Abstract

We imprint plasmonic near field enhancements as nanoscale topography in SU8 photoresist using two-photon absorption from a spectrally filtered broadband supercontinuum light source. Imprinted patterns smaller than 50 nm across are obtained localized at positions of high local field enhancements in gold bow tie antennas, and gold split rings resonant in the visible and near-infrared. Enhanced exposure only occurs at wavelengths and polarizations that exactly match the plasmonic resonances. Hence our work demonstrates that wavelength selective addressing of hot spots for nanolithography using an inexpensive, low peak-power picosecond pulsed source is freely tunable throughout the visible and infrared to match any desired plasmon resonance.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef] [PubMed]
  2. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
    [CrossRef]
  3. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
    [CrossRef]
  4. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442–453 (2008).
    [CrossRef]
  5. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9, 205–213 (2010).
    [CrossRef]
  6. A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bow tie optical nanoantennas,” Nano Lett. 6, 355–360 (2006). PMID: .
    [CrossRef] [PubMed]
  7. O. J. F. Martin, “Surface plasmon illumination scheme for contact lithography beyond the diffraction limit,” Microelectron. Eng. 67–68, 24–30 (2003).
    [CrossRef]
  8. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4, 1085–1088 (2004).
    [CrossRef]
  9. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
    [CrossRef] [PubMed]
  10. D. B. Shao and S. C. Chen, “Direct patterning of three-dimensional periodic nanostructures by surface-plasmon-assisted nanolithography,” Nano Lett. 6, 2279–2283 (2006).
    [CrossRef] [PubMed]
  11. K. Ueno, S. Juodkazis, T. Shibuya, Y. Yokota, V. Mizeikis, K. Sasaki, and H. Misawa, “Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source,” J. Am. Chem. Soc 130, 6928–6929 (2008).
    [CrossRef] [PubMed]
  12. N. Murazawa, K. Ueno, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spatially selective nonlinear photopolymerization induced by the near-field of surface plasmons localized on rectangular gold nanorods,” J. Phys. Chem. C 113, 1147–1149 (2009).
    [CrossRef]
  13. K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanogap-assisted surface plasmon nanolithography,” J. Phys. Chem. Lett. 1, 657–662 (2010).
    [CrossRef]
  14. C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S.-h. Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-field photochemical imaging of noble metal nanostructures,” Nano Lett. 5, 615–619 (2005).
    [CrossRef] [PubMed]
  15. C. Deeb, R. Bachelot, J. Plain, A.-L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano 4, 4579–4586 (2010).
    [CrossRef] [PubMed]
  16. A. F. Koenderink, J. V. Hernández, F. Robicheaux, L. D. Noordam, and A. Polman, “Programmable nanolithography with plasmon nanoparticle arrays,” Nano Lett. 7, 745–749 (2007).
    [CrossRef] [PubMed]
  17. M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett. 7, 3145–3149 (2007).
    [CrossRef] [PubMed]
  18. B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Digital plasmonics,” Nat. Photonics (in press) arXiv:1011.4244 (2011).
  19. P. S. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
    [CrossRef] [PubMed]
  20. A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409 (2005).
    [CrossRef]
  21. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16, 9144–9154 (2008).
    [CrossRef] [PubMed]
  22. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
    [CrossRef] [PubMed]
  23. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14, 8827–8836 (2006).
    [CrossRef] [PubMed]
  24. T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, “Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials,” Opt. Lett. 33, 848–850 (2008).
    [CrossRef] [PubMed]
  25. D. Diessel, M. Decker, S. Linden, and M. Wegener, “Near-field optical experiments on low-symmetry split-ring-resonator arrays,” Opt. Lett. 35, 3661–3663 (2010).
    [CrossRef] [PubMed]
  26. G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. G. de Abajo, M. Wegener, and M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105, 255501 (2010).
    [CrossRef]
  27. I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays,” Phys. Rev. Lett. 103, 213902 (2009).
    [CrossRef]
  28. H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “Su-8: a low-cost negative resist for mems,” J. Micromech. Microeng. 7, 121–124 (1997).
    [CrossRef]
  29. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102, 146807 (2009).
    [CrossRef] [PubMed]
  30. Y. Bi and D. C. Neckers, “A visible light initiating system for free radical promoted cationic polymerization,” Macromolecules 27, 3683–3693 (1994).
    [CrossRef]
  31. P. Banzer, U. Peschel, S. Quabis, and G. Leuchs, “On the experimental investigation of the electric and magnetic response of a single nano-structure,” Opt. Express 18, 10905–10923 (2010).
    [CrossRef] [PubMed]
  32. F. Garwe, U. Bauerschäfer, A. Csaki, A. Steinbrück, K. Ritter, A. Bochmann, J. Bergmann, A. Weise, D. Akimov, G. Maubach, J. König, G. Hüttmann, W. Paa, J. Popp, and W. Fritzsche, “Optically controlled thermal management on the nanometer length scale,” Nanotechnology 19, 055207 (2008).
    [CrossRef] [PubMed]
  33. K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011).
    [CrossRef]
  34. M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials: erratum,” Opt. Express 16, 8055–8055 (2008).
    [CrossRef]
  35. R. de Waele, A. F. Koenderink, and A. Polman, “Tunable nanoscale localization of energy on plasmon particle arrays,” Nano Lett. 7, 2004–2008 (2007).
    [CrossRef]

2011

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011).
[CrossRef]

2010

P. Banzer, U. Peschel, S. Quabis, and G. Leuchs, “On the experimental investigation of the electric and magnetic response of a single nano-structure,” Opt. Express 18, 10905–10923 (2010).
[CrossRef] [PubMed]

D. Diessel, M. Decker, S. Linden, and M. Wegener, “Near-field optical experiments on low-symmetry split-ring-resonator arrays,” Opt. Lett. 35, 3661–3663 (2010).
[CrossRef] [PubMed]

G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. G. de Abajo, M. Wegener, and M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105, 255501 (2010).
[CrossRef]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9, 205–213 (2010).
[CrossRef]

K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanogap-assisted surface plasmon nanolithography,” J. Phys. Chem. Lett. 1, 657–662 (2010).
[CrossRef]

C. Deeb, R. Bachelot, J. Plain, A.-L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano 4, 4579–4586 (2010).
[CrossRef] [PubMed]

2009

I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays,” Phys. Rev. Lett. 103, 213902 (2009).
[CrossRef]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102, 146807 (2009).
[CrossRef] [PubMed]

N. Murazawa, K. Ueno, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spatially selective nonlinear photopolymerization induced by the near-field of surface plasmons localized on rectangular gold nanorods,” J. Phys. Chem. C 113, 1147–1149 (2009).
[CrossRef]

2008

F. Garwe, U. Bauerschäfer, A. Csaki, A. Steinbrück, K. Ritter, A. Bochmann, J. Bergmann, A. Weise, D. Akimov, G. Maubach, J. König, G. Hüttmann, W. Paa, J. Popp, and W. Fritzsche, “Optically controlled thermal management on the nanometer length scale,” Nanotechnology 19, 055207 (2008).
[CrossRef] [PubMed]

T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, “Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials,” Opt. Lett. 33, 848–850 (2008).
[CrossRef] [PubMed]

M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials: erratum,” Opt. Express 16, 8055–8055 (2008).
[CrossRef]

H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16, 9144–9154 (2008).
[CrossRef] [PubMed]

K. Ueno, S. Juodkazis, T. Shibuya, Y. Yokota, V. Mizeikis, K. Sasaki, and H. Misawa, “Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source,” J. Am. Chem. Soc 130, 6928–6929 (2008).
[CrossRef] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442–453 (2008).
[CrossRef]

2007

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[CrossRef]

A. F. Koenderink, J. V. Hernández, F. Robicheaux, L. D. Noordam, and A. Polman, “Programmable nanolithography with plasmon nanoparticle arrays,” Nano Lett. 7, 745–749 (2007).
[CrossRef] [PubMed]

M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett. 7, 3145–3149 (2007).
[CrossRef] [PubMed]

R. de Waele, A. F. Koenderink, and A. Polman, “Tunable nanoscale localization of energy on plasmon particle arrays,” Nano Lett. 7, 2004–2008 (2007).
[CrossRef]

2006

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14, 8827–8836 (2006).
[CrossRef] [PubMed]

D. B. Shao and S. C. Chen, “Direct patterning of three-dimensional periodic nanostructures by surface-plasmon-assisted nanolithography,” Nano Lett. 6, 2279–2283 (2006).
[CrossRef] [PubMed]

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bow tie optical nanoantennas,” Nano Lett. 6, 355–360 (2006). PMID: .
[CrossRef] [PubMed]

2005

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S.-h. Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-field photochemical imaging of noble metal nanostructures,” Nano Lett. 5, 615–619 (2005).
[CrossRef] [PubMed]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409 (2005).
[CrossRef]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

2004

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4, 1085–1088 (2004).
[CrossRef]

2003

O. J. F. Martin, “Surface plasmon illumination scheme for contact lithography beyond the diffraction limit,” Microelectron. Eng. 67–68, 24–30 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

P. S. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef] [PubMed]

1997

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “Su-8: a low-cost negative resist for mems,” J. Micromech. Microeng. 7, 121–124 (1997).
[CrossRef]

1994

Y. Bi and D. C. Neckers, “A visible light initiating system for free radical promoted cationic polymerization,” Macromolecules 27, 3683–3693 (1994).
[CrossRef]

Akimov, D.

F. Garwe, U. Bauerschäfer, A. Csaki, A. Steinbrück, K. Ritter, A. Bochmann, J. Bergmann, A. Weise, D. Akimov, G. Maubach, J. König, G. Hüttmann, W. Paa, J. Popp, and W. Fritzsche, “Optically controlled thermal management on the nanometer length scale,” Nanotechnology 19, 055207 (2008).
[CrossRef] [PubMed]

Ambekar, R.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011).
[CrossRef]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442–453 (2008).
[CrossRef]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9, 205–213 (2010).
[CrossRef]

Bachelot, R.

C. Deeb, R. Bachelot, J. Plain, A.-L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano 4, 4579–4586 (2010).
[CrossRef] [PubMed]

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S.-h. Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-field photochemical imaging of noble metal nanostructures,” Nano Lett. 5, 615–619 (2005).
[CrossRef] [PubMed]

Balan, L.

C. Deeb, R. Bachelot, J. Plain, A.-L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano 4, 4579–4586 (2010).
[CrossRef] [PubMed]

Banzer, P.

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Baudrion, A.-L.

C. Deeb, R. Bachelot, J. Plain, A.-L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano 4, 4579–4586 (2010).
[CrossRef] [PubMed]

Bauerschäfer, U.

F. Garwe, U. Bauerschäfer, A. Csaki, A. Steinbrück, K. Ritter, A. Bochmann, J. Bergmann, A. Weise, D. Akimov, G. Maubach, J. König, G. Hüttmann, W. Paa, J. Popp, and W. Fritzsche, “Optically controlled thermal management on the nanometer length scale,” Nanotechnology 19, 055207 (2008).
[CrossRef] [PubMed]

Bergmann, J.

F. Garwe, U. Bauerschäfer, A. Csaki, A. Steinbrück, K. Ritter, A. Bochmann, J. Bergmann, A. Weise, D. Akimov, G. Maubach, J. König, G. Hüttmann, W. Paa, J. Popp, and W. Fritzsche, “Optically controlled thermal management on the nanometer length scale,” Nanotechnology 19, 055207 (2008).
[CrossRef] [PubMed]

Bi, Y.

Y. Bi and D. C. Neckers, “A visible light initiating system for free radical promoted cationic polymerization,” Macromolecules 27, 3683–3693 (1994).
[CrossRef]

Billot, L.

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S.-h. Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-field photochemical imaging of noble metal nanostructures,” Nano Lett. 5, 615–619 (2005).
[CrossRef] [PubMed]

Bochmann, A.

F. Garwe, U. Bauerschäfer, A. Csaki, A. Steinbrück, K. Ritter, A. Bochmann, J. Bergmann, A. Weise, D. Akimov, G. Maubach, J. König, G. Hüttmann, W. Paa, J. Popp, and W. Fritzsche, “Optically controlled thermal management on the nanometer length scale,” Nanotechnology 19, 055207 (2008).
[CrossRef] [PubMed]

Boudarham, G.

G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. G. de Abajo, M. Wegener, and M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105, 255501 (2010).
[CrossRef]

Bouhelier, A.

C. Deeb, R. Bachelot, J. Plain, A.-L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano 4, 4579–4586 (2010).
[CrossRef] [PubMed]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
[CrossRef]

Burger, S.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
[CrossRef]

Chang, S.-h.

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S.-h. Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-field photochemical imaging of noble metal nanostructures,” Nano Lett. 5, 615–619 (2005).
[CrossRef] [PubMed]

Chen, S. C.

D. B. Shao and S. C. Chen, “Direct patterning of three-dimensional periodic nanostructures by surface-plasmon-assisted nanolithography,” Nano Lett. 6, 2279–2283 (2006).
[CrossRef] [PubMed]

Conley, N. R.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bow tie optical nanoantennas,” Nano Lett. 6, 355–360 (2006). PMID: .
[CrossRef] [PubMed]

Crozier, K. B.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409 (2005).
[CrossRef]

Csaki, A.

F. Garwe, U. Bauerschäfer, A. Csaki, A. Steinbrück, K. Ritter, A. Bochmann, J. Bergmann, A. Weise, D. Akimov, G. Maubach, J. König, G. Hüttmann, W. Paa, J. Popp, and W. Fritzsche, “Optically controlled thermal management on the nanometer length scale,” Nanotechnology 19, 055207 (2008).
[CrossRef] [PubMed]

de Abajo, J. G.

G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. G. de Abajo, M. Wegener, and M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105, 255501 (2010).
[CrossRef]

de Waele, R.

R. de Waele, A. F. Koenderink, and A. Polman, “Tunable nanoscale localization of energy on plasmon particle arrays,” Nano Lett. 7, 2004–2008 (2007).
[CrossRef]

Decker, M.

Deeb, C.

C. Deeb, R. Bachelot, J. Plain, A.-L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano 4, 4579–4586 (2010).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Despont, M.

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “Su-8: a low-cost negative resist for mems,” J. Micromech. Microeng. 7, 121–124 (1997).
[CrossRef]

Diessel, D.

Dorfmüller, J.

Durach, M.

M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett. 7, 3145–3149 (2007).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Ecoffet, C.

C. Deeb, R. Bachelot, J. Plain, A.-L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano 4, 4579–4586 (2010).
[CrossRef] [PubMed]

Enkrich, C.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Etrich, C.

Fahrni, N.

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “Su-8: a low-cost negative resist for mems,” J. Micromech. Microeng. 7, 121–124 (1997).
[CrossRef]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4, 1085–1088 (2004).
[CrossRef]

Fang, N. X.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011).
[CrossRef]

Feth, N.

G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. G. de Abajo, M. Wegener, and M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105, 255501 (2010).
[CrossRef]

M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials: erratum,” Opt. Express 16, 8055–8055 (2008).
[CrossRef]

Fischer, H.

Frimmer, M.

I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays,” Phys. Rev. Lett. 103, 213902 (2009).
[CrossRef]

Fritzsche, W.

F. Garwe, U. Bauerschäfer, A. Csaki, A. Steinbrück, K. Ritter, A. Bochmann, J. Bergmann, A. Weise, D. Akimov, G. Maubach, J. König, G. Hüttmann, W. Paa, J. Popp, and W. Fritzsche, “Optically controlled thermal management on the nanometer length scale,” Nanotechnology 19, 055207 (2008).
[CrossRef] [PubMed]

Fromm, D. P.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bow tie optical nanoantennas,” Nano Lett. 6, 355–360 (2006). PMID: .
[CrossRef] [PubMed]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409 (2005).
[CrossRef]

Fung, K. H.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011).
[CrossRef]

Garwe, F.

F. Garwe, U. Bauerschäfer, A. Csaki, A. Steinbrück, K. Ritter, A. Bochmann, J. Bergmann, A. Weise, D. Akimov, G. Maubach, J. König, G. Hüttmann, W. Paa, J. Popp, and W. Fritzsche, “Optically controlled thermal management on the nanometer length scale,” Nanotechnology 19, 055207 (2008).
[CrossRef] [PubMed]

Giannini, V.

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102, 146807 (2009).
[CrossRef] [PubMed]

Giessen, H.

Gómez Rivas, J.

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102, 146807 (2009).
[CrossRef] [PubMed]

Grand, J.

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S.-h. Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-field photochemical imaging of noble metal nanostructures,” Nano Lett. 5, 615–619 (2005).
[CrossRef] [PubMed]

Gray, S. K.

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S.-h. Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-field photochemical imaging of noble metal nanostructures,” Nano Lett. 5, 615–619 (2005).
[CrossRef] [PubMed]

Halas, N. J.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[CrossRef]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442–453 (2008).
[CrossRef]

Hernández, J. V.

A. F. Koenderink, J. V. Hernández, F. Robicheaux, L. D. Noordam, and A. Polman, “Programmable nanolithography with plasmon nanoparticle arrays,” Nano Lett. 7, 745–749 (2007).
[CrossRef] [PubMed]

Huang, L.

C. Deeb, R. Bachelot, J. Plain, A.-L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano 4, 4579–4586 (2010).
[CrossRef] [PubMed]

Hubert, C.

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S.-h. Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-field photochemical imaging of noble metal nanostructures,” Nano Lett. 5, 615–619 (2005).
[CrossRef] [PubMed]

Hüttmann, G.

F. Garwe, U. Bauerschäfer, A. Csaki, A. Steinbrück, K. Ritter, A. Bochmann, J. Bergmann, A. Weise, D. Akimov, G. Maubach, J. König, G. Hüttmann, W. Paa, J. Popp, and W. Fritzsche, “Optically controlled thermal management on the nanometer length scale,” Nanotechnology 19, 055207 (2008).
[CrossRef] [PubMed]

Jain, P. K.

C. Deeb, R. Bachelot, J. Plain, A.-L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano 4, 4579–4586 (2010).
[CrossRef] [PubMed]

Jradi, S.

C. Deeb, R. Bachelot, J. Plain, A.-L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano 4, 4579–4586 (2010).
[CrossRef] [PubMed]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
[CrossRef]

Juodkazis, S.

N. Murazawa, K. Ueno, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spatially selective nonlinear photopolymerization induced by the near-field of surface plasmons localized on rectangular gold nanorods,” J. Phys. Chem. C 113, 1147–1149 (2009).
[CrossRef]

K. Ueno, S. Juodkazis, T. Shibuya, Y. Yokota, V. Mizeikis, K. Sasaki, and H. Misawa, “Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source,” J. Am. Chem. Soc 130, 6928–6929 (2008).
[CrossRef] [PubMed]

Kern, K.

Kino, G. S.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bow tie optical nanoantennas,” Nano Lett. 6, 355–360 (2006). PMID: .
[CrossRef] [PubMed]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409 (2005).
[CrossRef]

Klein, M. W.

Ko, K. D.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011).
[CrossRef]

Kociak, M.

G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. G. de Abajo, M. Wegener, and M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105, 255501 (2010).
[CrossRef]

Koenderink, A. F.

I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays,” Phys. Rev. Lett. 103, 213902 (2009).
[CrossRef]

R. de Waele, A. F. Koenderink, and A. Polman, “Tunable nanoscale localization of energy on plasmon particle arrays,” Nano Lett. 7, 2004–2008 (2007).
[CrossRef]

A. F. Koenderink, J. V. Hernández, F. Robicheaux, L. D. Noordam, and A. Polman, “Programmable nanolithography with plasmon nanoparticle arrays,” Nano Lett. 7, 745–749 (2007).
[CrossRef] [PubMed]

König, J.

F. Garwe, U. Bauerschäfer, A. Csaki, A. Steinbrück, K. Ritter, A. Bochmann, J. Bergmann, A. Weise, D. Akimov, G. Maubach, J. König, G. Hüttmann, W. Paa, J. Popp, and W. Fritzsche, “Optically controlled thermal management on the nanometer length scale,” Nanotechnology 19, 055207 (2008).
[CrossRef] [PubMed]

Koschny, T.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Kostcheev, S.

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S.-h. Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-field photochemical imaging of noble metal nanostructures,” Nano Lett. 5, 615–619 (2005).
[CrossRef] [PubMed]

Kuhl, J.

Kumar, A.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011).
[CrossRef]

LaBianca, N.

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “Su-8: a low-cost negative resist for mems,” J. Micromech. Microeng. 7, 121–124 (1997).
[CrossRef]

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[CrossRef]

Lederer, F.

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

Lerondel, G.

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S.-h. Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-field photochemical imaging of noble metal nanostructures,” Nano Lett. 5, 615–619 (2005).
[CrossRef] [PubMed]

Leuchs, G.

Linden, S.

G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. G. de Abajo, M. Wegener, and M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105, 255501 (2010).
[CrossRef]

D. Diessel, M. Decker, S. Linden, and M. Wegener, “Near-field optical experiments on low-symmetry split-ring-resonator arrays,” Opt. Lett. 35, 3661–3663 (2010).
[CrossRef] [PubMed]

M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials: erratum,” Opt. Express 16, 8055–8055 (2008).
[CrossRef]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[CrossRef]

Liu, G. L.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011).
[CrossRef]

Lorenz, H.

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “Su-8: a low-cost negative resist for mems,” J. Micromech. Microeng. 7, 121–124 (1997).
[CrossRef]

Luo, Q.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4, 1085–1088 (2004).
[CrossRef]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442–453 (2008).
[CrossRef]

Martin, O. J. F.

H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16, 9144–9154 (2008).
[CrossRef] [PubMed]

O. J. F. Martin, “Surface plasmon illumination scheme for contact lithography beyond the diffraction limit,” Microelectron. Eng. 67–68, 24–30 (2003).
[CrossRef]

Maubach, G.

F. Garwe, U. Bauerschäfer, A. Csaki, A. Steinbrück, K. Ritter, A. Bochmann, J. Bergmann, A. Weise, D. Akimov, G. Maubach, J. König, G. Hüttmann, W. Paa, J. Popp, and W. Fritzsche, “Optically controlled thermal management on the nanometer length scale,” Nanotechnology 19, 055207 (2008).
[CrossRef] [PubMed]

Misawa, H.

K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanogap-assisted surface plasmon nanolithography,” J. Phys. Chem. Lett. 1, 657–662 (2010).
[CrossRef]

N. Murazawa, K. Ueno, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spatially selective nonlinear photopolymerization induced by the near-field of surface plasmons localized on rectangular gold nanorods,” J. Phys. Chem. C 113, 1147–1149 (2009).
[CrossRef]

K. Ueno, S. Juodkazis, T. Shibuya, Y. Yokota, V. Mizeikis, K. Sasaki, and H. Misawa, “Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source,” J. Am. Chem. Soc 130, 6928–6929 (2008).
[CrossRef] [PubMed]

Mizeikis, V.

K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanogap-assisted surface plasmon nanolithography,” J. Phys. Chem. Lett. 1, 657–662 (2010).
[CrossRef]

N. Murazawa, K. Ueno, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spatially selective nonlinear photopolymerization induced by the near-field of surface plasmons localized on rectangular gold nanorods,” J. Phys. Chem. C 113, 1147–1149 (2009).
[CrossRef]

K. Ueno, S. Juodkazis, T. Shibuya, Y. Yokota, V. Mizeikis, K. Sasaki, and H. Misawa, “Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source,” J. Am. Chem. Soc 130, 6928–6929 (2008).
[CrossRef] [PubMed]

Moerner, W. E.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bow tie optical nanoantennas,” Nano Lett. 6, 355–360 (2006). PMID: .
[CrossRef] [PubMed]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409 (2005).
[CrossRef]

Murazawa, N.

N. Murazawa, K. Ueno, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spatially selective nonlinear photopolymerization induced by the near-field of surface plasmons localized on rectangular gold nanorods,” J. Phys. Chem. C 113, 1147–1149 (2009).
[CrossRef]

Myroshnychenko, V.

G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. G. de Abajo, M. Wegener, and M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105, 255501 (2010).
[CrossRef]

Neckers, D. C.

Y. Bi and D. C. Neckers, “A visible light initiating system for free radical promoted cationic polymerization,” Macromolecules 27, 3683–3693 (1994).
[CrossRef]

Nelson, K.

M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett. 7, 3145–3149 (2007).
[CrossRef] [PubMed]

Nishijima, Y.

K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanogap-assisted surface plasmon nanolithography,” J. Phys. Chem. Lett. 1, 657–662 (2010).
[CrossRef]

Noordam, L. D.

A. F. Koenderink, J. V. Hernández, F. Robicheaux, L. D. Noordam, and A. Polman, “Programmable nanolithography with plasmon nanoparticle arrays,” Nano Lett. 7, 745–749 (2007).
[CrossRef] [PubMed]

Paa, W.

F. Garwe, U. Bauerschäfer, A. Csaki, A. Steinbrück, K. Ritter, A. Bochmann, J. Bergmann, A. Weise, D. Akimov, G. Maubach, J. König, G. Hüttmann, W. Paa, J. Popp, and W. Fritzsche, “Optically controlled thermal management on the nanometer length scale,” Nanotechnology 19, 055207 (2008).
[CrossRef] [PubMed]

Pertsch, T.

Peschel, U.

Plain, J.

C. Deeb, R. Bachelot, J. Plain, A.-L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano 4, 4579–4586 (2010).
[CrossRef] [PubMed]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9, 205–213 (2010).
[CrossRef]

A. F. Koenderink, J. V. Hernández, F. Robicheaux, L. D. Noordam, and A. Polman, “Programmable nanolithography with plasmon nanoparticle arrays,” Nano Lett. 7, 745–749 (2007).
[CrossRef] [PubMed]

R. de Waele, A. F. Koenderink, and A. Polman, “Tunable nanoscale localization of energy on plasmon particle arrays,” Nano Lett. 7, 2004–2008 (2007).
[CrossRef]

Popp, J.

F. Garwe, U. Bauerschäfer, A. Csaki, A. Steinbrück, K. Ritter, A. Bochmann, J. Bergmann, A. Weise, D. Akimov, G. Maubach, J. König, G. Hüttmann, W. Paa, J. Popp, and W. Fritzsche, “Optically controlled thermal management on the nanometer length scale,” Nanotechnology 19, 055207 (2008).
[CrossRef] [PubMed]

Quabis, S.

Renaud, P.

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “Su-8: a low-cost negative resist for mems,” J. Micromech. Microeng. 7, 121–124 (1997).
[CrossRef]

Ritter, K.

F. Garwe, U. Bauerschäfer, A. Csaki, A. Steinbrück, K. Ritter, A. Bochmann, J. Bergmann, A. Weise, D. Akimov, G. Maubach, J. König, G. Hüttmann, W. Paa, J. Popp, and W. Fritzsche, “Optically controlled thermal management on the nanometer length scale,” Nanotechnology 19, 055207 (2008).
[CrossRef] [PubMed]

Robicheaux, F.

A. F. Koenderink, J. V. Hernández, F. Robicheaux, L. D. Noordam, and A. Polman, “Programmable nanolithography with plasmon nanoparticle arrays,” Nano Lett. 7, 745–749 (2007).
[CrossRef] [PubMed]

Rockstuhl, C.

Royer, P.

C. Deeb, R. Bachelot, J. Plain, A.-L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano 4, 4579–4586 (2010).
[CrossRef] [PubMed]

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S.-h. Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-field photochemical imaging of noble metal nanostructures,” Nano Lett. 5, 615–619 (2005).
[CrossRef] [PubMed]

Rumyantseva, A.

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S.-h. Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-field photochemical imaging of noble metal nanostructures,” Nano Lett. 5, 615–619 (2005).
[CrossRef] [PubMed]

Rusina, A.

M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett. 7, 3145–3149 (2007).
[CrossRef] [PubMed]

Russell, P. S. J.

P. S. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef] [PubMed]

Sasaki, K.

K. Ueno, S. Juodkazis, T. Shibuya, Y. Yokota, V. Mizeikis, K. Sasaki, and H. Misawa, “Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source,” J. Am. Chem. Soc 130, 6928–6929 (2008).
[CrossRef] [PubMed]

Schatz, G. C.

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S.-h. Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-field photochemical imaging of noble metal nanostructures,” Nano Lett. 5, 615–619 (2005).
[CrossRef] [PubMed]

Schmidt, F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Schuck, P. J.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bow tie optical nanoantennas,” Nano Lett. 6, 355–360 (2006). PMID: .
[CrossRef] [PubMed]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409 (2005).
[CrossRef]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
[CrossRef]

Sersic, I.

I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays,” Phys. Rev. Lett. 103, 213902 (2009).
[CrossRef]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442–453 (2008).
[CrossRef]

Shao, D. B.

D. B. Shao and S. C. Chen, “Direct patterning of three-dimensional periodic nanostructures by surface-plasmon-assisted nanolithography,” Nano Lett. 6, 2279–2283 (2006).
[CrossRef] [PubMed]

Shibuya, T.

K. Ueno, S. Juodkazis, T. Shibuya, Y. Yokota, V. Mizeikis, K. Sasaki, and H. Misawa, “Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source,” J. Am. Chem. Soc 130, 6928–6929 (2008).
[CrossRef] [PubMed]

Soppera, O.

C. Deeb, R. Bachelot, J. Plain, A.-L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano 4, 4579–4586 (2010).
[CrossRef] [PubMed]

Soukoulis, C. M.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Srituravanich, W.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4, 1085–1088 (2004).
[CrossRef]

Steinbrück, A.

F. Garwe, U. Bauerschäfer, A. Csaki, A. Steinbrück, K. Ritter, A. Bochmann, J. Bergmann, A. Weise, D. Akimov, G. Maubach, J. König, G. Hüttmann, W. Paa, J. Popp, and W. Fritzsche, “Optically controlled thermal management on the nanometer length scale,” Nanotechnology 19, 055207 (2008).
[CrossRef] [PubMed]

Stockman, M. I.

M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett. 7, 3145–3149 (2007).
[CrossRef] [PubMed]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4, 1085–1088 (2004).
[CrossRef]

Sundaramurthy, A.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bow tie optical nanoantennas,” Nano Lett. 6, 355–360 (2006). PMID: .
[CrossRef] [PubMed]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409 (2005).
[CrossRef]

Takabatake, S.

K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanogap-assisted surface plasmon nanolithography,” J. Phys. Chem. Lett. 1, 657–662 (2010).
[CrossRef]

Toussaint, K. C.

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011).
[CrossRef]

Ueno, K.

K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanogap-assisted surface plasmon nanolithography,” J. Phys. Chem. Lett. 1, 657–662 (2010).
[CrossRef]

N. Murazawa, K. Ueno, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spatially selective nonlinear photopolymerization induced by the near-field of surface plasmons localized on rectangular gold nanorods,” J. Phys. Chem. C 113, 1147–1149 (2009).
[CrossRef]

K. Ueno, S. Juodkazis, T. Shibuya, Y. Yokota, V. Mizeikis, K. Sasaki, and H. Misawa, “Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source,” J. Am. Chem. Soc 130, 6928–6929 (2008).
[CrossRef] [PubMed]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442–453 (2008).
[CrossRef]

Vecchi, G.

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102, 146807 (2009).
[CrossRef] [PubMed]

Verhagen, E.

I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays,” Phys. Rev. Lett. 103, 213902 (2009).
[CrossRef]

Vettiger, P.

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “Su-8: a low-cost negative resist for mems,” J. Micromech. Microeng. 7, 121–124 (1997).
[CrossRef]

Vial, A.

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S.-h. Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-field photochemical imaging of noble metal nanostructures,” Nano Lett. 5, 615–619 (2005).
[CrossRef] [PubMed]

Vogelgesang, R.

Wegener, M.

D. Diessel, M. Decker, S. Linden, and M. Wegener, “Near-field optical experiments on low-symmetry split-ring-resonator arrays,” Opt. Lett. 35, 3661–3663 (2010).
[CrossRef] [PubMed]

G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. G. de Abajo, M. Wegener, and M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105, 255501 (2010).
[CrossRef]

M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials: erratum,” Opt. Express 16, 8055–8055 (2008).
[CrossRef]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Weise, A.

F. Garwe, U. Bauerschäfer, A. Csaki, A. Steinbrück, K. Ritter, A. Bochmann, J. Bergmann, A. Weise, D. Akimov, G. Maubach, J. König, G. Hüttmann, W. Paa, J. Popp, and W. Fritzsche, “Optically controlled thermal management on the nanometer length scale,” Nanotechnology 19, 055207 (2008).
[CrossRef] [PubMed]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
[CrossRef]

Wiederrecht, G. P.

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S.-h. Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-field photochemical imaging of noble metal nanostructures,” Nano Lett. 5, 615–619 (2005).
[CrossRef] [PubMed]

Yokota, Y.

K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanogap-assisted surface plasmon nanolithography,” J. Phys. Chem. Lett. 1, 657–662 (2010).
[CrossRef]

K. Ueno, S. Juodkazis, T. Shibuya, Y. Yokota, V. Mizeikis, K. Sasaki, and H. Misawa, “Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source,” J. Am. Chem. Soc 130, 6928–6929 (2008).
[CrossRef] [PubMed]

Zentgraf, T.

Zhang, X.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4, 1085–1088 (2004).
[CrossRef]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442–453 (2008).
[CrossRef]

Zhou, J. F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Zschiedrich, L.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

ACS Nano

C. Deeb, R. Bachelot, J. Plain, A.-L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano 4, 4579–4586 (2010).
[CrossRef] [PubMed]

J. Am. Chem. Soc

K. Ueno, S. Juodkazis, T. Shibuya, Y. Yokota, V. Mizeikis, K. Sasaki, and H. Misawa, “Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source,” J. Am. Chem. Soc 130, 6928–6929 (2008).
[CrossRef] [PubMed]

J. Micromech. Microeng.

H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “Su-8: a low-cost negative resist for mems,” J. Micromech. Microeng. 7, 121–124 (1997).
[CrossRef]

J. Phys. Chem. C

N. Murazawa, K. Ueno, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spatially selective nonlinear photopolymerization induced by the near-field of surface plasmons localized on rectangular gold nanorods,” J. Phys. Chem. C 113, 1147–1149 (2009).
[CrossRef]

J. Phys. Chem. Lett.

K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanogap-assisted surface plasmon nanolithography,” J. Phys. Chem. Lett. 1, 657–662 (2010).
[CrossRef]

Macromolecules

Y. Bi and D. C. Neckers, “A visible light initiating system for free radical promoted cationic polymerization,” Macromolecules 27, 3683–3693 (1994).
[CrossRef]

Microelectron. Eng.

O. J. F. Martin, “Surface plasmon illumination scheme for contact lithography beyond the diffraction limit,” Microelectron. Eng. 67–68, 24–30 (2003).
[CrossRef]

Nano Lett.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4, 1085–1088 (2004).
[CrossRef]

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bow tie optical nanoantennas,” Nano Lett. 6, 355–360 (2006). PMID: .
[CrossRef] [PubMed]

C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S.-h. Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-field photochemical imaging of noble metal nanostructures,” Nano Lett. 5, 615–619 (2005).
[CrossRef] [PubMed]

A. F. Koenderink, J. V. Hernández, F. Robicheaux, L. D. Noordam, and A. Polman, “Programmable nanolithography with plasmon nanoparticle arrays,” Nano Lett. 7, 745–749 (2007).
[CrossRef] [PubMed]

M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett. 7, 3145–3149 (2007).
[CrossRef] [PubMed]

D. B. Shao and S. C. Chen, “Direct patterning of three-dimensional periodic nanostructures by surface-plasmon-assisted nanolithography,” Nano Lett. 6, 2279–2283 (2006).
[CrossRef] [PubMed]

K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011).
[CrossRef]

R. de Waele, A. F. Koenderink, and A. Polman, “Tunable nanoscale localization of energy on plasmon particle arrays,” Nano Lett. 7, 2004–2008 (2007).
[CrossRef]

Nanotechnology

F. Garwe, U. Bauerschäfer, A. Csaki, A. Steinbrück, K. Ritter, A. Bochmann, J. Bergmann, A. Weise, D. Akimov, G. Maubach, J. König, G. Hüttmann, W. Paa, J. Popp, and W. Fritzsche, “Optically controlled thermal management on the nanometer length scale,” Nanotechnology 19, 055207 (2008).
[CrossRef] [PubMed]

Nat. Photonics

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[CrossRef]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Nature Mater.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
[CrossRef]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442–453 (2008).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9, 205–213 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409 (2005).
[CrossRef]

Phys. Rev. Lett.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. G. de Abajo, M. Wegener, and M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105, 255501 (2010).
[CrossRef]

I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays,” Phys. Rev. Lett. 103, 213902 (2009).
[CrossRef]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102, 146807 (2009).
[CrossRef] [PubMed]

Science

P. S. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

Other

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Digital plasmonics,” Nat. Photonics (in press) arXiv:1011.4244 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Our set up consists of a Fianium supercontinuum source (SC), filtered by acousto-optic tunable filters (AOTFs). We expand the beam(telescope lenses L1, L2) and polarize it (Pol), overfill the microscope objective back aperture, and write lines in SU8 by displacing the sample on a piezo stage. A CCD monitors the alignment via beam splitter BS and tube lens L3. (b) Scanning electron micrograph (SEM) of unexposed Au bow ties on sapphire, with gap width g=50 nm and taper half angle θ=20°. (c) Bow ties with polymerized SU8 at the bow tie tips after exposure with 800 nm, 5 mW, polarized along the bow tie, scan speed 0.3 μm/s.

Fig. 2
Fig. 2

Scanning electron micrograph (a) and sketch (b) of Au split rings on glass, with dimensions l=100 nm, thickness t =35 nm, gap width d=40 nm and base width w=60 nm. Panels (c,d): Transmission spectra for horizontal and vertical polarization (directions referenced to panel (b)) redshift when embedding the split rings in polymer (blue thick curves) as compared to those for split rings in air on glass (red thin dashed curves). The feature at 1050 nm in (c) is the LC resonance. The splitting at 700 nm is a grating diffraction that is not relevant for focused raster scanning lithography.

Fig. 3
Fig. 3

(a) We scan from left to right with polarization along the scan direction. In this paper ‘horizontal (vertical) polarization’ means: split ring base along (normal to) the polarization vector. (b) SEM micrograph of split rings (oriented as in Fig. 2(a), top panel) exposed well above the critical dose for SU8 on bare glass (λ=700 nm, power 3.1 mW, v=1.15 and 0.46 μm/s for upper and lower line, horizontal polarization). The lower line broadens from 600 nm to 1 μm. Similar line broadening was observed for 600, 650 and 700 nm. (c) SEM micrograph (angled view) of split rings exposed just below the critical dose for bare glass (λ=700 nm, 1 mW, vertical polarization). Isolated voxels fully enclosing split rings are observed. (d) Top view of voxels observed under conditions as in (c). (e) For λ=1050 nm (on the LC resonance) exposure also induces voxels around split rings, (power 5 mW, scan speed 0.46 μm/s, horizontal polarization). Panels (f, g): When exposed well below the critical dose (0.5 mW), resonance enhancement generates SU8 voxels between the SRR arms when excited at the LC resonance λ=1050 nm. (h,i) Feature size versus wavelength for polarization along the SRR base (h) and along the arms (i). Black squares: line broadening Δy at incident power just above the critical dose Red diamonds: voxel diameter for exposure just below the bare-glass critical dose. Results do not depend strongly on scan speed (0.46 μm/s for all data except square and triangle at 1050 nm (0.2 and 0.33 μm/s)). Horizontal error bars: AOTF bandwidth.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

p = α SU 8 ( λ ) W 2 w 3 v τ f exp ( y 2 / w 2 ) ,

Metrics