Abstract

The traditional phase-resolved Doppler method demonstrates great success for in-vivo imaging of blood flow and blood vessels. However, the phase-resolved method always requires high phase stability of the system. In phase instable situations, the performance of the phase-resolved methods will be degraded. We propose a modified Doppler variance algorithm that is based on the intensity or amplitude value. Performances of the proposed algorithm are compared with traditional phase-resolved Doppler variance and color Doppler methods for both phase stable and phase instable systems. For the phase instable situation, the proposed algorithm demonstrates images without phase instability induced artifacts. In-vivo imaging of window-chamber hamster skin is demonstrated for phase instable situation with a spectrometer-based Fourier domain OCT system. A microelectromechanical systems (MEMS) based swept source OCT (SSOCT) system is also used to demonstrate the performance of the proposed method in a phase instable situation. The phase stability of the SSOCT system is analyzed. In-vivo imaging of the blood vessel of human skin is demonstrated with the proposed method and the SSOCT system. For the phase stable situation, the proposed algorithm also demonstrates comparable performance with traditional phase-resolved methods. In-vivo imaging of the human choroidal blood vessel network is demonstrated with the proposed method under the phase stable situation. Depth-resolved fine choroidal blood vessel networks are shown.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22(1), 64–66 (1997), http://www.opticsinfobase.org/abstract.cfm?URI=ol-22-1-64 .
    [CrossRef] [PubMed]
  3. Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22(14), 1119–1121 (1997), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-22-14-1119 .
    [CrossRef] [PubMed]
  4. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22(18), 1439–1441 (1997), http://www.opticsinfobase.org/abstract.cfm?URI=ol-22-18-1439 .
    [CrossRef]
  5. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25(2), 114–116 (2000), http://www.opticsinfobase.org/abstract.cfm?URI=ol-25-2-114 .
    [CrossRef]
  6. R. K. Wang, L. An, S. Saunders, and D. J. Wilson, “Optical microangiography provides depth-resolved images of directional ocular blood perfusion in posterior eye segment,” J. Biomed. Opt. 15(2), 020502 (2010).
    [CrossRef] [PubMed]
  7. Y. K. Tao, K. M. Kennedy, and J. A. Izatt, “Velocity-resolved 3D retinal microvessel imaging using single-pass flow imaging spectral domain optical coherence tomography,” Opt. Express 17(5), 4177–4188 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-5-4177 .
    [CrossRef] [PubMed]
  8. L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
    [CrossRef] [PubMed]
  9. B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13(14), 5483–5493 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-14-5483 .
    [CrossRef] [PubMed]
  10. J. Barton and S. Stromski, “Flow measurement without phase information in optical coherence tomography images,” Opt. Express 13(14), 5234–5239 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-14-5234 .
    [CrossRef] [PubMed]
  11. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=ol-33-13 .
    [CrossRef] [PubMed]
  12. A. Mariampillai, M. K. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35(8), 1257–1259 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=ol-35-8-1257 .
    [CrossRef] [PubMed]
  13. Y. Yasuno, Y. J. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15(10), 6121–6139 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-10-6121 .
    [CrossRef] [PubMed]
  14. E. Jonathan, J. Enfield, and M. J. Leahy, “Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images,” J. Biophotonics , 4:n/a (2011), doi: http://onlinelibrary.wiley.com/doi/10.1002/jbio.201000103/pdf
    [PubMed]
  15. Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett. 25(18), 1358–1360 (2000), http://www.opticsinfobase.org/abstract.cfm?URI=ol-25-18-1358 .
    [CrossRef]
  16. H. Ren, K. M. Brecke, Z. Ding, Y. Zhao, J. S. Nelson, and Z. Chen, “Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography,” Opt. Lett. 27(6), 409–411 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=ol-27-6-409 .
    [CrossRef]
  17. G. Liu, W. Qi, L. Yu, and Z. Chen, “Real-time bulk-motion-correction free Doppler variance optical coherence tomography for choroidal capillary vasculature imaging,” Opt. Express 19(4), 3657–3666 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-4-3657 .
    [CrossRef] [PubMed]
  18. B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Statistical properties of phase-decorrelation in phase-resolved Doppler optical coherence tomography,” IEEE Trans. Med. Imaging 28(6), 814–821 (2009).
    [CrossRef] [PubMed]
  19. J. Zhang and Z. Chen, “In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography,” Opt. Express 13(19), 7449–7457 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-19-7449 .
    [CrossRef] [PubMed]
  20. M. Yamanari, Y. Lim, S. Makita, and Y. Yasuno, “Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-source optical coherence tomography with 1-μm probe,” Opt. Express 17(15), 12385–12396 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-15-12385 .
    [CrossRef] [PubMed]
  21. B. Baumann, B. Potsaid, J. J. Liu, M. F. Kraus, D. Huang, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Retinal blood flow measurement with ultrahigh-speed swept-source / Fourier domain optical coherence tomography,” Proc. SPIE 7885, 78850H (2011), doi:.
    [CrossRef]
  22. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11(25), 3490–3497 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-11-25-3490 .
    [CrossRef] [PubMed]
  23. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11(23), 3116–3121 (2003), http://www.opticsinfobase.org/abstract.cfm?uri=oe-11-23-3116 .
    [CrossRef] [PubMed]
  24. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-17-7821 .
    [CrossRef] [PubMed]
  25. L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-15-11438 .
    [CrossRef] [PubMed]
  26. L. Yu and Z. Chen, “Doppler variance imaging for three-dimensional retina and choroid angiography,” J. Biomed. Opt. 15(1), 016029 (2010).
    [CrossRef] [PubMed]
  27. R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=ol-35-9- .
    [CrossRef] [PubMed]
  28. J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express 17(24), 22190–22200 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-24-22190 .
    [CrossRef] [PubMed]
  29. I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express 17(26), 23736–23754 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-26-23736 .
    [CrossRef]
  30. S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express 19(2), 1217–1227 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-2-1217 .
    [CrossRef] [PubMed]
  31. S. Makita, F. Jaillon, M. Yamanari, M. Miura, and Y. Yasuno, “Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography,” Opt. Express 19(2), 1271–1283 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-2-1271 .
    [CrossRef] [PubMed]
  32. T. Fabritius, S. Makita, Y. Hong, R. Myllylä, and Y. Yasuno, “Automated retinal shadow compensation of optical coherence tomography images,” J. Biomed. Opt. 14(1), 010503 (2009).
    [CrossRef] [PubMed]

2011 (5)

2010 (5)

L. Yu and Z. Chen, “Doppler variance imaging for three-dimensional retina and choroid angiography,” J. Biomed. Opt. 15(1), 016029 (2010).
[CrossRef] [PubMed]

R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=ol-35-9- .
[CrossRef] [PubMed]

A. Mariampillai, M. K. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35(8), 1257–1259 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=ol-35-8-1257 .
[CrossRef] [PubMed]

R. K. Wang, L. An, S. Saunders, and D. J. Wilson, “Optical microangiography provides depth-resolved images of directional ocular blood perfusion in posterior eye segment,” J. Biomed. Opt. 15(2), 020502 (2010).
[CrossRef] [PubMed]

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
[CrossRef] [PubMed]

2009 (6)

Y. K. Tao, K. M. Kennedy, and J. A. Izatt, “Velocity-resolved 3D retinal microvessel imaging using single-pass flow imaging spectral domain optical coherence tomography,” Opt. Express 17(5), 4177–4188 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-5-4177 .
[CrossRef] [PubMed]

B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Statistical properties of phase-decorrelation in phase-resolved Doppler optical coherence tomography,” IEEE Trans. Med. Imaging 28(6), 814–821 (2009).
[CrossRef] [PubMed]

J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express 17(24), 22190–22200 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-24-22190 .
[CrossRef] [PubMed]

I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express 17(26), 23736–23754 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-26-23736 .
[CrossRef]

M. Yamanari, Y. Lim, S. Makita, and Y. Yasuno, “Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-source optical coherence tomography with 1-μm probe,” Opt. Express 17(15), 12385–12396 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-15-12385 .
[CrossRef] [PubMed]

T. Fabritius, S. Makita, Y. Hong, R. Myllylä, and Y. Yasuno, “Automated retinal shadow compensation of optical coherence tomography images,” J. Biomed. Opt. 14(1), 010503 (2009).
[CrossRef] [PubMed]

2008 (2)

2007 (1)

2006 (1)

2005 (3)

2003 (2)

2002 (1)

2000 (2)

1997 (3)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Akiba, M.

An, L.

R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=ol-35-9- .
[CrossRef] [PubMed]

R. K. Wang, L. An, S. Saunders, and D. J. Wilson, “Optical microangiography provides depth-resolved images of directional ocular blood perfusion in posterior eye segment,” J. Biomed. Opt. 15(2), 020502 (2010).
[CrossRef] [PubMed]

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
[CrossRef] [PubMed]

L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-15-11438 .
[CrossRef] [PubMed]

Bajraszewski, T.

Barton, J.

Barton, J. K.

Baumann, B.

B. Baumann, B. Potsaid, J. J. Liu, M. F. Kraus, D. Huang, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Retinal blood flow measurement with ultrahigh-speed swept-source / Fourier domain optical coherence tomography,” Proc. SPIE 7885, 78850H (2011), doi:.
[CrossRef]

Bonesi, M.

Bouma, B.

Bouma, B. E.

B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Statistical properties of phase-decorrelation in phase-resolved Doppler optical coherence tomography,” IEEE Trans. Med. Imaging 28(6), 814–821 (2009).
[CrossRef] [PubMed]

Brecke, K. M.

Cable, A.

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, T.

Chen, Z.

G. Liu, W. Qi, L. Yu, and Z. Chen, “Real-time bulk-motion-correction free Doppler variance optical coherence tomography for choroidal capillary vasculature imaging,” Opt. Express 19(4), 3657–3666 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-4-3657 .
[CrossRef] [PubMed]

L. Yu and Z. Chen, “Doppler variance imaging for three-dimensional retina and choroid angiography,” J. Biomed. Opt. 15(1), 016029 (2010).
[CrossRef] [PubMed]

J. Zhang and Z. Chen, “In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography,” Opt. Express 13(19), 7449–7457 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-19-7449 .
[CrossRef] [PubMed]

H. Ren, K. M. Brecke, Z. Ding, Y. Zhao, J. S. Nelson, and Z. Chen, “Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography,” Opt. Lett. 27(6), 409–411 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=ol-27-6-409 .
[CrossRef]

Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett. 25(18), 1358–1360 (2000), http://www.opticsinfobase.org/abstract.cfm?URI=ol-25-18-1358 .
[CrossRef]

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25(2), 114–116 (2000), http://www.opticsinfobase.org/abstract.cfm?URI=ol-25-2-114 .
[CrossRef]

Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22(1), 64–66 (1997), http://www.opticsinfobase.org/abstract.cfm?URI=ol-22-1-64 .
[CrossRef] [PubMed]

Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22(14), 1119–1121 (1997), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-22-14-1119 .
[CrossRef] [PubMed]

Dave, D.

de Boer, J.

de Boer, J. F.

Ding, Z.

Drexler, W.

Duker, J. S.

B. Baumann, B. Potsaid, J. J. Liu, M. F. Kraus, D. Huang, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Retinal blood flow measurement with ultrahigh-speed swept-source / Fourier domain optical coherence tomography,” Proc. SPIE 7885, 78850H (2011), doi:.
[CrossRef]

Enfield, J.

E. Jonathan, J. Enfield, and M. J. Leahy, “Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images,” J. Biophotonics , 4:n/a (2011), doi: http://onlinelibrary.wiley.com/doi/10.1002/jbio.201000103/pdf
[PubMed]

Fabritius, T.

T. Fabritius, S. Makita, Y. Hong, R. Myllylä, and Y. Yasuno, “Automated retinal shadow compensation of optical coherence tomography images,” J. Biomed. Opt. 14(1), 010503 (2009).
[CrossRef] [PubMed]

Fercher, A. F.

Fingler, J.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Francis, P.

Fraser, S. E.

Fujimoto, J. G.

B. Baumann, B. Potsaid, J. J. Liu, M. F. Kraus, D. Huang, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Retinal blood flow measurement with ultrahigh-speed swept-source / Fourier domain optical coherence tomography,” Proc. SPIE 7885, 78850H (2011), doi:.
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gorczynska, I.

Götzinger, E.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Grulkowski, I.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C. K.

Hong, Y.

T. Fabritius, S. Makita, Y. Hong, R. Myllylä, and Y. Yasuno, “Automated retinal shadow compensation of optical coherence tomography images,” J. Biomed. Opt. 14(1), 010503 (2009).
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-17-7821 .
[CrossRef] [PubMed]

Hong, Y. J.

Hornegger, J.

B. Baumann, B. Potsaid, J. J. Liu, M. F. Kraus, D. Huang, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Retinal blood flow measurement with ultrahigh-speed swept-source / Fourier domain optical coherence tomography,” Proc. SPIE 7885, 78850H (2011), doi:.
[CrossRef]

Huang, D.

B. Baumann, B. Potsaid, J. J. Liu, M. F. Kraus, D. Huang, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Retinal blood flow measurement with ultrahigh-speed swept-source / Fourier domain optical coherence tomography,” Proc. SPIE 7885, 78850H (2011), doi:.
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Izatt, J. A.

Jaillon, F.

Jarvi, M.

Jiang, J.

Jonathan, E.

E. Jonathan, J. Enfield, and M. J. Leahy, “Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images,” J. Biophotonics , 4:n/a (2011), doi: http://onlinelibrary.wiley.com/doi/10.1002/jbio.201000103/pdf
[PubMed]

Kennedy, K. M.

Khurana, M.

Kowalczyk, A.

Kraus, M. F.

B. Baumann, B. Potsaid, J. J. Liu, M. F. Kraus, D. Huang, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Retinal blood flow measurement with ultrahigh-speed swept-source / Fourier domain optical coherence tomography,” Proc. SPIE 7885, 78850H (2011), doi:.
[CrossRef]

Kulkarni, M. D.

Leahy, M. J.

E. Jonathan, J. Enfield, and M. J. Leahy, “Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images,” J. Biophotonics , 4:n/a (2011), doi: http://onlinelibrary.wiley.com/doi/10.1002/jbio.201000103/pdf
[PubMed]

Lee, K.

Leitgeb, R. A.

Leung, M. K. K.

Lim, Y.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Liu, G.

Liu, J. J.

B. Baumann, B. Potsaid, J. J. Liu, M. F. Kraus, D. Huang, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Retinal blood flow measurement with ultrahigh-speed swept-source / Fourier domain optical coherence tomography,” Proc. SPIE 7885, 78850H (2011), doi:.
[CrossRef]

Makita, S.

Malekafzali, A.

Mariampillai, A.

Milner, T. E.

Miura, M.

Moriyama, E. H.

Munce, N. R.

Myllylä, R.

T. Fabritius, S. Makita, Y. Hong, R. Myllylä, and Y. Yasuno, “Automated retinal shadow compensation of optical coherence tomography images,” J. Biomed. Opt. 14(1), 010503 (2009).
[CrossRef] [PubMed]

Nassif, N.

Nelson, J. S.

H. Ren, K. M. Brecke, Z. Ding, Y. Zhao, J. S. Nelson, and Z. Chen, “Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography,” Opt. Lett. 27(6), 409–411 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=ol-27-6-409 .
[CrossRef]

Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett. 25(18), 1358–1360 (2000), http://www.opticsinfobase.org/abstract.cfm?URI=ol-25-18-1358 .
[CrossRef]

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25(2), 114–116 (2000), http://www.opticsinfobase.org/abstract.cfm?URI=ol-25-2-114 .
[CrossRef]

Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22(14), 1119–1121 (1997), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-22-14-1119 .
[CrossRef] [PubMed]

Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22(1), 64–66 (1997), http://www.opticsinfobase.org/abstract.cfm?URI=ol-22-1-64 .
[CrossRef] [PubMed]

Park, B.

Pierce, M. C.

Pircher, M.

Potsaid, B.

B. Baumann, B. Potsaid, J. J. Liu, M. F. Kraus, D. Huang, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Retinal blood flow measurement with ultrahigh-speed swept-source / Fourier domain optical coherence tomography,” Proc. SPIE 7885, 78850H (2011), doi:.
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Qi, W.

Ren, H.

Saunders, S.

R. K. Wang, L. An, S. Saunders, and D. J. Wilson, “Optical microangiography provides depth-resolved images of directional ocular blood perfusion in posterior eye segment,” J. Biomed. Opt. 15(2), 020502 (2010).
[CrossRef] [PubMed]

Saxer, C.

Schmetterer, L.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Schwartz, D.

Shen, Q.

Srinivas, S.

Standish, B. A.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Stromski, S.

Subhush, H. M.

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Szkulmowska, A.

Szkulmowski, M.

Szlag, D.

Tao, Y. K.

Tearney, G.

Tearney, G. J.

B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Statistical properties of phase-decorrelation in phase-resolved Doppler optical coherence tomography,” IEEE Trans. Med. Imaging 28(6), 814–821 (2009).
[CrossRef] [PubMed]

Torzicky, T.

Vakoc, B.

Vakoc, B. J.

B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Statistical properties of phase-decorrelation in phase-resolved Doppler optical coherence tomography,” IEEE Trans. Med. Imaging 28(6), 814–821 (2009).
[CrossRef] [PubMed]

van Gemert, M. J. C.

Vitkin, A.

Vitkin, I. A.

Wang, R. K.

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
[CrossRef] [PubMed]

R. K. Wang, L. An, S. Saunders, and D. J. Wilson, “Optical microangiography provides depth-resolved images of directional ocular blood perfusion in posterior eye segment,” J. Biomed. Opt. 15(2), 020502 (2010).
[CrossRef] [PubMed]

R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=ol-35-9- .
[CrossRef] [PubMed]

L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-15-11438 .
[CrossRef] [PubMed]

Wang, X.

Welch, A. J.

Werner, J. S.

White, B. R.

Wilson, B. C.

Wilson, D. J.

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
[CrossRef] [PubMed]

R. K. Wang, L. An, S. Saunders, and D. J. Wilson, “Optical microangiography provides depth-resolved images of directional ocular blood perfusion in posterior eye segment,” J. Biomed. Opt. 15(2), 020502 (2010).
[CrossRef] [PubMed]

R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=ol-35-9- .
[CrossRef] [PubMed]

Wojtkowski, M.

Xiang, S.

Yamanari, M.

Yang, V. X. D.

Yasuno, Y.

Yatagai, T.

Yazdanfar, S.

Yu, L.

Yun, S.

Zawadzki, R. J.

Zhang, J.

Zhao, Y.

Zotter, S.

IEEE Trans. Med. Imaging (1)

B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Statistical properties of phase-decorrelation in phase-resolved Doppler optical coherence tomography,” IEEE Trans. Med. Imaging 28(6), 814–821 (2009).
[CrossRef] [PubMed]

J. Biomed. Opt. (4)

R. K. Wang, L. An, S. Saunders, and D. J. Wilson, “Optical microangiography provides depth-resolved images of directional ocular blood perfusion in posterior eye segment,” J. Biomed. Opt. 15(2), 020502 (2010).
[CrossRef] [PubMed]

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
[CrossRef] [PubMed]

L. Yu and Z. Chen, “Doppler variance imaging for three-dimensional retina and choroid angiography,” J. Biomed. Opt. 15(1), 016029 (2010).
[CrossRef] [PubMed]

T. Fabritius, S. Makita, Y. Hong, R. Myllylä, and Y. Yasuno, “Automated retinal shadow compensation of optical coherence tomography images,” J. Biomed. Opt. 14(1), 010503 (2009).
[CrossRef] [PubMed]

J. Biophotonics (1)

E. Jonathan, J. Enfield, and M. J. Leahy, “Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images,” J. Biophotonics , 4:n/a (2011), doi: http://onlinelibrary.wiley.com/doi/10.1002/jbio.201000103/pdf
[PubMed]

Opt. Express (15)

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11(25), 3490–3497 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-11-25-3490 .
[CrossRef] [PubMed]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11(23), 3116–3121 (2003), http://www.opticsinfobase.org/abstract.cfm?uri=oe-11-23-3116 .
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-17-7821 .
[CrossRef] [PubMed]

L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-15-11438 .
[CrossRef] [PubMed]

G. Liu, W. Qi, L. Yu, and Z. Chen, “Real-time bulk-motion-correction free Doppler variance optical coherence tomography for choroidal capillary vasculature imaging,” Opt. Express 19(4), 3657–3666 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-4-3657 .
[CrossRef] [PubMed]

J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express 17(24), 22190–22200 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-24-22190 .
[CrossRef] [PubMed]

I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express 17(26), 23736–23754 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-26-23736 .
[CrossRef]

S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express 19(2), 1217–1227 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-2-1217 .
[CrossRef] [PubMed]

S. Makita, F. Jaillon, M. Yamanari, M. Miura, and Y. Yasuno, “Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography,” Opt. Express 19(2), 1271–1283 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-2-1271 .
[CrossRef] [PubMed]

B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13(14), 5483–5493 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-14-5483 .
[CrossRef] [PubMed]

J. Barton and S. Stromski, “Flow measurement without phase information in optical coherence tomography images,” Opt. Express 13(14), 5234–5239 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-14-5234 .
[CrossRef] [PubMed]

Y. K. Tao, K. M. Kennedy, and J. A. Izatt, “Velocity-resolved 3D retinal microvessel imaging using single-pass flow imaging spectral domain optical coherence tomography,” Opt. Express 17(5), 4177–4188 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-5-4177 .
[CrossRef] [PubMed]

Y. Yasuno, Y. J. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15(10), 6121–6139 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-10-6121 .
[CrossRef] [PubMed]

J. Zhang and Z. Chen, “In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography,” Opt. Express 13(19), 7449–7457 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-19-7449 .
[CrossRef] [PubMed]

M. Yamanari, Y. Lim, S. Makita, and Y. Yasuno, “Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-source optical coherence tomography with 1-μm probe,” Opt. Express 17(15), 12385–12396 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-15-12385 .
[CrossRef] [PubMed]

Opt. Lett. (9)

A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=ol-33-13 .
[CrossRef] [PubMed]

A. Mariampillai, M. K. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett. 35(8), 1257–1259 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=ol-35-8-1257 .
[CrossRef] [PubMed]

Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22(1), 64–66 (1997), http://www.opticsinfobase.org/abstract.cfm?URI=ol-22-1-64 .
[CrossRef] [PubMed]

Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22(14), 1119–1121 (1997), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-22-14-1119 .
[CrossRef] [PubMed]

J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22(18), 1439–1441 (1997), http://www.opticsinfobase.org/abstract.cfm?URI=ol-22-18-1439 .
[CrossRef]

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25(2), 114–116 (2000), http://www.opticsinfobase.org/abstract.cfm?URI=ol-25-2-114 .
[CrossRef]

Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett. 25(18), 1358–1360 (2000), http://www.opticsinfobase.org/abstract.cfm?URI=ol-25-18-1358 .
[CrossRef]

H. Ren, K. M. Brecke, Z. Ding, Y. Zhao, J. S. Nelson, and Z. Chen, “Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography,” Opt. Lett. 27(6), 409–411 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=ol-27-6-409 .
[CrossRef]

R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=ol-35-9- .
[CrossRef] [PubMed]

Proc. SPIE (1)

B. Baumann, B. Potsaid, J. J. Liu, M. F. Kraus, D. Huang, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Retinal blood flow measurement with ultrahigh-speed swept-source / Fourier domain optical coherence tomography,” Proc. SPIE 7885, 78850H (2011), doi:.
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the spectrometer-based FDOCT system. SLD: Super luminescent diode; C: Collimator; NDF: Neutral density filter; M: Mirror; G: Grating; L: Lens; GS: Galvanometer mirror scanner.

Fig. 2
Fig. 2

(a) OCT structure image; (b) CD image; (c) PRDV image; (d) IBDV image. (e) Zoomed image for the region in the white rectangle in (b). (f). Zoomed image for the region in the white rectangle in (c).

Fig. 3
Fig. 3

Schematic of the swept source Fourier domain OCT system. SS: Swept source laser: C: Collimator; Cir: Circulator; NDF: Neutral density filter; M: Mirror; BD: Balanced detector; L: lens; GS: Galvanometer mirror scanner.

Fig. 4
Fig. 4

Phase stability analysis of the SSOCT system. (a) Phase differences between adjacent A-lines at the static mirror location. (b). Histogram of the phase difference distribution.

Fig. 5
Fig. 5

(a) OCT structure image; (b) CD image; (c) PRDV image; (d) IBDV image. (e) Zoomed image of the region in the white rectangle in (b).

Fig. 6
Fig. 6

(a) OCT structure image; (b) CD image; (c) Doppler variance image obtained with Eq. (3); (d) Doppler variance image obtained with modified algorithm Eq. (5).

Fig. 7
Fig. 7

En-face and projection view IBDV images. (a)–(k) are depth-resolved en-face IBDV images. (a)–(k) are, respectively, at a depth of 18.5 µm, 37 µm, 55.5 µm, 74 µm, 92.5 µm, 111 µm, 129.5 µm, 148 µm, 166.5 µm, 185 µm, 203.5 µm below the RPE layer. The depth difference between adjacent images is 18.5 µm. (l) Projection view of the IBDV image for all layers below the RPE layer.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

σ 2 = 1 T 2 ( 1 | A j , z A j + 1 , z * | A j , z A j , z * )
σ 2 = 1 T 2 [ 1 | j = 1 J ( A j , z A j + 1 , z * ) | j = 1 J ( A j , z A j , z * ) ]
σ 2 = 1 T 2 [ 1 | j = 1 J z = 1 N ( A j , z A j + 1 , z * ) | j = 1 J z = 1 N ( A j , z A j , z * ) ] .
σ 2 = 1 T 2 [ 1 j = 1 J | ( A j , z A j + 1 , z * ) | j = 1 J ( A j , z A j , z * ) ]
σ 2 = 1 T 2 [ 1 j = 1 J z = 1 N | ( A j , z A j + 1 , z * ) | j = 1 J z = 1 N ( A j , z A j , z * ) ] .

Metrics