Abstract

Common solar cells used in photovoltaic modules feature metallic contacts which partially block the sunlight from reaching the semiconductor layer and reduce the overall efficiency of the modules. Diffractive optical elements were generated in the bulk glass of a photovoltaic module by ultrafast laser irradiation to direct light away from the contacts. Calculations of the planar electromagnetic wave diffraction and propagation were performed using the rigorous coupled wave analysis technique providing quantitative estimations for the potential efficiency enhancement of photovoltaic modules.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. R. Wenham, M. A. Green, M. E. Watt, and R. Corkish, Applied Photovoltaics , 2nd ed. (Earthscan Publications Ltd., 2007).
  2. L. Wen, L. Yueqiang, C. Jianjun, C. Yanling, W. Xiaodong, and Y. Fuhua, “Optimization of grid design for solar cells,” J. Semicond. 31(1), 014006 (2010).
    [CrossRef]
  3. P. Benítez, J. C. Miñano, P. Zamora, R. Mohedano, A. Cvetkovic, M. Buljan, J. Chaves, and M. Hernández, “High performance Fresnel-based photovoltaic concentrator,” Opt. Express 18(S1), A25–A40 (2010).
    [CrossRef] [PubMed]
  4. J. E. Cotter, R. B. Hall, M. G. Mauk, and A. M. Barnett, “Light trapping in silicon-film solar cells with rear pigmented dielectric reflectors,” Prog. Photovoltaics 7, 261–274 (1999).
    [CrossRef]
  5. J. Jaus, H. Pantsar, J. Eckert, M. Duell, H. Herfurth, and D. Doble, “Light management for reduction of bus bar and gridline shadowing in photovoltaic modules,” in Proceedings of the IEEE Photovoltaic Specialists Conference (IEEE2010), pp. 979–983 (2010).
    [CrossRef]
  6. S. Sinzinger and J. Jahns, “Integrated micro-optical imaging system with a high interconnection capacity fabricated in planar optics,” Appl. Opt. 36, 4729–4735 (1997).
    [CrossRef] [PubMed]
  7. Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements,” Appl. Phys. Lett. 12, 1908–1915 (2004).
  8. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
    [CrossRef] [PubMed]
  9. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
    [CrossRef]
  10. J. Choi, M. Ramme, T. Anderson, and M. C. Richardson, “Femtosecond laser written embedded diffractive optical elements and their applications,” Proc. SPIE 7589, 75891A (2010).
    [CrossRef]
  11. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttgart) 35, 237–246 (1972).
  12. P. Russbueldt, T. Mans, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier,” Opt. Lett. 35(24), 4169–4171 (2010).
    [CrossRef] [PubMed]

2010

L. Wen, L. Yueqiang, C. Jianjun, C. Yanling, W. Xiaodong, and Y. Fuhua, “Optimization of grid design for solar cells,” J. Semicond. 31(1), 014006 (2010).
[CrossRef]

P. Benítez, J. C. Miñano, P. Zamora, R. Mohedano, A. Cvetkovic, M. Buljan, J. Chaves, and M. Hernández, “High performance Fresnel-based photovoltaic concentrator,” Opt. Express 18(S1), A25–A40 (2010).
[CrossRef] [PubMed]

J. Choi, M. Ramme, T. Anderson, and M. C. Richardson, “Femtosecond laser written embedded diffractive optical elements and their applications,” Proc. SPIE 7589, 75891A (2010).
[CrossRef]

P. Russbueldt, T. Mans, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier,” Opt. Lett. 35(24), 4169–4171 (2010).
[CrossRef] [PubMed]

2004

Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements,” Appl. Phys. Lett. 12, 1908–1915 (2004).

1999

J. E. Cotter, R. B. Hall, M. G. Mauk, and A. M. Barnett, “Light trapping in silicon-film solar cells with rear pigmented dielectric reflectors,” Prog. Photovoltaics 7, 261–274 (1999).
[CrossRef]

1997

1996

1995

1972

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttgart) 35, 237–246 (1972).

Anderson, T.

J. Choi, M. Ramme, T. Anderson, and M. C. Richardson, “Femtosecond laser written embedded diffractive optical elements and their applications,” Proc. SPIE 7589, 75891A (2010).
[CrossRef]

Barnett, A. M.

J. E. Cotter, R. B. Hall, M. G. Mauk, and A. M. Barnett, “Light trapping in silicon-film solar cells with rear pigmented dielectric reflectors,” Prog. Photovoltaics 7, 261–274 (1999).
[CrossRef]

Benítez, P.

Buljan, M.

Chaves, J.

Choi, J.

J. Choi, M. Ramme, T. Anderson, and M. C. Richardson, “Femtosecond laser written embedded diffractive optical elements and their applications,” Proc. SPIE 7589, 75891A (2010).
[CrossRef]

Corkish, R.

S. R. Wenham, M. A. Green, M. E. Watt, and R. Corkish, Applied Photovoltaics , 2nd ed. (Earthscan Publications Ltd., 2007).

Cotter, J. E.

J. E. Cotter, R. B. Hall, M. G. Mauk, and A. M. Barnett, “Light trapping in silicon-film solar cells with rear pigmented dielectric reflectors,” Prog. Photovoltaics 7, 261–274 (1999).
[CrossRef]

Cvetkovic, A.

Davis, K. M.

Doble, D.

J. Jaus, H. Pantsar, J. Eckert, M. Duell, H. Herfurth, and D. Doble, “Light management for reduction of bus bar and gridline shadowing in photovoltaic modules,” in Proceedings of the IEEE Photovoltaic Specialists Conference (IEEE2010), pp. 979–983 (2010).
[CrossRef]

Duell, M.

J. Jaus, H. Pantsar, J. Eckert, M. Duell, H. Herfurth, and D. Doble, “Light management for reduction of bus bar and gridline shadowing in photovoltaic modules,” in Proceedings of the IEEE Photovoltaic Specialists Conference (IEEE2010), pp. 979–983 (2010).
[CrossRef]

Eckert, J.

J. Jaus, H. Pantsar, J. Eckert, M. Duell, H. Herfurth, and D. Doble, “Light management for reduction of bus bar and gridline shadowing in photovoltaic modules,” in Proceedings of the IEEE Photovoltaic Specialists Conference (IEEE2010), pp. 979–983 (2010).
[CrossRef]

Fuhua, Y.

L. Wen, L. Yueqiang, C. Jianjun, C. Yanling, W. Xiaodong, and Y. Fuhua, “Optimization of grid design for solar cells,” J. Semicond. 31(1), 014006 (2010).
[CrossRef]

Gaylord, T. K.

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttgart) 35, 237–246 (1972).

Grann, E. B.

Green, M. A.

S. R. Wenham, M. A. Green, M. E. Watt, and R. Corkish, Applied Photovoltaics , 2nd ed. (Earthscan Publications Ltd., 2007).

Hall, R. B.

J. E. Cotter, R. B. Hall, M. G. Mauk, and A. M. Barnett, “Light trapping in silicon-film solar cells with rear pigmented dielectric reflectors,” Prog. Photovoltaics 7, 261–274 (1999).
[CrossRef]

Herfurth, H.

J. Jaus, H. Pantsar, J. Eckert, M. Duell, H. Herfurth, and D. Doble, “Light management for reduction of bus bar and gridline shadowing in photovoltaic modules,” in Proceedings of the IEEE Photovoltaic Specialists Conference (IEEE2010), pp. 979–983 (2010).
[CrossRef]

Hernández, M.

Hirao, K.

Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements,” Appl. Phys. Lett. 12, 1908–1915 (2004).

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
[CrossRef] [PubMed]

Hoffmann, H. D.

Jahns, J.

Jaus, J.

J. Jaus, H. Pantsar, J. Eckert, M. Duell, H. Herfurth, and D. Doble, “Light management for reduction of bus bar and gridline shadowing in photovoltaic modules,” in Proceedings of the IEEE Photovoltaic Specialists Conference (IEEE2010), pp. 979–983 (2010).
[CrossRef]

Jianjun, C.

L. Wen, L. Yueqiang, C. Jianjun, C. Yanling, W. Xiaodong, and Y. Fuhua, “Optimization of grid design for solar cells,” J. Semicond. 31(1), 014006 (2010).
[CrossRef]

Kuroiwa, Y.

Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements,” Appl. Phys. Lett. 12, 1908–1915 (2004).

Mans, T.

Mauk, M. G.

J. E. Cotter, R. B. Hall, M. G. Mauk, and A. M. Barnett, “Light trapping in silicon-film solar cells with rear pigmented dielectric reflectors,” Prog. Photovoltaics 7, 261–274 (1999).
[CrossRef]

Miñano, J. C.

Miura, K.

Moharam, M. G.

Mohedano, R.

Narita, Y.

Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements,” Appl. Phys. Lett. 12, 1908–1915 (2004).

Pantsar, H.

J. Jaus, H. Pantsar, J. Eckert, M. Duell, H. Herfurth, and D. Doble, “Light management for reduction of bus bar and gridline shadowing in photovoltaic modules,” in Proceedings of the IEEE Photovoltaic Specialists Conference (IEEE2010), pp. 979–983 (2010).
[CrossRef]

Pommet, D. A.

Poprawe, R.

Ramme, M.

J. Choi, M. Ramme, T. Anderson, and M. C. Richardson, “Femtosecond laser written embedded diffractive optical elements and their applications,” Proc. SPIE 7589, 75891A (2010).
[CrossRef]

Richardson, M. C.

J. Choi, M. Ramme, T. Anderson, and M. C. Richardson, “Femtosecond laser written embedded diffractive optical elements and their applications,” Proc. SPIE 7589, 75891A (2010).
[CrossRef]

Russbueldt, P.

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttgart) 35, 237–246 (1972).

Sinzinger, S.

Sugimoto, N.

Takeshima, N.

Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements,” Appl. Phys. Lett. 12, 1908–1915 (2004).

Tanaka, S.

Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements,” Appl. Phys. Lett. 12, 1908–1915 (2004).

Watt, M. E.

S. R. Wenham, M. A. Green, M. E. Watt, and R. Corkish, Applied Photovoltaics , 2nd ed. (Earthscan Publications Ltd., 2007).

Weitenberg, J.

Wen, L.

L. Wen, L. Yueqiang, C. Jianjun, C. Yanling, W. Xiaodong, and Y. Fuhua, “Optimization of grid design for solar cells,” J. Semicond. 31(1), 014006 (2010).
[CrossRef]

Wenham, S. R.

S. R. Wenham, M. A. Green, M. E. Watt, and R. Corkish, Applied Photovoltaics , 2nd ed. (Earthscan Publications Ltd., 2007).

Xiaodong, W.

L. Wen, L. Yueqiang, C. Jianjun, C. Yanling, W. Xiaodong, and Y. Fuhua, “Optimization of grid design for solar cells,” J. Semicond. 31(1), 014006 (2010).
[CrossRef]

Yanling, C.

L. Wen, L. Yueqiang, C. Jianjun, C. Yanling, W. Xiaodong, and Y. Fuhua, “Optimization of grid design for solar cells,” J. Semicond. 31(1), 014006 (2010).
[CrossRef]

Yueqiang, L.

L. Wen, L. Yueqiang, C. Jianjun, C. Yanling, W. Xiaodong, and Y. Fuhua, “Optimization of grid design for solar cells,” J. Semicond. 31(1), 014006 (2010).
[CrossRef]

Zamora, P.

Appl. Opt.

Appl. Phys. Lett.

Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements,” Appl. Phys. Lett. 12, 1908–1915 (2004).

J. Opt. Soc. Am. A

J. Semicond.

L. Wen, L. Yueqiang, C. Jianjun, C. Yanling, W. Xiaodong, and Y. Fuhua, “Optimization of grid design for solar cells,” J. Semicond. 31(1), 014006 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Optik (Stuttgart)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttgart) 35, 237–246 (1972).

Proc. SPIE

J. Choi, M. Ramme, T. Anderson, and M. C. Richardson, “Femtosecond laser written embedded diffractive optical elements and their applications,” Proc. SPIE 7589, 75891A (2010).
[CrossRef]

Prog. Photovoltaics

J. E. Cotter, R. B. Hall, M. G. Mauk, and A. M. Barnett, “Light trapping in silicon-film solar cells with rear pigmented dielectric reflectors,” Prog. Photovoltaics 7, 261–274 (1999).
[CrossRef]

Other

J. Jaus, H. Pantsar, J. Eckert, M. Duell, H. Herfurth, and D. Doble, “Light management for reduction of bus bar and gridline shadowing in photovoltaic modules,” in Proceedings of the IEEE Photovoltaic Specialists Conference (IEEE2010), pp. 979–983 (2010).
[CrossRef]

S. R. Wenham, M. A. Green, M. E. Watt, and R. Corkish, Applied Photovoltaics , 2nd ed. (Earthscan Publications Ltd., 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic principle of light diverting technique by introducing a volumetric diffraction grating in the bulk of the cover glass (left). Definition of the diffraction grating parameters (right).

Fig. 2
Fig. 2

Femtosecond laser written modification in the cover glass of a solar cell: (a) cross section, (b) grating with 25 lines, (c) grating with 20 lines.

Fig. 3
Fig. 3

Farfield image of the intensity distribution produced by a grating with s = 20 μm, Δx = 10 μm (left). Comparison of the measured averaged intensity distribution with the calculated data (right).

Fig. 4
Fig. 4

(a) Calculated dependency of the efficiency enhancement factor on the number of layers. (b) Calculated intensity enhancement distribution for 1 and 8 layers in a grating with N = 9, Δx = 9 μm and s = 18 μm.

Fig. 5
Fig. 5

Calculated dependency of the efficiency enhancement factor on the number of lines N and the grating period s for different number of grating layers.

Fig. 6
Fig. 6

Calculated efficiency enhancement factor for different number of grating layers: (a) Dependency on the number of lines for a constant grating period s = 18 μm, (b) dependency on the grating period at a constant number of lines N = 9.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ ( x ) = 2 π λ 0 h ( x ) Δ n ( x , z ) d z .

Metrics