, morphology, and surface-enhanced Raman activity,” Langmuir 16(25), 9722–9728 (2000).
    [CrossRef]
  36. X. Q. Zou and S. J. Dong, “Surface-enhanced Raman scattering studies on aggregated silver nanoplates in aqueous solution,” J. Phys. Chem. B 110(43), 21545–21550 (2006).
    [CrossRef] [PubMed]
  37. K. G. Stamplecoskie, J. C. Scaiano, V. S. Tiwari, and H. Anis, “Optimal size of silver nanoparticles for surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 115(5), 1403–1409 (2011).
    [CrossRef]

2011 (2)

B.-C. Lau, C.-Y. Liu, H.-Y. Lin, C.-H. Huang, H.-C. Chui, and Y. Tzeng, “Electrochemical fabrication of anodic aluminum oxide films with encapsulated silver nanoparticles as plasmonic photoconductors,” Electrochem. Solid-State Lett. 14(5), E15–E17 (2011).
[CrossRef]

K. G. Stamplecoskie, J. C. Scaiano, V. S. Tiwari, and H. Anis, “Optimal size of silver nanoparticles for surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 115(5), 1403–1409 (2011).
[CrossRef]

2010 (3)

2008 (5)

C. H. Huang, H. Y. Lin, C. H. Lin, H. C. Chui, Y. C. Lan, and S. W. Chu, “The phase-response effect of size-dependent optical enhancement in a single nanoparticle,” Opt. Express 16(13), 9580–9586 (2008).
[CrossRef] [PubMed]

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[CrossRef]

H. W. Gao, J. Henzie, M. H. Lee, and T. W. Odom, “Screening plasmonic materials using pyramidal gratings,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20146–20151 (2008).
[CrossRef] [PubMed]

N. C. Lindquist, W. A. Luhman, S. H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008).
[CrossRef]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef]

2007 (3)

V. S. Tiwari, T. Oleg, G. K. Darbha, W. Hardy, J. P. Singh, and P. C. Ray, “Non-resonance: SERS effects of silver colloids with different shapes,” Chem. Phys. Lett. 446(1-3), 77–82 (2007).
[CrossRef]

R. Alvarez-Puebla, B. Cui, J.-P. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances,” J. Phys. Chem. C 111(18), 6720–6723 (2007).
[CrossRef]

J. M. McLellan, Z.-Y. Li, A. R. Siekkinen, and Y. Xia, “The SERS activity of a supported Ag nanocube strongly depends on its orientation relative to laser polarization,” Nano Lett. 7(4), 1013–1017 (2007).
[CrossRef] [PubMed]

2006 (3)

G. T. Duan, W. P. Cai, Y. Y. Luo, Z. G. Li, and Y. Li, “Electrochemically induced flowerlike gold nanoarchitectures and their strong surface-enhanced Raman scattering effect,” Appl. Phys. Lett. 89(21), 211905 (2006).
[CrossRef]

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[CrossRef]

X. Q. Zou and S. J. Dong, “Surface-enhanced Raman scattering studies on aggregated silver nanoplates in aqueous solution,” J. Phys. Chem. B 110(43), 21545–21550 (2006).
[CrossRef] [PubMed]

2005 (2)

A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[CrossRef]

J. Zhang, X. Li, X. Sun, and Y. Li, “Surface enhanced Raman scattering effects of silver colloids with different shapes,” J. Phys. Chem. B 109(25), 12544–12548 (2005).
[CrossRef]

2004 (4)

E. C. Le Ru and P. G. Etchegoin, “Sub-wavelength localization of hot-spots in SERS,” Chem. Phys. Lett. 396(4-6), 393–397 (2004).
[CrossRef]

M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
[CrossRef] [PubMed]

J. B. Jackson and N. J. Halas, “Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates,” Proc. Natl. Acad. Sci. U.S.A. 101(52), 17930–17935 (2004).
[CrossRef] [PubMed]

S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, A. D. Stafford, S. R. Bishop, U. K. Lincoln, and J. V. Coe, “Use of the extraordinary infrared transmission of metallic subwavelength arrays to study the catalyzed reaction of methanol to formaldehyde on copper oxide,” J. Phys. Chem. B 108(31), 11833–11837 (2004).
[CrossRef]

2003 (3)

T. T. Xu, R. D. Piner, and R. S. Ruoff, “An improved method to strip aluminum from porous anodic alumina films,” Langmuir 19(4), 1443–1445 (2003).
[CrossRef]

B. Dragnea, C. Chen, E.-S. Kwak, B. Stein, and C. C. Kao, “Gold nanoparticles as spectroscopic enhancers for in vitro studies on single viruses,” J. Am. Chem. Soc. 125(21), 6374–6375 (2003).
[CrossRef] [PubMed]

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir−Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

2002 (1)

B. Giese and D. McNaughton, “Surface-enhanced Raman spectroscopic and density functional theory study of adenine adsorption to silver surfaces,” J. Phys. Chem. B 106(1), 101–112 (2002).
[CrossRef]

2000 (2)

L. Rivas, S. Sanchez-Cortes, J. V. Garcia-Ramos, and G. Morcillo, “Mixed silver/gold colloids: a study of their formation, morphology, and surface-enhanced Raman activity,” Langmuir 16(25), 9722–9728 (2000).
[CrossRef]

K. Nielsch, F. Muller, A. P. Li, and U. Gosele, “Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition,” Adv. Mater. (Deerfield Beach Fla.) 12(8), 582–586 (2000).
[CrossRef]

1999 (2)

B. J. Kennedy, S. Spaeth, M. Dickey, and K. T. Carron, “Determination of the distance dependence and experimental effects for modified SERS substrates based on self-assembled monolayers formed using alkanethiols,” J. Phys. Chem. B 103(18), 3640–3646 (1999).
[CrossRef]

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[CrossRef]

1998 (1)

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[CrossRef]

1997 (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

1996 (1)

F. J. García-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77(6), 1163–1166 (1996).
[CrossRef] [PubMed]

1991 (1)

J. A. Creighton and D. G. Eadon, “Ultraviolet-visible absorption spectra of the colloidal metallic elements,” J. Chem. Soc., Faraday Trans. 87(24), 3881–3891 (1991).
[CrossRef]

1990 (1)

I. Mrozek and A. Otto, “Long- and short-range effects in SERS from silver,” Europhys. Lett. 11(3), 243–248 (1990).
[CrossRef]

1985 (1)

S. P. A. Fodor, R. P. Rava, T. R. Hays, and T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107(6), 1520–1529 (1985).
[CrossRef]

1981 (1)

H. Seki, “SERS of pyridine on Ag island films prepared on a sapphire substrate,” J. Vac. Sci. Technol. 18(2), 633–637 (1981).
[CrossRef]

Alvarez-Puebla, R.

R. Alvarez-Puebla, B. Cui, J.-P. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances,” J. Phys. Chem. C 111(18), 6720–6723 (2007).
[CrossRef]

Anis, H.

K. G. Stamplecoskie, J. C. Scaiano, V. S. Tiwari, and H. Anis, “Optimal size of silver nanoparticles for surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 115(5), 1403–1409 (2011).
[CrossRef]

Astruc, D.

M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
[CrossRef] [PubMed]

Atwater, H. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef]

Bishop, S. R.

S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, A. D. Stafford, S. R. Bishop, U. K. Lincoln, and J. V. Coe, “Use of the extraordinary infrared transmission of metallic subwavelength arrays to study the catalyzed reaction of methanol to formaldehyde on copper oxide,” J. Phys. Chem. B 108(31), 11833–11837 (2004).
[CrossRef]

Bravo-Vasquez, J.-P.

R. Alvarez-Puebla, B. Cui, J.-P. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances,” J. Phys. Chem. C 111(18), 6720–6723 (2007).
[CrossRef]

Cai, W. P.

G. T. Duan, W. P. Cai, Y. Y. Luo, Z. G. Li, and Y. Li, “Electrochemically induced flowerlike gold nanoarchitectures and their strong surface-enhanced Raman scattering effect,” Appl. Phys. Lett. 89(21), 211905 (2006).
[CrossRef]

Campion, A.

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[CrossRef]

Carron, K. T.

B. J. Kennedy, S. Spaeth, M. Dickey, and K. T. Carron, “Determination of the distance dependence and experimental effects for modified SERS substrates based on self-assembled monolayers formed using alkanethiols,” J. Phys. Chem. B 103(18), 3640–3646 (1999).
[CrossRef]

Chan, G. H.

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[CrossRef]

Chan, T. H.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[CrossRef]

Chang, C. H.

Chen, C.

B. Dragnea, C. Chen, E.-S. Kwak, B. Stein, and C. C. Kao, “Gold nanoparticles as spectroscopic enhancers for in vitro studies on single viruses,” J. Am. Chem. Soc. 125(21), 6374–6375 (2003).
[CrossRef] [PubMed]

Chu, P. K.

T. Qiu, J. Jiang, W. Zhang, X. Lang, X. Yu, and P. K. Chu, “High-sensitivity and stable cellular fluorescence imaging by patterned silver nanocap arrays,” ACS Appl. Mater. Interfaces 2(8), 2465–2470 (2010).
[CrossRef] [PubMed]

Chu, S. W.

Chui, H. C.

Chui, H.-C.

B.-C. Lau, C.-Y. Liu, H.-Y. Lin, C.-H. Huang, H.-C. Chui, and Y. Tzeng, “Electrochemical fabrication of anodic aluminum oxide films with encapsulated silver nanoparticles as plasmonic photoconductors,” Electrochem. Solid-State Lett. 14(5), E15–E17 (2011).
[CrossRef]

Coe, J. V.

S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, A. D. Stafford, S. R. Bishop, U. K. Lincoln, and J. V. Coe, “Use of the extraordinary infrared transmission of metallic subwavelength arrays to study the catalyzed reaction of methanol to formaldehyde on copper oxide,” J. Phys. Chem. B 108(31), 11833–11837 (2004).
[CrossRef]

Creighton, J. A.

J. A. Creighton and D. G. Eadon, “Ultraviolet-visible absorption spectra of the colloidal metallic elements,” J. Chem. Soc., Faraday Trans. 87(24), 3881–3891 (1991).
[CrossRef]

Cui, B.

R. Alvarez-Puebla, B. Cui, J.-P. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances,” J. Phys. Chem. C 111(18), 6720–6723 (2007).
[CrossRef]

Daniel, M. C.

M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
[CrossRef] [PubMed]

Darbha, G. K.

V. S. Tiwari, T. Oleg, G. K. Darbha, W. Hardy, J. P. Singh, and P. C. Ray, “Non-resonance: SERS effects of silver colloids with different shapes,” Chem. Phys. Lett. 446(1-3), 77–82 (2007).
[CrossRef]

Dasari, R. R.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[CrossRef]

Dickey, M.

B. J. Kennedy, S. Spaeth, M. Dickey, and K. T. Carron, “Determination of the distance dependence and experimental effects for modified SERS substrates based on self-assembled monolayers formed using alkanethiols,” J. Phys. Chem. B 103(18), 3640–3646 (1999).
[CrossRef]

Dong, S. J.

X. Q. Zou and S. J. Dong, “Surface-enhanced Raman scattering studies on aggregated silver nanoplates in aqueous solution,” J. Phys. Chem. B 110(43), 21545–21550 (2006).
[CrossRef] [PubMed]

Dragnea, B.

B. Dragnea, C. Chen, E.-S. Kwak, B. Stein, and C. C. Kao, “Gold nanoparticles as spectroscopic enhancers for in vitro studies on single viruses,” J. Am. Chem. Soc. 125(21), 6374–6375 (2003).
[CrossRef] [PubMed]

Duan, G. T.

G. T. Duan, W. P. Cai, Y. Y. Luo, Z. G. Li, and Y. Li, “Electrochemically induced flowerlike gold nanoarchitectures and their strong surface-enhanced Raman scattering effect,” Appl. Phys. Lett. 89(21), 211905 (2006).
[CrossRef]

Duyne, R. P. V.

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[CrossRef]

Eadon, D. G.

J. A. Creighton and D. G. Eadon, “Ultraviolet-visible absorption spectra of the colloidal metallic elements,” J. Chem. Soc., Faraday Trans. 87(24), 3881–3891 (1991).
[CrossRef]

Elam, J. W.

A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[CrossRef]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Etchegoin, P. G.

E. C. Le Ru and P. G. Etchegoin, “Sub-wavelength localization of hot-spots in SERS,” Chem. Phys. Lett. 396(4-6), 393–397 (2004).
[CrossRef]

Feld, M. S.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[CrossRef]

Fenniri, H.

R. Alvarez-Puebla, B. Cui, J.-P. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances,” J. Phys. Chem. C 111(18), 6720–6723 (2007).
[CrossRef]

Ferry, V. E.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef]

Fodor, S. P. A.

S. P. A. Fodor, R. P. Rava, T. R. Hays, and T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107(6), 1520–1529 (1985).
[CrossRef]

Gao, H. W.

H. W. Gao, J. Henzie, M. H. Lee, and T. W. Odom, “Screening plasmonic materials using pyramidal gratings,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20146–20151 (2008).
[CrossRef] [PubMed]

Garcia-Ramos, J. V.

L. Rivas, S. Sanchez-Cortes, J. V. Garcia-Ramos, and G. Morcillo, “Mixed silver/gold colloids: a study of their formation, morphology, and surface-enhanced Raman activity,” Langmuir 16(25), 9722–9728 (2000).
[CrossRef]

García-Vidal, F. J.

F. J. García-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77(6), 1163–1166 (1996).
[CrossRef] [PubMed]

Giese, B.

B. Giese and D. McNaughton, “Surface-enhanced Raman spectroscopic and density functional theory study of adenine adsorption to silver surfaces,” J. Phys. Chem. B 106(1), 101–112 (2002).
[CrossRef]

Goldberger, J.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir−Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Gosele, U.

K. Nielsch, F. Muller, A. P. Li, and U. Gosele, “Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition,” Adv. Mater. (Deerfield Beach Fla.) 12(8), 582–586 (2000).
[CrossRef]

Halas, N. J.

J. B. Jackson and N. J. Halas, “Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates,” Proc. Natl. Acad. Sci. U.S.A. 101(52), 17930–17935 (2004).
[CrossRef] [PubMed]

Hardy, W.

V. S. Tiwari, T. Oleg, G. K. Darbha, W. Hardy, J. P. Singh, and P. C. Ray, “Non-resonance: SERS effects of silver colloids with different shapes,” Chem. Phys. Lett. 446(1-3), 77–82 (2007).
[CrossRef]

Hays, T. R.

S. P. A. Fodor, R. P. Rava, T. R. Hays, and T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107(6), 1520–1529 (1985).
[CrossRef]

He, R.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir−Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Henzie, J.

H. W. Gao, J. Henzie, M. H. Lee, and T. W. Odom, “Screening plasmonic materials using pyramidal gratings,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20146–20151 (2008).
[CrossRef] [PubMed]

Hess, C.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir−Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Holmes, R. J.

N. C. Lindquist, W. A. Luhman, S. H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008).
[CrossRef]

Hsu, C. F.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[CrossRef]

Huang, C. H.

Huang, C.-H.

B.-C. Lau, C.-Y. Liu, H.-Y. Lin, C.-H. Huang, H.-C. Chui, and Y. Tzeng, “Electrochemical fabrication of anodic aluminum oxide films with encapsulated silver nanoparticles as plasmonic photoconductors,” Electrochem. Solid-State Lett. 14(5), E15–E17 (2011).
[CrossRef]

Itzkan, I.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[CrossRef]

Jackson, J. B.

J. B. Jackson and N. J. Halas, “Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates,” Proc. Natl. Acad. Sci. U.S.A. 101(52), 17930–17935 (2004).
[CrossRef] [PubMed]

Jiang, J.

T. Qiu, J. Jiang, W. Zhang, X. Lang, X. Yu, and P. K. Chu, “High-sensitivity and stable cellular fluorescence imaging by patterned silver nanocap arrays,” ACS Appl. Mater. Interfaces 2(8), 2465–2470 (2010).
[CrossRef] [PubMed]

Kambhampati, P.

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[CrossRef]

Kao, C. C.

B. Dragnea, C. Chen, E.-S. Kwak, B. Stein, and C. C. Kao, “Gold nanoparticles as spectroscopic enhancers for in vitro studies on single viruses,” J. Am. Chem. Soc. 125(21), 6374–6375 (2003).
[CrossRef] [PubMed]

Kennedy, B. J.

B. J. Kennedy, S. Spaeth, M. Dickey, and K. T. Carron, “Determination of the distance dependence and experimental effects for modified SERS substrates based on self-assembled monolayers formed using alkanethiols,” J. Phys. Chem. B 103(18), 3640–3646 (1999).
[CrossRef]

Kim, F.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir−Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Kneipp, H.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[CrossRef]

Kneipp, K.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[CrossRef]

Kwak, E.-S.

B. Dragnea, C. Chen, E.-S. Kwak, B. Stein, and C. C. Kao, “Gold nanoparticles as spectroscopic enhancers for in vitro studies on single viruses,” J. Am. Chem. Soc. 125(21), 6374–6375 (2003).
[CrossRef] [PubMed]

Lan, Y. C.

Lang, X.

T. Qiu, J. Jiang, W. Zhang, X. Lang, X. Yu, and P. K. Chu, “High-sensitivity and stable cellular fluorescence imaging by patterned silver nanocap arrays,” ACS Appl. Mater. Interfaces 2(8), 2465–2470 (2010).
[CrossRef] [PubMed]

Lau, B. C.

Lau, B.-C.

B.-C. Lau, C.-Y. Liu, H.-Y. Lin, C.-H. Huang, H.-C. Chui, and Y. Tzeng, “Electrochemical fabrication of anodic aluminum oxide films with encapsulated silver nanoparticles as plasmonic photoconductors,” Electrochem. Solid-State Lett. 14(5), E15–E17 (2011).
[CrossRef]

Le Ru, E. C.

E. C. Le Ru and P. G. Etchegoin, “Sub-wavelength localization of hot-spots in SERS,” Chem. Phys. Lett. 396(4-6), 393–397 (2004).
[CrossRef]

Lee, M. H.

H. W. Gao, J. Henzie, M. H. Lee, and T. W. Odom, “Screening plasmonic materials using pyramidal gratings,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20146–20151 (2008).
[CrossRef] [PubMed]

Li, A. P.

K. Nielsch, F. Muller, A. P. Li, and U. Gosele, “Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition,” Adv. Mater. (Deerfield Beach Fla.) 12(8), 582–586 (2000).
[CrossRef]

Li, X.

J. Zhang, X. Li, X. Sun, and Y. Li, “Surface enhanced Raman scattering effects of silver colloids with different shapes,” J. Phys. Chem. B 109(25), 12544–12548 (2005).
[CrossRef]

Li, Y.

G. T. Duan, W. P. Cai, Y. Y. Luo, Z. G. Li, and Y. Li, “Electrochemically induced flowerlike gold nanoarchitectures and their strong surface-enhanced Raman scattering effect,” Appl. Phys. Lett. 89(21), 211905 (2006).
[CrossRef]

J. Zhang, X. Li, X. Sun, and Y. Li, “Surface enhanced Raman scattering effects of silver colloids with different shapes,” J. Phys. Chem. B 109(25), 12544–12548 (2005).
[CrossRef]

Li, Z. G.

G. T. Duan, W. P. Cai, Y. Y. Luo, Z. G. Li, and Y. Li, “Electrochemically induced flowerlike gold nanoarchitectures and their strong surface-enhanced Raman scattering effect,” Appl. Phys. Lett. 89(21), 211905 (2006).
[CrossRef]

Li, Z.-Y.

J. M. McLellan, Z.-Y. Li, A. R. Siekkinen, and Y. Xia, “The SERS activity of a supported Ag nanocube strongly depends on its orientation relative to laser polarization,” Nano Lett. 7(4), 1013–1017 (2007).
[CrossRef] [PubMed]

Lin, C. H.

Lin, H. Y.

Lin, H.-Y.

B.-C. Lau, C.-Y. Liu, H.-Y. Lin, C.-H. Huang, H.-C. Chui, and Y. Tzeng, “Electrochemical fabrication of anodic aluminum oxide films with encapsulated silver nanoparticles as plasmonic photoconductors,” Electrochem. Solid-State Lett. 14(5), E15–E17 (2011).
[CrossRef]

Lincoln, U. K.

S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, A. D. Stafford, S. R. Bishop, U. K. Lincoln, and J. V. Coe, “Use of the extraordinary infrared transmission of metallic subwavelength arrays to study the catalyzed reaction of methanol to formaldehyde on copper oxide,” J. Phys. Chem. B 108(31), 11833–11837 (2004).
[CrossRef]

Lindquist, N. C.

N. C. Lindquist, W. A. Luhman, S. H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008).
[CrossRef]

Liu, C. Y.

C. H. Huang, H. Y. Lin, B. C. Lau, C. Y. Liu, H. C. Chui, and Y. Tzeng, “Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays,” Opt. Express 18(26), 27891–27899 (2010).
[CrossRef]

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[CrossRef]

Liu, C.-Y.

B.-C. Lau, C.-Y. Liu, H.-Y. Lin, C.-H. Huang, H.-C. Chui, and Y. Tzeng, “Electrochemical fabrication of anodic aluminum oxide films with encapsulated silver nanoparticles as plasmonic photoconductors,” Electrochem. Solid-State Lett. 14(5), E15–E17 (2011).
[CrossRef]

Liu, N. W.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[CrossRef]

Luhman, W. A.

N. C. Lindquist, W. A. Luhman, S. H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008).
[CrossRef]

Luo, Y. Y.

G. T. Duan, W. P. Cai, Y. Y. Luo, Z. G. Li, and Y. Li, “Electrochemically induced flowerlike gold nanoarchitectures and their strong surface-enhanced Raman scattering effect,” Appl. Phys. Lett. 89(21), 211905 (2006).
[CrossRef]

McLellan, J. M.

J. M. McLellan, Z.-Y. Li, A. R. Siekkinen, and Y. Xia, “The SERS activity of a supported Ag nanocube strongly depends on its orientation relative to laser polarization,” Nano Lett. 7(4), 1013–1017 (2007).
[CrossRef] [PubMed]

McNaughton, D.

B. Giese and D. McNaughton, “Surface-enhanced Raman spectroscopic and density functional theory study of adenine adsorption to silver surfaces,” J. Phys. Chem. B 106(1), 101–112 (2002).
[CrossRef]

Morcillo, G.

L. Rivas, S. Sanchez-Cortes, J. V. Garcia-Ramos, and G. Morcillo, “Mixed silver/gold colloids: a study of their formation, morphology, and surface-enhanced Raman activity,” Langmuir 16(25), 9722–9728 (2000).
[CrossRef]

Mrozek, I.

I. Mrozek and A. Otto, “Long- and short-range effects in SERS from silver,” Europhys. Lett. 11(3), 243–248 (1990).
[CrossRef]

Muller, F.

K. Nielsch, F. Muller, A. P. Li, and U. Gosele, “Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition,” Adv. Mater. (Deerfield Beach Fla.) 12(8), 582–586 (2000).
[CrossRef]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Nielsch, K.

K. Nielsch, F. Muller, A. P. Li, and U. Gosele, “Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition,” Adv. Mater. (Deerfield Beach Fla.) 12(8), 582–586 (2000).
[CrossRef]

Odom, T. W.

H. W. Gao, J. Henzie, M. H. Lee, and T. W. Odom, “Screening plasmonic materials using pyramidal gratings,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20146–20151 (2008).
[CrossRef] [PubMed]

Oh, S. H.

N. C. Lindquist, W. A. Luhman, S. H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008).
[CrossRef]

Oleg, T.

V. S. Tiwari, T. Oleg, G. K. Darbha, W. Hardy, J. P. Singh, and P. C. Ray, “Non-resonance: SERS effects of silver colloids with different shapes,” Chem. Phys. Lett. 446(1-3), 77–82 (2007).
[CrossRef]

Otto, A.

I. Mrozek and A. Otto, “Long- and short-range effects in SERS from silver,” Europhys. Lett. 11(3), 243–248 (1990).
[CrossRef]

Pacifici, D.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef]

Pendry, J. B.

F. J. García-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77(6), 1163–1166 (1996).
[CrossRef] [PubMed]

Peng, C. Y.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[CrossRef]

Piner, R. D.

T. T. Xu, R. D. Piner, and R. S. Ruoff, “An improved method to strip aluminum from porous anodic alumina films,” Langmuir 19(4), 1443–1445 (2003).
[CrossRef]

Qiu, T.

T. Qiu, J. Jiang, W. Zhang, X. Lang, X. Yu, and P. K. Chu, “High-sensitivity and stable cellular fluorescence imaging by patterned silver nanocap arrays,” ACS Appl. Mater. Interfaces 2(8), 2465–2470 (2010).
[CrossRef] [PubMed]

Rava, R. P.

S. P. A. Fodor, R. P. Rava, T. R. Hays, and T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107(6), 1520–1529 (1985).
[CrossRef]

Ray, P. C.

V. S. Tiwari, T. Oleg, G. K. Darbha, W. Hardy, J. P. Singh, and P. C. Ray, “Non-resonance: SERS effects of silver colloids with different shapes,” Chem. Phys. Lett. 446(1-3), 77–82 (2007).
[CrossRef]

Rivas, L.

L. Rivas, S. Sanchez-Cortes, J. V. Garcia-Ramos, and G. Morcillo, “Mixed silver/gold colloids: a study of their formation, morphology, and surface-enhanced Raman activity,” Langmuir 16(25), 9722–9728 (2000).
[CrossRef]

Rodriguez, K. R.

S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, A. D. Stafford, S. R. Bishop, U. K. Lincoln, and J. V. Coe, “Use of the extraordinary infrared transmission of metallic subwavelength arrays to study the catalyzed reaction of methanol to formaldehyde on copper oxide,” J. Phys. Chem. B 108(31), 11833–11837 (2004).
[CrossRef]

Ruoff, R. S.

T. T. Xu, R. D. Piner, and R. S. Ruoff, “An improved method to strip aluminum from porous anodic alumina films,” Langmuir 19(4), 1443–1445 (2003).
[CrossRef]

Sanchez-Cortes, S.

L. Rivas, S. Sanchez-Cortes, J. V. Garcia-Ramos, and G. Morcillo, “Mixed silver/gold colloids: a study of their formation, morphology, and surface-enhanced Raman activity,” Langmuir 16(25), 9722–9728 (2000).
[CrossRef]

Scaiano, J. C.

K. G. Stamplecoskie, J. C. Scaiano, V. S. Tiwari, and H. Anis, “Optimal size of silver nanoparticles for surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 115(5), 1403–1409 (2011).
[CrossRef]

Schatz, G. C.

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[CrossRef]

A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[CrossRef]

Seki, H.

H. Seki, “SERS of pyridine on Ag island films prepared on a sapphire substrate,” J. Vac. Sci. Technol. 18(2), 633–637 (1981).
[CrossRef]

Siekkinen, A. R.

J. M. McLellan, Z.-Y. Li, A. R. Siekkinen, and Y. Xia, “The SERS activity of a supported Ag nanocube strongly depends on its orientation relative to laser polarization,” Nano Lett. 7(4), 1013–1017 (2007).
[CrossRef] [PubMed]

Singh, J. P.

V. S. Tiwari, T. Oleg, G. K. Darbha, W. Hardy, J. P. Singh, and P. C. Ray, “Non-resonance: SERS effects of silver colloids with different shapes,” Chem. Phys. Lett. 446(1-3), 77–82 (2007).
[CrossRef]

Spaeth, S.

B. J. Kennedy, S. Spaeth, M. Dickey, and K. T. Carron, “Determination of the distance dependence and experimental effects for modified SERS substrates based on self-assembled monolayers formed using alkanethiols,” J. Phys. Chem. B 103(18), 3640–3646 (1999).
[CrossRef]

Spiro, T. G.

S. P. A. Fodor, R. P. Rava, T. R. Hays, and T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107(6), 1520–1529 (1985).
[CrossRef]

Stafford, A. D.

S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, A. D. Stafford, S. R. Bishop, U. K. Lincoln, and J. V. Coe, “Use of the extraordinary infrared transmission of metallic subwavelength arrays to study the catalyzed reaction of methanol to formaldehyde on copper oxide,” J. Phys. Chem. B 108(31), 11833–11837 (2004).
[CrossRef]

Stair, P. C.

A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[CrossRef]

Stamplecoskie, K. G.

K. G. Stamplecoskie, J. C. Scaiano, V. S. Tiwari, and H. Anis, “Optimal size of silver nanoparticles for surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 115(5), 1403–1409 (2011).
[CrossRef]

Stein, B.

B. Dragnea, C. Chen, E.-S. Kwak, B. Stein, and C. C. Kao, “Gold nanoparticles as spectroscopic enhancers for in vitro studies on single viruses,” J. Am. Chem. Soc. 125(21), 6374–6375 (2003).
[CrossRef] [PubMed]

Sun, X.

J. Zhang, X. Li, X. Sun, and Y. Li, “Surface enhanced Raman scattering effects of silver colloids with different shapes,” J. Phys. Chem. B 109(25), 12544–12548 (2005).
[CrossRef]

Sun, Y.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir−Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Sweatlock, L. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef]

Tao, A.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir−Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Teeters-Kennedy, S.

S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, A. D. Stafford, S. R. Bishop, U. K. Lincoln, and J. V. Coe, “Use of the extraordinary infrared transmission of metallic subwavelength arrays to study the catalyzed reaction of methanol to formaldehyde on copper oxide,” J. Phys. Chem. B 108(31), 11833–11837 (2004).
[CrossRef]

Tiwari, V. S.

K. G. Stamplecoskie, J. C. Scaiano, V. S. Tiwari, and H. Anis, “Optimal size of silver nanoparticles for surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 115(5), 1403–1409 (2011).
[CrossRef]

V. S. Tiwari, T. Oleg, G. K. Darbha, W. Hardy, J. P. Singh, and P. C. Ray, “Non-resonance: SERS effects of silver colloids with different shapes,” Chem. Phys. Lett. 446(1-3), 77–82 (2007).
[CrossRef]

Tzeng, Y.

B.-C. Lau, C.-Y. Liu, H.-Y. Lin, C.-H. Huang, H.-C. Chui, and Y. Tzeng, “Electrochemical fabrication of anodic aluminum oxide films with encapsulated silver nanoparticles as plasmonic photoconductors,” Electrochem. Solid-State Lett. 14(5), E15–E17 (2011).
[CrossRef]

C. H. Huang, H. Y. Lin, B. C. Lau, C. Y. Liu, H. C. Chui, and Y. Tzeng, “Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays,” Opt. Express 18(26), 27891–27899 (2010).
[CrossRef]

Van Duyne, R. P.

A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[CrossRef]

Veres, T.

R. Alvarez-Puebla, B. Cui, J.-P. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances,” J. Phys. Chem. C 111(18), 6720–6723 (2007).
[CrossRef]

Wang, H. H.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[CrossRef]

Wang, J. K.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[CrossRef]

Wang, Y. L.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[CrossRef]

Whitney, A. V.

A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[CrossRef]

Williams, S. M.

S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, A. D. Stafford, S. R. Bishop, U. K. Lincoln, and J. V. Coe, “Use of the extraordinary infrared transmission of metallic subwavelength arrays to study the catalyzed reaction of methanol to formaldehyde on copper oxide,” J. Phys. Chem. B 108(31), 11833–11837 (2004).
[CrossRef]

Wu, S. B.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[CrossRef]

Xia, Y.

J. M. McLellan, Z.-Y. Li, A. R. Siekkinen, and Y. Xia, “The SERS activity of a supported Ag nanocube strongly depends on its orientation relative to laser polarization,” Nano Lett. 7(4), 1013–1017 (2007).
[CrossRef] [PubMed]

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir−Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Xu, T. T.

T. T. Xu, R. D. Piner, and R. S. Ruoff, “An improved method to strip aluminum from porous anodic alumina films,” Langmuir 19(4), 1443–1445 (2003).
[CrossRef]

Yang, P.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir−Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Yu, X.

T. Qiu, J. Jiang, W. Zhang, X. Lang, X. Yu, and P. K. Chu, “High-sensitivity and stable cellular fluorescence imaging by patterned silver nanocap arrays,” ACS Appl. Mater. Interfaces 2(8), 2465–2470 (2010).
[CrossRef] [PubMed]

Zhang, J.

J. Zhang, X. Li, X. Sun, and Y. Li, “Surface enhanced Raman scattering effects of silver colloids with different shapes,” J. Phys. Chem. B 109(25), 12544–12548 (2005).
[CrossRef]

Zhang, W.

T. Qiu, J. Jiang, W. Zhang, X. Lang, X. Yu, and P. K. Chu, “High-sensitivity and stable cellular fluorescence imaging by patterned silver nanocap arrays,” ACS Appl. Mater. Interfaces 2(8), 2465–2470 (2010).
[CrossRef] [PubMed]

Zhao, J.

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[CrossRef]

Zinovev, A. V.

A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[CrossRef]

Zou, S. L.

A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[CrossRef]

Zou, X. Q.

X. Q. Zou and S. J. Dong, “Surface-enhanced Raman scattering studies on aggregated silver nanoplates in aqueous solution,” J. Phys. Chem. B 110(43), 21545–21550 (2006).
[CrossRef] [PubMed]

ACS Appl. Mater. Interfaces (1)

T. Qiu, J. Jiang, W. Zhang, X. Lang, X. Yu, and P. K. Chu, “High-sensitivity and stable cellular fluorescence imaging by patterned silver nanocap arrays,” ACS Appl. Mater. Interfaces 2(8), 2465–2470 (2010).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (2)

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[CrossRef]

K. Nielsch, F. Muller, A. P. Li, and U. Gosele, “Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition,” Adv. Mater. (Deerfield Beach Fla.) 12(8), 582–586 (2000).
[CrossRef]

Appl. Phys. Lett. (2)

N. C. Lindquist, W. A. Luhman, S. H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008).
[CrossRef]

G. T. Duan, W. P. Cai, Y. Y. Luo, Z. G. Li, and Y. Li, “Electrochemically induced flowerlike gold nanoarchitectures and their strong surface-enhanced Raman scattering effect,” Appl. Phys. Lett. 89(21), 211905 (2006).
[CrossRef]

Chem. Phys. Lett. (2)

V. S. Tiwari, T. Oleg, G. K. Darbha, W. Hardy, J. P. Singh, and P. C. Ray, “Non-resonance: SERS effects of silver colloids with different shapes,” Chem. Phys. Lett. 446(1-3), 77–82 (2007).
[CrossRef]

E. C. Le Ru and P. G. Etchegoin, “Sub-wavelength localization of hot-spots in SERS,” Chem. Phys. Lett. 396(4-6), 393–397 (2004).
[CrossRef]

Chem. Rev. (2)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[CrossRef]

M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
[CrossRef] [PubMed]

Chem. Soc. Rev. (1)

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[CrossRef]

Electrochem. Solid-State Lett. (1)

B.-C. Lau, C.-Y. Liu, H.-Y. Lin, C.-H. Huang, H.-C. Chui, and Y. Tzeng, “Electrochemical fabrication of anodic aluminum oxide films with encapsulated silver nanoparticles as plasmonic photoconductors,” Electrochem. Solid-State Lett. 14(5), E15–E17 (2011).
[CrossRef]

Europhys. Lett. (1)

I. Mrozek and A. Otto, “Long- and short-range effects in SERS from silver,” Europhys. Lett. 11(3), 243–248 (1990).
[CrossRef]

J. Am. Chem. Soc. (2)

S. P. A. Fodor, R. P. Rava, T. R. Hays, and T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107(6), 1520–1529 (1985).
[CrossRef]

B. Dragnea, C. Chen, E.-S. Kwak, B. Stein, and C. C. Kao, “Gold nanoparticles as spectroscopic enhancers for in vitro studies on single viruses,” J. Am. Chem. Soc. 125(21), 6374–6375 (2003).
[CrossRef] [PubMed]

J. Chem. Soc., Faraday Trans. (1)

J. A. Creighton and D. G. Eadon, “Ultraviolet-visible absorption spectra of the colloidal metallic elements,” J. Chem. Soc., Faraday Trans. 87(24), 3881–3891 (1991).
[CrossRef]

J. Phys. Chem. B (6)

A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B 109(43), 20522–20528 (2005).
[CrossRef]

B. Giese and D. McNaughton, “Surface-enhanced Raman spectroscopic and density functional theory study of adenine adsorption to silver surfaces,” J. Phys. Chem. B 106(1), 101–112 (2002).
[CrossRef]

B. J. Kennedy, S. Spaeth, M. Dickey, and K. T. Carron, “Determination of the distance dependence and experimental effects for modified SERS substrates based on self-assembled monolayers formed using alkanethiols,” J. Phys. Chem. B 103(18), 3640–3646 (1999).
[CrossRef]

S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, A. D. Stafford, S. R. Bishop, U. K. Lincoln, and J. V. Coe, “Use of the extraordinary infrared transmission of metallic subwavelength arrays to study the catalyzed reaction of methanol to formaldehyde on copper oxide,” J. Phys. Chem. B 108(31), 11833–11837 (2004).
[CrossRef]

J. Zhang, X. Li, X. Sun, and Y. Li, “Surface enhanced Raman scattering effects of silver colloids with different shapes,” J. Phys. Chem. B 109(25), 12544–12548 (2005).
[CrossRef]

X. Q. Zou and S. J. Dong, “Surface-enhanced Raman scattering studies on aggregated silver nanoplates in aqueous solution,” J. Phys. Chem. B 110(43), 21545–21550 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. C (3)

K. G. Stamplecoskie, J. C. Scaiano, V. S. Tiwari, and H. Anis, “Optimal size of silver nanoparticles for surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 115(5), 1403–1409 (2011).
[CrossRef]

R. Alvarez-Puebla, B. Cui, J.-P. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances,” J. Phys. Chem. C 111(18), 6720–6723 (2007).
[CrossRef]

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[CrossRef]

J. Vac. Sci. Technol. (1)

H. Seki, “SERS of pyridine on Ag island films prepared on a sapphire substrate,” J. Vac. Sci. Technol. 18(2), 633–637 (1981).
[CrossRef]

Langmuir (2)

L. Rivas, S. Sanchez-Cortes, J. V. Garcia-Ramos, and G. Morcillo, “Mixed silver/gold colloids: a study of their formation, morphology, and surface-enhanced Raman activity,” Langmuir 16(25), 9722–9728 (2000).
[CrossRef]

T. T. Xu, R. D. Piner, and R. S. Ruoff, “An improved method to strip aluminum from porous anodic alumina films,” Langmuir 19(4), 1443–1445 (2003).
[CrossRef]

Nano Lett. (3)

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef]

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir−Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

J. M. McLellan, Z.-Y. Li, A. R. Siekkinen, and Y. Xia, “The SERS activity of a supported Ag nanocube strongly depends on its orientation relative to laser polarization,” Nano Lett. 7(4), 1013–1017 (2007).
[CrossRef] [PubMed]

Opt. Express (3)

Phys. Rev. Lett. (1)

F. J. García-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77(6), 1163–1166 (1996).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

J. B. Jackson and N. J. Halas, “Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates,” Proc. Natl. Acad. Sci. U.S.A. 101(52), 17930–17935 (2004).
[CrossRef] [PubMed]

H. W. Gao, J. Henzie, M. H. Lee, and T. W. Odom, “Screening plasmonic materials using pyramidal gratings,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20146–20151 (2008).
[CrossRef] [PubMed]

Science (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) SEM image of the back-end alumina layer (barrier layer) of an Ag/AAO film (scale bar: 300 nm). Inset: Cross-sectional SEM image of the Ag/AAO substrate where the back-end alumina layer has been chemically etched for 30 min to reduce the layer thickness to 3.8 nm. Silver nanoparticles were deposited inside the tube-like nanochannels (scale bar: 200 nm). (b) EDS spectrum of the Ag/AAO film. Inset: SEM image of the Ag/AAO substrate where the back-end alumina layer has been completely removed to expose the deposited silver nanoparticles inside the nanochannels (scale bar: 100 nm). (c) The extinction spectra of an AAO film without Ag and Ag/AAO films with different etching times (tetch ) for thinning the back-end alumina layer.

Fig. 2
Fig. 2

(a) Left side: The thickness of the back-end alumina barrier layer can be adjusted by controlling the etching duration in phosphoric acid. Right side: Intensity comparison of the SERS peak at 734 cm−1 (I 734) among Ag/AAO films with increased etching time corresponding to the reduced average thickness of back-end alumina layer of 15.1, 11.3, 7.6, 3.8, and 0 nm, respectively. Error bars indicate relative standard deviations from measurements of eight samples. (b) SERS spectra of adenine nucleobase measured on different substrates. λex = 532 nm; Iext = 1 mW; t = 5 s.

Fig. 3
Fig. 3

(a) Curve (0): Reference Raman spectrum acquired from an AAO film without embedded Ag treated by 10−3 M adenine nucleobases . λex = 532 nm; Iext = 20 mW; t = 20 s. Curves (1)~(5): SERS spectra acquired from 10−9~10−5 M adenine nucleobases measured on the Ag/AAO films (the back-end alumina layer has been chemically etched for 30 min to reduce the layer thickness to 3.8 nm). λex = 532 nm; Iext = 1 mW; t = 5 s. The spectra have been background corrected for clarity. Spectra (0), (1), (2), and (3) have been multiplied by a factor of 5, 5, 2.5, and 2, respectively, to make them visible on the scale. (b) I 734 taken from SERS spectra as a function of the molar concentration of adenine on a logarithmic scale. Each data point represents the average value from eight Ag/AAO films with identical conditions. Error bars indicate relative standard deviations from independent measurements of eight samples.

Fig. 4
Fig. 4

(a) SERS spectra of (I) adenine (10−6 M) obtained on an Ag/AAO film (tetch = 30 min), (II) after adenine was removed and the surface was cleaned, and (III) adenine (10−6 M) obtained on the same cleaned Ag/AAO film after adenine was applied again. λex = 532 nm; Iext = 1 mW; t = 5 s. (b) Time course of the SERS intensity (I 734) variation. The used Ag/AAO films have been chemically etched for 30 min to reduce the average alumina layer thickness to 3.8 nm. The adenine concentration of 10−6 M was applied for repeated SERS measurements.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I S E R S ( a + r a ) 10 ,
E F = I S E R S / ( I e x t × t S E R S × M S E R S ) I R a m a n / ( I e x t × t R a m a n × M R a m a n ) ,

Metrics