Abstract

We investigate systematically the evolution of second harmonic generation in strontium barium niobate with different degrees of disorder of its χ 2 nonlinearity. These different degrees of disordered domain structures are achieved through electrically switching of the polarization at room temperature. The size and distribution of the domains change during the poling process and this in turn strongly affects the spatial distribution of the second harmonic signal. The degree of disorder can be determined by analyzing the angular distribution and wavelength dependence of the second harmonic emission patterns combined with measurements of the spontaneous polarization. We demonstrate evidence of the control of the second harmonic emission pattern by creating defined states of order, and successfully reproduce the resulting patterns theoretically.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: Tuning and tolerances,” IEEE J. Quantum. Electron. 28, 2631–2654 (1992).
    [CrossRef]
  2. V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81, 4136–4139 (1998).
    [CrossRef]
  3. I. Freund, “Nonlinear diffraction,” Phys. Rev. Lett. 21, 1404–1406 (1968).
    [CrossRef]
  4. G. Dolino, J. Lajzerowicz, and M. Vallade, “Second-harmonic light scattering by domains in ferroelectric triglycine sulfate,” Phys. Rev. B 2, 2194–2200 (1970).
    [CrossRef]
  5. M. Baudrier-Raybaut, R. Haidar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432, 374–376 (2004).
    [CrossRef] [PubMed]
  6. P. Molina, S. Álvarez García, M. O. Ramírez, J. García-Sole, L. E. Bausá, H. Zhang, W. Gao, J. Wang, and M. Jiang, “Nonlinear prism based on the natural ferroelectric domain structure in calcium barium niobate,” Appl. Phys. Lett. 94, 071111 (2009).
    [CrossRef]
  7. A. S. Aleksandrovsky, A. M. Vyunishev, I. E. Shakhura, A. I. Zaitsev, and A. V. Zamkov, “Random quasi-phase-matching in a nonlinear photonic crystal structure of strontium tetraborate,” Phys. Rev. A 78, 031802 (2008).
    [CrossRef]
  8. S. Kawai, T. Ogawa, H. S. Lee, R. C. DeMattei, and R. S. Feigelson, “Second-harmonic generation from needle-like ferroelectric domains in Sr0.6Ba0.4Nd2O6 single crystals,” Appl. Phys. Lett. 73, 768–770 (1998).
    [CrossRef]
  9. F. Sibbers, J. Imbrock, and C. Denz, “Sum-frequency generation in disordered quadratic nonlinear media,” Proc. SPIE 7728, 77280Y (2010).
    [CrossRef]
  10. R. Fischer, S. M. Saltiel, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Broadband femtosecond frequency doubling in random media,” Appl. Phys. Lett. 89, 191105 (2006).
    [CrossRef]
  11. P. Molina, M. de la O Ramírez, and L. E. Bausá, “Strontium barium niobate as a multifunctional two-dimensional nonlinear photonic glass,” Adv. Funct. Mater. 18, 709–715 (2008).
    [CrossRef]
  12. A. R. Tunyagi, M. Ulex, and K. Betzler, “Noncollinear optical frequency doubling in strontium barium niobate,” Phys. Rev. Lett. 90, 243901 (2003).
    [CrossRef] [PubMed]
  13. K. A. Kuznetsov, G. K. Kitaeva, A. V. Shevlyuga, L. I. Ivleva, and T. R. Volk, “Second harmonic generation in a strontium barium niobate crystal with a random domain structure,” JETP Lett. 87, 98–102 (2008).
    [CrossRef]
  14. S. M. Saltiel, D. N. Neshev, R. Fischer, W. Krolikowski, A. Arie, and Y. S. Kivshar, “Spatiotemporal toroidal waves from the transverse second-harmonic generation,” Opt. Lett. 33, 527–529 (2008).
    [CrossRef] [PubMed]
  15. R. Fischer, D. N. Neshev, S. M. Saltiel, A. A. Sukhorukov, W. Krolikowski, and Y. S. Kivshar, “Monitoring ultrashort pulses by transverse frequency doubling of counterpropagating pulses in random media,” Appl. Phys. Lett. 91, 031104 (2007).
    [CrossRef]
  16. J. Trull, S. Saltiel, V. Roppo, C. Cojocaru, D. Dumay, W. Krolikowski, D. Neshev, R. Vilaseca, K. Staliunas, and Y. Kivshar, “Characterization of femtosecond pulses via transverse second-harmonic generation in random nonlinear media,” Appl. Phys. B 95, 609–615 (2009).
    [CrossRef]
  17. D. Dumay, S. M. Saltiel, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Pulse measurements by randomly quasi phase matched second harmonic generation in the regime of total internal reflection,” J. Phys. B 42, 175403 (2009).
    [CrossRef]
  18. U. Voelker and K. Betzler, “Domain morphology from k-space spectroscopy of ferroelectric crystals,” Phys. Rev. B 74, 132104 (2006).
    [CrossRef]
  19. U. Voelker, U. Heine, C. Gödecker, and K. Betzler“Domain size effects in a uniaxial ferroelectric relaxor system: The case of SrxBa1–xNb2O6,” J. Appl. Phys. 102, 114112 (2007).
    [CrossRef]
  20. D. V. Isakov, M. S. Belsley, T. R. Volk, and L. I. Ivleva, “Diffuse second harmonic generation under the ferro-electric switching in Sr0.75Ba0.25Nb2O6 crystals,” Appl. Phys. Lett. 92, 032904 (2008).
    [CrossRef]
  21. D. V. Isakov, T. R. Volk, and L. I. Ivleva, “Investigation of ferroelectric properties of strontium barium niobate crystals by second harmonic generation technique,” Phys. Solid State 51, 2334–2341 (2009).
    [CrossRef]
  22. T. Volk, D. Isakov, M. S. Belsley, and L. Ivleva, “Switching kinetics of a relaxor ferroelectric Sr0.75Ba0.25Nb2O6 observed by the second harmonic generation method,” Phys. Status Solidi A 2, 321–325 (2009).
    [CrossRef]
  23. D. Viehland, Z. Xu, and W.-H. Huang, “Structure-property relationships in strontium barium niobate I. needle-like nanopolar domains and the metastably-locked incommensurate structure,” Philos. Mag. A 71, 205–217 (1995).
    [CrossRef]
  24. P. Lehnen, W. Kleemann, T. Woike, and R. Pankrath, “Ferroelectric nanodomains in the uniaxial relaxor system Sr0.61−x Ba0.39 Nb2 O6 :Cex3+,” Phys. Rev. B 64, 224109 (2001).
    [CrossRef]
  25. J. Dec, V. V. Shvartsman, and W. Kleemann, “Domainlike precursor clusters in the paraelectric phase of the uniaxial relaxor Sr0.61Ba0.39Nb2O6,” Appl. Phys. Lett. 89, 212901 (2006).
    [CrossRef]
  26. K. Terabe, S. Takekawa, M. Nakamura, K. Kitamura, S. Higuchi, Y. Gotoh, and A. Gruverman, “Imaging and engineering the nanoscale-domain structure of a Sr0.61Ba0.39Nb2O6 crystal using a scanning force microscope,” Appl. Phys. Lett. 81, 2044–2046 (2002).
    [CrossRef]
  27. V. V. Shvartsman, W. Kleemann, T. Lukasiewicz, and J. Dec, “Nanopolar structure in SrxBa1–xNb2O6 single crystals tuned by Sr/Ba ratio and investigated by piezoelectric force microscopy,” Phys. Rev. B 77, 054105 (2008).
    [CrossRef]
  28. V. Roppo, W. Wang, K. Kalinowski, Y. Kong, C. Cojocaru, J. Trull, R. Vilaseca, M. Scalora, W. Krolikowski, and Y. Kivshar, “The role of ferroelectric domain structure in second harmonic generation in random quadratic media,” Opt. Express 18, 4012–4022 (2010).
    [CrossRef] [PubMed]
  29. Y. Le Grand, D. Rouede, C. Odin, R. Aubry, and S. Mattauch, “Second-harmonic scattering by domains in RbH2PO4 ferroelectrics,” Opt. Commun. 200, 249–260 (2001).
    [CrossRef]
  30. A. Arie and N. Voloch, “Periodic, quasi-periodic, and random quadratic nonlinear photonic crystals,” Laser Photonics Rev. 4, 355–373 (2010).
    [CrossRef]
  31. S. Stivala, A. C. Busacca, A. Pasquazi, R. L. Oliveri, R. Morandotti, and G. Assanto, “Random quasi-phase-matched second-harmonic generation in periodically poled lithium tantalate,” Opt. Lett. 35, 363–365 (2010).
    [CrossRef] [PubMed]
  32. L. Tian, D. A. Scrymgeour, and V. Gopalan, “Real-time study of domain dynamics in ferroelectric Sr0.61Ba0.39Nb2O6,” J. Appl. Phys. 97, 114111 (2005).
    [CrossRef]
  33. Y. Sheng, J. Dou, B. Ma, B. Cheng, and D. Zhang, “Broadband efficient second harmonic generation in media with a short-range order,” Appl. Phys. Lett. 91, 011101 (2007).
    [CrossRef]
  34. K. Megumi, N. Nagatsuma, Y. Kashiwada, and Y. Furuhata, “The congruent melting composition of strontium barium niobate,” J. Mater. Sci. 11, 1583–1592 (1976).
    [CrossRef]

2010 (4)

2009 (5)

D. V. Isakov, T. R. Volk, and L. I. Ivleva, “Investigation of ferroelectric properties of strontium barium niobate crystals by second harmonic generation technique,” Phys. Solid State 51, 2334–2341 (2009).
[CrossRef]

T. Volk, D. Isakov, M. S. Belsley, and L. Ivleva, “Switching kinetics of a relaxor ferroelectric Sr0.75Ba0.25Nb2O6 observed by the second harmonic generation method,” Phys. Status Solidi A 2, 321–325 (2009).
[CrossRef]

P. Molina, S. Álvarez García, M. O. Ramírez, J. García-Sole, L. E. Bausá, H. Zhang, W. Gao, J. Wang, and M. Jiang, “Nonlinear prism based on the natural ferroelectric domain structure in calcium barium niobate,” Appl. Phys. Lett. 94, 071111 (2009).
[CrossRef]

J. Trull, S. Saltiel, V. Roppo, C. Cojocaru, D. Dumay, W. Krolikowski, D. Neshev, R. Vilaseca, K. Staliunas, and Y. Kivshar, “Characterization of femtosecond pulses via transverse second-harmonic generation in random nonlinear media,” Appl. Phys. B 95, 609–615 (2009).
[CrossRef]

D. Dumay, S. M. Saltiel, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Pulse measurements by randomly quasi phase matched second harmonic generation in the regime of total internal reflection,” J. Phys. B 42, 175403 (2009).
[CrossRef]

2008 (6)

P. Molina, M. de la O Ramírez, and L. E. Bausá, “Strontium barium niobate as a multifunctional two-dimensional nonlinear photonic glass,” Adv. Funct. Mater. 18, 709–715 (2008).
[CrossRef]

K. A. Kuznetsov, G. K. Kitaeva, A. V. Shevlyuga, L. I. Ivleva, and T. R. Volk, “Second harmonic generation in a strontium barium niobate crystal with a random domain structure,” JETP Lett. 87, 98–102 (2008).
[CrossRef]

A. S. Aleksandrovsky, A. M. Vyunishev, I. E. Shakhura, A. I. Zaitsev, and A. V. Zamkov, “Random quasi-phase-matching in a nonlinear photonic crystal structure of strontium tetraborate,” Phys. Rev. A 78, 031802 (2008).
[CrossRef]

D. V. Isakov, M. S. Belsley, T. R. Volk, and L. I. Ivleva, “Diffuse second harmonic generation under the ferro-electric switching in Sr0.75Ba0.25Nb2O6 crystals,” Appl. Phys. Lett. 92, 032904 (2008).
[CrossRef]

V. V. Shvartsman, W. Kleemann, T. Lukasiewicz, and J. Dec, “Nanopolar structure in SrxBa1–xNb2O6 single crystals tuned by Sr/Ba ratio and investigated by piezoelectric force microscopy,” Phys. Rev. B 77, 054105 (2008).
[CrossRef]

S. M. Saltiel, D. N. Neshev, R. Fischer, W. Krolikowski, A. Arie, and Y. S. Kivshar, “Spatiotemporal toroidal waves from the transverse second-harmonic generation,” Opt. Lett. 33, 527–529 (2008).
[CrossRef] [PubMed]

2007 (3)

Y. Sheng, J. Dou, B. Ma, B. Cheng, and D. Zhang, “Broadband efficient second harmonic generation in media with a short-range order,” Appl. Phys. Lett. 91, 011101 (2007).
[CrossRef]

R. Fischer, D. N. Neshev, S. M. Saltiel, A. A. Sukhorukov, W. Krolikowski, and Y. S. Kivshar, “Monitoring ultrashort pulses by transverse frequency doubling of counterpropagating pulses in random media,” Appl. Phys. Lett. 91, 031104 (2007).
[CrossRef]

U. Voelker, U. Heine, C. Gödecker, and K. Betzler“Domain size effects in a uniaxial ferroelectric relaxor system: The case of SrxBa1–xNb2O6,” J. Appl. Phys. 102, 114112 (2007).
[CrossRef]

2006 (3)

U. Voelker and K. Betzler, “Domain morphology from k-space spectroscopy of ferroelectric crystals,” Phys. Rev. B 74, 132104 (2006).
[CrossRef]

R. Fischer, S. M. Saltiel, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Broadband femtosecond frequency doubling in random media,” Appl. Phys. Lett. 89, 191105 (2006).
[CrossRef]

J. Dec, V. V. Shvartsman, and W. Kleemann, “Domainlike precursor clusters in the paraelectric phase of the uniaxial relaxor Sr0.61Ba0.39Nb2O6,” Appl. Phys. Lett. 89, 212901 (2006).
[CrossRef]

2005 (1)

L. Tian, D. A. Scrymgeour, and V. Gopalan, “Real-time study of domain dynamics in ferroelectric Sr0.61Ba0.39Nb2O6,” J. Appl. Phys. 97, 114111 (2005).
[CrossRef]

2004 (1)

M. Baudrier-Raybaut, R. Haidar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432, 374–376 (2004).
[CrossRef] [PubMed]

2003 (1)

A. R. Tunyagi, M. Ulex, and K. Betzler, “Noncollinear optical frequency doubling in strontium barium niobate,” Phys. Rev. Lett. 90, 243901 (2003).
[CrossRef] [PubMed]

2002 (1)

K. Terabe, S. Takekawa, M. Nakamura, K. Kitamura, S. Higuchi, Y. Gotoh, and A. Gruverman, “Imaging and engineering the nanoscale-domain structure of a Sr0.61Ba0.39Nb2O6 crystal using a scanning force microscope,” Appl. Phys. Lett. 81, 2044–2046 (2002).
[CrossRef]

2001 (2)

Y. Le Grand, D. Rouede, C. Odin, R. Aubry, and S. Mattauch, “Second-harmonic scattering by domains in RbH2PO4 ferroelectrics,” Opt. Commun. 200, 249–260 (2001).
[CrossRef]

P. Lehnen, W. Kleemann, T. Woike, and R. Pankrath, “Ferroelectric nanodomains in the uniaxial relaxor system Sr0.61−x Ba0.39 Nb2 O6 :Cex3+,” Phys. Rev. B 64, 224109 (2001).
[CrossRef]

1998 (2)

S. Kawai, T. Ogawa, H. S. Lee, R. C. DeMattei, and R. S. Feigelson, “Second-harmonic generation from needle-like ferroelectric domains in Sr0.6Ba0.4Nd2O6 single crystals,” Appl. Phys. Lett. 73, 768–770 (1998).
[CrossRef]

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81, 4136–4139 (1998).
[CrossRef]

1995 (1)

D. Viehland, Z. Xu, and W.-H. Huang, “Structure-property relationships in strontium barium niobate I. needle-like nanopolar domains and the metastably-locked incommensurate structure,” Philos. Mag. A 71, 205–217 (1995).
[CrossRef]

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: Tuning and tolerances,” IEEE J. Quantum. Electron. 28, 2631–2654 (1992).
[CrossRef]

1976 (1)

K. Megumi, N. Nagatsuma, Y. Kashiwada, and Y. Furuhata, “The congruent melting composition of strontium barium niobate,” J. Mater. Sci. 11, 1583–1592 (1976).
[CrossRef]

1970 (1)

G. Dolino, J. Lajzerowicz, and M. Vallade, “Second-harmonic light scattering by domains in ferroelectric triglycine sulfate,” Phys. Rev. B 2, 2194–2200 (1970).
[CrossRef]

1968 (1)

I. Freund, “Nonlinear diffraction,” Phys. Rev. Lett. 21, 1404–1406 (1968).
[CrossRef]

Aleksandrovsky, A. S.

A. S. Aleksandrovsky, A. M. Vyunishev, I. E. Shakhura, A. I. Zaitsev, and A. V. Zamkov, “Random quasi-phase-matching in a nonlinear photonic crystal structure of strontium tetraborate,” Phys. Rev. A 78, 031802 (2008).
[CrossRef]

Álvarez García, S.

P. Molina, S. Álvarez García, M. O. Ramírez, J. García-Sole, L. E. Bausá, H. Zhang, W. Gao, J. Wang, and M. Jiang, “Nonlinear prism based on the natural ferroelectric domain structure in calcium barium niobate,” Appl. Phys. Lett. 94, 071111 (2009).
[CrossRef]

Arie, A.

Assanto, G.

Aubry, R.

Y. Le Grand, D. Rouede, C. Odin, R. Aubry, and S. Mattauch, “Second-harmonic scattering by domains in RbH2PO4 ferroelectrics,” Opt. Commun. 200, 249–260 (2001).
[CrossRef]

Baudrier-Raybaut, M.

M. Baudrier-Raybaut, R. Haidar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432, 374–376 (2004).
[CrossRef] [PubMed]

Bausá, L. E.

P. Molina, S. Álvarez García, M. O. Ramírez, J. García-Sole, L. E. Bausá, H. Zhang, W. Gao, J. Wang, and M. Jiang, “Nonlinear prism based on the natural ferroelectric domain structure in calcium barium niobate,” Appl. Phys. Lett. 94, 071111 (2009).
[CrossRef]

P. Molina, M. de la O Ramírez, and L. E. Bausá, “Strontium barium niobate as a multifunctional two-dimensional nonlinear photonic glass,” Adv. Funct. Mater. 18, 709–715 (2008).
[CrossRef]

Belsley, M. S.

T. Volk, D. Isakov, M. S. Belsley, and L. Ivleva, “Switching kinetics of a relaxor ferroelectric Sr0.75Ba0.25Nb2O6 observed by the second harmonic generation method,” Phys. Status Solidi A 2, 321–325 (2009).
[CrossRef]

D. V. Isakov, M. S. Belsley, T. R. Volk, and L. I. Ivleva, “Diffuse second harmonic generation under the ferro-electric switching in Sr0.75Ba0.25Nb2O6 crystals,” Appl. Phys. Lett. 92, 032904 (2008).
[CrossRef]

Berger, V.

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81, 4136–4139 (1998).
[CrossRef]

Betzler, K.

U. Voelker, U. Heine, C. Gödecker, and K. Betzler“Domain size effects in a uniaxial ferroelectric relaxor system: The case of SrxBa1–xNb2O6,” J. Appl. Phys. 102, 114112 (2007).
[CrossRef]

U. Voelker and K. Betzler, “Domain morphology from k-space spectroscopy of ferroelectric crystals,” Phys. Rev. B 74, 132104 (2006).
[CrossRef]

A. R. Tunyagi, M. Ulex, and K. Betzler, “Noncollinear optical frequency doubling in strontium barium niobate,” Phys. Rev. Lett. 90, 243901 (2003).
[CrossRef] [PubMed]

Busacca, A. C.

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: Tuning and tolerances,” IEEE J. Quantum. Electron. 28, 2631–2654 (1992).
[CrossRef]

Cheng, B.

Y. Sheng, J. Dou, B. Ma, B. Cheng, and D. Zhang, “Broadband efficient second harmonic generation in media with a short-range order,” Appl. Phys. Lett. 91, 011101 (2007).
[CrossRef]

Cojocaru, C.

V. Roppo, W. Wang, K. Kalinowski, Y. Kong, C. Cojocaru, J. Trull, R. Vilaseca, M. Scalora, W. Krolikowski, and Y. Kivshar, “The role of ferroelectric domain structure in second harmonic generation in random quadratic media,” Opt. Express 18, 4012–4022 (2010).
[CrossRef] [PubMed]

J. Trull, S. Saltiel, V. Roppo, C. Cojocaru, D. Dumay, W. Krolikowski, D. Neshev, R. Vilaseca, K. Staliunas, and Y. Kivshar, “Characterization of femtosecond pulses via transverse second-harmonic generation in random nonlinear media,” Appl. Phys. B 95, 609–615 (2009).
[CrossRef]

de la O Ramírez, M.

P. Molina, M. de la O Ramírez, and L. E. Bausá, “Strontium barium niobate as a multifunctional two-dimensional nonlinear photonic glass,” Adv. Funct. Mater. 18, 709–715 (2008).
[CrossRef]

Dec, J.

V. V. Shvartsman, W. Kleemann, T. Lukasiewicz, and J. Dec, “Nanopolar structure in SrxBa1–xNb2O6 single crystals tuned by Sr/Ba ratio and investigated by piezoelectric force microscopy,” Phys. Rev. B 77, 054105 (2008).
[CrossRef]

J. Dec, V. V. Shvartsman, and W. Kleemann, “Domainlike precursor clusters in the paraelectric phase of the uniaxial relaxor Sr0.61Ba0.39Nb2O6,” Appl. Phys. Lett. 89, 212901 (2006).
[CrossRef]

DeMattei, R. C.

S. Kawai, T. Ogawa, H. S. Lee, R. C. DeMattei, and R. S. Feigelson, “Second-harmonic generation from needle-like ferroelectric domains in Sr0.6Ba0.4Nd2O6 single crystals,” Appl. Phys. Lett. 73, 768–770 (1998).
[CrossRef]

Denz, C.

F. Sibbers, J. Imbrock, and C. Denz, “Sum-frequency generation in disordered quadratic nonlinear media,” Proc. SPIE 7728, 77280Y (2010).
[CrossRef]

Dolino, G.

G. Dolino, J. Lajzerowicz, and M. Vallade, “Second-harmonic light scattering by domains in ferroelectric triglycine sulfate,” Phys. Rev. B 2, 2194–2200 (1970).
[CrossRef]

Dou, J.

Y. Sheng, J. Dou, B. Ma, B. Cheng, and D. Zhang, “Broadband efficient second harmonic generation in media with a short-range order,” Appl. Phys. Lett. 91, 011101 (2007).
[CrossRef]

Dumay, D.

J. Trull, S. Saltiel, V. Roppo, C. Cojocaru, D. Dumay, W. Krolikowski, D. Neshev, R. Vilaseca, K. Staliunas, and Y. Kivshar, “Characterization of femtosecond pulses via transverse second-harmonic generation in random nonlinear media,” Appl. Phys. B 95, 609–615 (2009).
[CrossRef]

D. Dumay, S. M. Saltiel, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Pulse measurements by randomly quasi phase matched second harmonic generation in the regime of total internal reflection,” J. Phys. B 42, 175403 (2009).
[CrossRef]

Feigelson, R. S.

S. Kawai, T. Ogawa, H. S. Lee, R. C. DeMattei, and R. S. Feigelson, “Second-harmonic generation from needle-like ferroelectric domains in Sr0.6Ba0.4Nd2O6 single crystals,” Appl. Phys. Lett. 73, 768–770 (1998).
[CrossRef]

Fejer, M. M.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: Tuning and tolerances,” IEEE J. Quantum. Electron. 28, 2631–2654 (1992).
[CrossRef]

Fischer, R.

S. M. Saltiel, D. N. Neshev, R. Fischer, W. Krolikowski, A. Arie, and Y. S. Kivshar, “Spatiotemporal toroidal waves from the transverse second-harmonic generation,” Opt. Lett. 33, 527–529 (2008).
[CrossRef] [PubMed]

R. Fischer, D. N. Neshev, S. M. Saltiel, A. A. Sukhorukov, W. Krolikowski, and Y. S. Kivshar, “Monitoring ultrashort pulses by transverse frequency doubling of counterpropagating pulses in random media,” Appl. Phys. Lett. 91, 031104 (2007).
[CrossRef]

R. Fischer, S. M. Saltiel, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Broadband femtosecond frequency doubling in random media,” Appl. Phys. Lett. 89, 191105 (2006).
[CrossRef]

Freund, I.

I. Freund, “Nonlinear diffraction,” Phys. Rev. Lett. 21, 1404–1406 (1968).
[CrossRef]

Furuhata, Y.

K. Megumi, N. Nagatsuma, Y. Kashiwada, and Y. Furuhata, “The congruent melting composition of strontium barium niobate,” J. Mater. Sci. 11, 1583–1592 (1976).
[CrossRef]

Gao, W.

P. Molina, S. Álvarez García, M. O. Ramírez, J. García-Sole, L. E. Bausá, H. Zhang, W. Gao, J. Wang, and M. Jiang, “Nonlinear prism based on the natural ferroelectric domain structure in calcium barium niobate,” Appl. Phys. Lett. 94, 071111 (2009).
[CrossRef]

García-Sole, J.

P. Molina, S. Álvarez García, M. O. Ramírez, J. García-Sole, L. E. Bausá, H. Zhang, W. Gao, J. Wang, and M. Jiang, “Nonlinear prism based on the natural ferroelectric domain structure in calcium barium niobate,” Appl. Phys. Lett. 94, 071111 (2009).
[CrossRef]

Gödecker, C.

U. Voelker, U. Heine, C. Gödecker, and K. Betzler“Domain size effects in a uniaxial ferroelectric relaxor system: The case of SrxBa1–xNb2O6,” J. Appl. Phys. 102, 114112 (2007).
[CrossRef]

Gopalan, V.

L. Tian, D. A. Scrymgeour, and V. Gopalan, “Real-time study of domain dynamics in ferroelectric Sr0.61Ba0.39Nb2O6,” J. Appl. Phys. 97, 114111 (2005).
[CrossRef]

Gotoh, Y.

K. Terabe, S. Takekawa, M. Nakamura, K. Kitamura, S. Higuchi, Y. Gotoh, and A. Gruverman, “Imaging and engineering the nanoscale-domain structure of a Sr0.61Ba0.39Nb2O6 crystal using a scanning force microscope,” Appl. Phys. Lett. 81, 2044–2046 (2002).
[CrossRef]

Gruverman, A.

K. Terabe, S. Takekawa, M. Nakamura, K. Kitamura, S. Higuchi, Y. Gotoh, and A. Gruverman, “Imaging and engineering the nanoscale-domain structure of a Sr0.61Ba0.39Nb2O6 crystal using a scanning force microscope,” Appl. Phys. Lett. 81, 2044–2046 (2002).
[CrossRef]

Haidar, R.

M. Baudrier-Raybaut, R. Haidar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432, 374–376 (2004).
[CrossRef] [PubMed]

Heine, U.

U. Voelker, U. Heine, C. Gödecker, and K. Betzler“Domain size effects in a uniaxial ferroelectric relaxor system: The case of SrxBa1–xNb2O6,” J. Appl. Phys. 102, 114112 (2007).
[CrossRef]

Higuchi, S.

K. Terabe, S. Takekawa, M. Nakamura, K. Kitamura, S. Higuchi, Y. Gotoh, and A. Gruverman, “Imaging and engineering the nanoscale-domain structure of a Sr0.61Ba0.39Nb2O6 crystal using a scanning force microscope,” Appl. Phys. Lett. 81, 2044–2046 (2002).
[CrossRef]

Huang, W.-H.

D. Viehland, Z. Xu, and W.-H. Huang, “Structure-property relationships in strontium barium niobate I. needle-like nanopolar domains and the metastably-locked incommensurate structure,” Philos. Mag. A 71, 205–217 (1995).
[CrossRef]

Imbrock, J.

F. Sibbers, J. Imbrock, and C. Denz, “Sum-frequency generation in disordered quadratic nonlinear media,” Proc. SPIE 7728, 77280Y (2010).
[CrossRef]

Isakov, D.

T. Volk, D. Isakov, M. S. Belsley, and L. Ivleva, “Switching kinetics of a relaxor ferroelectric Sr0.75Ba0.25Nb2O6 observed by the second harmonic generation method,” Phys. Status Solidi A 2, 321–325 (2009).
[CrossRef]

Isakov, D. V.

D. V. Isakov, T. R. Volk, and L. I. Ivleva, “Investigation of ferroelectric properties of strontium barium niobate crystals by second harmonic generation technique,” Phys. Solid State 51, 2334–2341 (2009).
[CrossRef]

D. V. Isakov, M. S. Belsley, T. R. Volk, and L. I. Ivleva, “Diffuse second harmonic generation under the ferro-electric switching in Sr0.75Ba0.25Nb2O6 crystals,” Appl. Phys. Lett. 92, 032904 (2008).
[CrossRef]

Ivleva, L.

T. Volk, D. Isakov, M. S. Belsley, and L. Ivleva, “Switching kinetics of a relaxor ferroelectric Sr0.75Ba0.25Nb2O6 observed by the second harmonic generation method,” Phys. Status Solidi A 2, 321–325 (2009).
[CrossRef]

Ivleva, L. I.

D. V. Isakov, T. R. Volk, and L. I. Ivleva, “Investigation of ferroelectric properties of strontium barium niobate crystals by second harmonic generation technique,” Phys. Solid State 51, 2334–2341 (2009).
[CrossRef]

K. A. Kuznetsov, G. K. Kitaeva, A. V. Shevlyuga, L. I. Ivleva, and T. R. Volk, “Second harmonic generation in a strontium barium niobate crystal with a random domain structure,” JETP Lett. 87, 98–102 (2008).
[CrossRef]

D. V. Isakov, M. S. Belsley, T. R. Volk, and L. I. Ivleva, “Diffuse second harmonic generation under the ferro-electric switching in Sr0.75Ba0.25Nb2O6 crystals,” Appl. Phys. Lett. 92, 032904 (2008).
[CrossRef]

Jiang, M.

P. Molina, S. Álvarez García, M. O. Ramírez, J. García-Sole, L. E. Bausá, H. Zhang, W. Gao, J. Wang, and M. Jiang, “Nonlinear prism based on the natural ferroelectric domain structure in calcium barium niobate,” Appl. Phys. Lett. 94, 071111 (2009).
[CrossRef]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: Tuning and tolerances,” IEEE J. Quantum. Electron. 28, 2631–2654 (1992).
[CrossRef]

Kalinowski, K.

Kashiwada, Y.

K. Megumi, N. Nagatsuma, Y. Kashiwada, and Y. Furuhata, “The congruent melting composition of strontium barium niobate,” J. Mater. Sci. 11, 1583–1592 (1976).
[CrossRef]

Kawai, S.

S. Kawai, T. Ogawa, H. S. Lee, R. C. DeMattei, and R. S. Feigelson, “Second-harmonic generation from needle-like ferroelectric domains in Sr0.6Ba0.4Nd2O6 single crystals,” Appl. Phys. Lett. 73, 768–770 (1998).
[CrossRef]

Kitaeva, G. K.

K. A. Kuznetsov, G. K. Kitaeva, A. V. Shevlyuga, L. I. Ivleva, and T. R. Volk, “Second harmonic generation in a strontium barium niobate crystal with a random domain structure,” JETP Lett. 87, 98–102 (2008).
[CrossRef]

Kitamura, K.

K. Terabe, S. Takekawa, M. Nakamura, K. Kitamura, S. Higuchi, Y. Gotoh, and A. Gruverman, “Imaging and engineering the nanoscale-domain structure of a Sr0.61Ba0.39Nb2O6 crystal using a scanning force microscope,” Appl. Phys. Lett. 81, 2044–2046 (2002).
[CrossRef]

Kivshar, Y.

V. Roppo, W. Wang, K. Kalinowski, Y. Kong, C. Cojocaru, J. Trull, R. Vilaseca, M. Scalora, W. Krolikowski, and Y. Kivshar, “The role of ferroelectric domain structure in second harmonic generation in random quadratic media,” Opt. Express 18, 4012–4022 (2010).
[CrossRef] [PubMed]

J. Trull, S. Saltiel, V. Roppo, C. Cojocaru, D. Dumay, W. Krolikowski, D. Neshev, R. Vilaseca, K. Staliunas, and Y. Kivshar, “Characterization of femtosecond pulses via transverse second-harmonic generation in random nonlinear media,” Appl. Phys. B 95, 609–615 (2009).
[CrossRef]

Kivshar, Y. S.

D. Dumay, S. M. Saltiel, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Pulse measurements by randomly quasi phase matched second harmonic generation in the regime of total internal reflection,” J. Phys. B 42, 175403 (2009).
[CrossRef]

S. M. Saltiel, D. N. Neshev, R. Fischer, W. Krolikowski, A. Arie, and Y. S. Kivshar, “Spatiotemporal toroidal waves from the transverse second-harmonic generation,” Opt. Lett. 33, 527–529 (2008).
[CrossRef] [PubMed]

R. Fischer, D. N. Neshev, S. M. Saltiel, A. A. Sukhorukov, W. Krolikowski, and Y. S. Kivshar, “Monitoring ultrashort pulses by transverse frequency doubling of counterpropagating pulses in random media,” Appl. Phys. Lett. 91, 031104 (2007).
[CrossRef]

R. Fischer, S. M. Saltiel, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Broadband femtosecond frequency doubling in random media,” Appl. Phys. Lett. 89, 191105 (2006).
[CrossRef]

Kleemann, W.

V. V. Shvartsman, W. Kleemann, T. Lukasiewicz, and J. Dec, “Nanopolar structure in SrxBa1–xNb2O6 single crystals tuned by Sr/Ba ratio and investigated by piezoelectric force microscopy,” Phys. Rev. B 77, 054105 (2008).
[CrossRef]

J. Dec, V. V. Shvartsman, and W. Kleemann, “Domainlike precursor clusters in the paraelectric phase of the uniaxial relaxor Sr0.61Ba0.39Nb2O6,” Appl. Phys. Lett. 89, 212901 (2006).
[CrossRef]

P. Lehnen, W. Kleemann, T. Woike, and R. Pankrath, “Ferroelectric nanodomains in the uniaxial relaxor system Sr0.61−x Ba0.39 Nb2 O6 :Cex3+,” Phys. Rev. B 64, 224109 (2001).
[CrossRef]

Kong, Y.

Krolikowski, W.

V. Roppo, W. Wang, K. Kalinowski, Y. Kong, C. Cojocaru, J. Trull, R. Vilaseca, M. Scalora, W. Krolikowski, and Y. Kivshar, “The role of ferroelectric domain structure in second harmonic generation in random quadratic media,” Opt. Express 18, 4012–4022 (2010).
[CrossRef] [PubMed]

D. Dumay, S. M. Saltiel, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Pulse measurements by randomly quasi phase matched second harmonic generation in the regime of total internal reflection,” J. Phys. B 42, 175403 (2009).
[CrossRef]

J. Trull, S. Saltiel, V. Roppo, C. Cojocaru, D. Dumay, W. Krolikowski, D. Neshev, R. Vilaseca, K. Staliunas, and Y. Kivshar, “Characterization of femtosecond pulses via transverse second-harmonic generation in random nonlinear media,” Appl. Phys. B 95, 609–615 (2009).
[CrossRef]

S. M. Saltiel, D. N. Neshev, R. Fischer, W. Krolikowski, A. Arie, and Y. S. Kivshar, “Spatiotemporal toroidal waves from the transverse second-harmonic generation,” Opt. Lett. 33, 527–529 (2008).
[CrossRef] [PubMed]

R. Fischer, D. N. Neshev, S. M. Saltiel, A. A. Sukhorukov, W. Krolikowski, and Y. S. Kivshar, “Monitoring ultrashort pulses by transverse frequency doubling of counterpropagating pulses in random media,” Appl. Phys. Lett. 91, 031104 (2007).
[CrossRef]

R. Fischer, S. M. Saltiel, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Broadband femtosecond frequency doubling in random media,” Appl. Phys. Lett. 89, 191105 (2006).
[CrossRef]

Kupecek, P.

M. Baudrier-Raybaut, R. Haidar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432, 374–376 (2004).
[CrossRef] [PubMed]

Kuznetsov, K. A.

K. A. Kuznetsov, G. K. Kitaeva, A. V. Shevlyuga, L. I. Ivleva, and T. R. Volk, “Second harmonic generation in a strontium barium niobate crystal with a random domain structure,” JETP Lett. 87, 98–102 (2008).
[CrossRef]

Lajzerowicz, J.

G. Dolino, J. Lajzerowicz, and M. Vallade, “Second-harmonic light scattering by domains in ferroelectric triglycine sulfate,” Phys. Rev. B 2, 2194–2200 (1970).
[CrossRef]

Le Grand, Y.

Y. Le Grand, D. Rouede, C. Odin, R. Aubry, and S. Mattauch, “Second-harmonic scattering by domains in RbH2PO4 ferroelectrics,” Opt. Commun. 200, 249–260 (2001).
[CrossRef]

Lee, H. S.

S. Kawai, T. Ogawa, H. S. Lee, R. C. DeMattei, and R. S. Feigelson, “Second-harmonic generation from needle-like ferroelectric domains in Sr0.6Ba0.4Nd2O6 single crystals,” Appl. Phys. Lett. 73, 768–770 (1998).
[CrossRef]

Lehnen, P.

P. Lehnen, W. Kleemann, T. Woike, and R. Pankrath, “Ferroelectric nanodomains in the uniaxial relaxor system Sr0.61−x Ba0.39 Nb2 O6 :Cex3+,” Phys. Rev. B 64, 224109 (2001).
[CrossRef]

Lemasson, P.

M. Baudrier-Raybaut, R. Haidar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432, 374–376 (2004).
[CrossRef] [PubMed]

Lukasiewicz, T.

V. V. Shvartsman, W. Kleemann, T. Lukasiewicz, and J. Dec, “Nanopolar structure in SrxBa1–xNb2O6 single crystals tuned by Sr/Ba ratio and investigated by piezoelectric force microscopy,” Phys. Rev. B 77, 054105 (2008).
[CrossRef]

Ma, B.

Y. Sheng, J. Dou, B. Ma, B. Cheng, and D. Zhang, “Broadband efficient second harmonic generation in media with a short-range order,” Appl. Phys. Lett. 91, 011101 (2007).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: Tuning and tolerances,” IEEE J. Quantum. Electron. 28, 2631–2654 (1992).
[CrossRef]

Mattauch, S.

Y. Le Grand, D. Rouede, C. Odin, R. Aubry, and S. Mattauch, “Second-harmonic scattering by domains in RbH2PO4 ferroelectrics,” Opt. Commun. 200, 249–260 (2001).
[CrossRef]

Megumi, K.

K. Megumi, N. Nagatsuma, Y. Kashiwada, and Y. Furuhata, “The congruent melting composition of strontium barium niobate,” J. Mater. Sci. 11, 1583–1592 (1976).
[CrossRef]

Molina, P.

P. Molina, S. Álvarez García, M. O. Ramírez, J. García-Sole, L. E. Bausá, H. Zhang, W. Gao, J. Wang, and M. Jiang, “Nonlinear prism based on the natural ferroelectric domain structure in calcium barium niobate,” Appl. Phys. Lett. 94, 071111 (2009).
[CrossRef]

P. Molina, M. de la O Ramírez, and L. E. Bausá, “Strontium barium niobate as a multifunctional two-dimensional nonlinear photonic glass,” Adv. Funct. Mater. 18, 709–715 (2008).
[CrossRef]

Morandotti, R.

Nagatsuma, N.

K. Megumi, N. Nagatsuma, Y. Kashiwada, and Y. Furuhata, “The congruent melting composition of strontium barium niobate,” J. Mater. Sci. 11, 1583–1592 (1976).
[CrossRef]

Nakamura, M.

K. Terabe, S. Takekawa, M. Nakamura, K. Kitamura, S. Higuchi, Y. Gotoh, and A. Gruverman, “Imaging and engineering the nanoscale-domain structure of a Sr0.61Ba0.39Nb2O6 crystal using a scanning force microscope,” Appl. Phys. Lett. 81, 2044–2046 (2002).
[CrossRef]

Neshev, D.

J. Trull, S. Saltiel, V. Roppo, C. Cojocaru, D. Dumay, W. Krolikowski, D. Neshev, R. Vilaseca, K. Staliunas, and Y. Kivshar, “Characterization of femtosecond pulses via transverse second-harmonic generation in random nonlinear media,” Appl. Phys. B 95, 609–615 (2009).
[CrossRef]

Neshev, D. N.

D. Dumay, S. M. Saltiel, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Pulse measurements by randomly quasi phase matched second harmonic generation in the regime of total internal reflection,” J. Phys. B 42, 175403 (2009).
[CrossRef]

S. M. Saltiel, D. N. Neshev, R. Fischer, W. Krolikowski, A. Arie, and Y. S. Kivshar, “Spatiotemporal toroidal waves from the transverse second-harmonic generation,” Opt. Lett. 33, 527–529 (2008).
[CrossRef] [PubMed]

R. Fischer, D. N. Neshev, S. M. Saltiel, A. A. Sukhorukov, W. Krolikowski, and Y. S. Kivshar, “Monitoring ultrashort pulses by transverse frequency doubling of counterpropagating pulses in random media,” Appl. Phys. Lett. 91, 031104 (2007).
[CrossRef]

R. Fischer, S. M. Saltiel, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Broadband femtosecond frequency doubling in random media,” Appl. Phys. Lett. 89, 191105 (2006).
[CrossRef]

Odin, C.

Y. Le Grand, D. Rouede, C. Odin, R. Aubry, and S. Mattauch, “Second-harmonic scattering by domains in RbH2PO4 ferroelectrics,” Opt. Commun. 200, 249–260 (2001).
[CrossRef]

Ogawa, T.

S. Kawai, T. Ogawa, H. S. Lee, R. C. DeMattei, and R. S. Feigelson, “Second-harmonic generation from needle-like ferroelectric domains in Sr0.6Ba0.4Nd2O6 single crystals,” Appl. Phys. Lett. 73, 768–770 (1998).
[CrossRef]

Oliveri, R. L.

Pankrath, R.

P. Lehnen, W. Kleemann, T. Woike, and R. Pankrath, “Ferroelectric nanodomains in the uniaxial relaxor system Sr0.61−x Ba0.39 Nb2 O6 :Cex3+,” Phys. Rev. B 64, 224109 (2001).
[CrossRef]

Pasquazi, A.

Ramírez, M. O.

P. Molina, S. Álvarez García, M. O. Ramírez, J. García-Sole, L. E. Bausá, H. Zhang, W. Gao, J. Wang, and M. Jiang, “Nonlinear prism based on the natural ferroelectric domain structure in calcium barium niobate,” Appl. Phys. Lett. 94, 071111 (2009).
[CrossRef]

Roppo, V.

V. Roppo, W. Wang, K. Kalinowski, Y. Kong, C. Cojocaru, J. Trull, R. Vilaseca, M. Scalora, W. Krolikowski, and Y. Kivshar, “The role of ferroelectric domain structure in second harmonic generation in random quadratic media,” Opt. Express 18, 4012–4022 (2010).
[CrossRef] [PubMed]

J. Trull, S. Saltiel, V. Roppo, C. Cojocaru, D. Dumay, W. Krolikowski, D. Neshev, R. Vilaseca, K. Staliunas, and Y. Kivshar, “Characterization of femtosecond pulses via transverse second-harmonic generation in random nonlinear media,” Appl. Phys. B 95, 609–615 (2009).
[CrossRef]

Rosencher, E.

M. Baudrier-Raybaut, R. Haidar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432, 374–376 (2004).
[CrossRef] [PubMed]

Rouede, D.

Y. Le Grand, D. Rouede, C. Odin, R. Aubry, and S. Mattauch, “Second-harmonic scattering by domains in RbH2PO4 ferroelectrics,” Opt. Commun. 200, 249–260 (2001).
[CrossRef]

Saltiel, S.

J. Trull, S. Saltiel, V. Roppo, C. Cojocaru, D. Dumay, W. Krolikowski, D. Neshev, R. Vilaseca, K. Staliunas, and Y. Kivshar, “Characterization of femtosecond pulses via transverse second-harmonic generation in random nonlinear media,” Appl. Phys. B 95, 609–615 (2009).
[CrossRef]

Saltiel, S. M.

D. Dumay, S. M. Saltiel, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Pulse measurements by randomly quasi phase matched second harmonic generation in the regime of total internal reflection,” J. Phys. B 42, 175403 (2009).
[CrossRef]

S. M. Saltiel, D. N. Neshev, R. Fischer, W. Krolikowski, A. Arie, and Y. S. Kivshar, “Spatiotemporal toroidal waves from the transverse second-harmonic generation,” Opt. Lett. 33, 527–529 (2008).
[CrossRef] [PubMed]

R. Fischer, D. N. Neshev, S. M. Saltiel, A. A. Sukhorukov, W. Krolikowski, and Y. S. Kivshar, “Monitoring ultrashort pulses by transverse frequency doubling of counterpropagating pulses in random media,” Appl. Phys. Lett. 91, 031104 (2007).
[CrossRef]

R. Fischer, S. M. Saltiel, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Broadband femtosecond frequency doubling in random media,” Appl. Phys. Lett. 89, 191105 (2006).
[CrossRef]

Scalora, M.

Scrymgeour, D. A.

L. Tian, D. A. Scrymgeour, and V. Gopalan, “Real-time study of domain dynamics in ferroelectric Sr0.61Ba0.39Nb2O6,” J. Appl. Phys. 97, 114111 (2005).
[CrossRef]

Shakhura, I. E.

A. S. Aleksandrovsky, A. M. Vyunishev, I. E. Shakhura, A. I. Zaitsev, and A. V. Zamkov, “Random quasi-phase-matching in a nonlinear photonic crystal structure of strontium tetraborate,” Phys. Rev. A 78, 031802 (2008).
[CrossRef]

Sheng, Y.

Y. Sheng, J. Dou, B. Ma, B. Cheng, and D. Zhang, “Broadband efficient second harmonic generation in media with a short-range order,” Appl. Phys. Lett. 91, 011101 (2007).
[CrossRef]

Shevlyuga, A. V.

K. A. Kuznetsov, G. K. Kitaeva, A. V. Shevlyuga, L. I. Ivleva, and T. R. Volk, “Second harmonic generation in a strontium barium niobate crystal with a random domain structure,” JETP Lett. 87, 98–102 (2008).
[CrossRef]

Shvartsman, V. V.

V. V. Shvartsman, W. Kleemann, T. Lukasiewicz, and J. Dec, “Nanopolar structure in SrxBa1–xNb2O6 single crystals tuned by Sr/Ba ratio and investigated by piezoelectric force microscopy,” Phys. Rev. B 77, 054105 (2008).
[CrossRef]

J. Dec, V. V. Shvartsman, and W. Kleemann, “Domainlike precursor clusters in the paraelectric phase of the uniaxial relaxor Sr0.61Ba0.39Nb2O6,” Appl. Phys. Lett. 89, 212901 (2006).
[CrossRef]

Sibbers, F.

F. Sibbers, J. Imbrock, and C. Denz, “Sum-frequency generation in disordered quadratic nonlinear media,” Proc. SPIE 7728, 77280Y (2010).
[CrossRef]

Staliunas, K.

J. Trull, S. Saltiel, V. Roppo, C. Cojocaru, D. Dumay, W. Krolikowski, D. Neshev, R. Vilaseca, K. Staliunas, and Y. Kivshar, “Characterization of femtosecond pulses via transverse second-harmonic generation in random nonlinear media,” Appl. Phys. B 95, 609–615 (2009).
[CrossRef]

Stivala, S.

Sukhorukov, A. A.

R. Fischer, D. N. Neshev, S. M. Saltiel, A. A. Sukhorukov, W. Krolikowski, and Y. S. Kivshar, “Monitoring ultrashort pulses by transverse frequency doubling of counterpropagating pulses in random media,” Appl. Phys. Lett. 91, 031104 (2007).
[CrossRef]

Takekawa, S.

K. Terabe, S. Takekawa, M. Nakamura, K. Kitamura, S. Higuchi, Y. Gotoh, and A. Gruverman, “Imaging and engineering the nanoscale-domain structure of a Sr0.61Ba0.39Nb2O6 crystal using a scanning force microscope,” Appl. Phys. Lett. 81, 2044–2046 (2002).
[CrossRef]

Terabe, K.

K. Terabe, S. Takekawa, M. Nakamura, K. Kitamura, S. Higuchi, Y. Gotoh, and A. Gruverman, “Imaging and engineering the nanoscale-domain structure of a Sr0.61Ba0.39Nb2O6 crystal using a scanning force microscope,” Appl. Phys. Lett. 81, 2044–2046 (2002).
[CrossRef]

Tian, L.

L. Tian, D. A. Scrymgeour, and V. Gopalan, “Real-time study of domain dynamics in ferroelectric Sr0.61Ba0.39Nb2O6,” J. Appl. Phys. 97, 114111 (2005).
[CrossRef]

Trull, J.

V. Roppo, W. Wang, K. Kalinowski, Y. Kong, C. Cojocaru, J. Trull, R. Vilaseca, M. Scalora, W. Krolikowski, and Y. Kivshar, “The role of ferroelectric domain structure in second harmonic generation in random quadratic media,” Opt. Express 18, 4012–4022 (2010).
[CrossRef] [PubMed]

J. Trull, S. Saltiel, V. Roppo, C. Cojocaru, D. Dumay, W. Krolikowski, D. Neshev, R. Vilaseca, K. Staliunas, and Y. Kivshar, “Characterization of femtosecond pulses via transverse second-harmonic generation in random nonlinear media,” Appl. Phys. B 95, 609–615 (2009).
[CrossRef]

Tunyagi, A. R.

A. R. Tunyagi, M. Ulex, and K. Betzler, “Noncollinear optical frequency doubling in strontium barium niobate,” Phys. Rev. Lett. 90, 243901 (2003).
[CrossRef] [PubMed]

Ulex, M.

A. R. Tunyagi, M. Ulex, and K. Betzler, “Noncollinear optical frequency doubling in strontium barium niobate,” Phys. Rev. Lett. 90, 243901 (2003).
[CrossRef] [PubMed]

Vallade, M.

G. Dolino, J. Lajzerowicz, and M. Vallade, “Second-harmonic light scattering by domains in ferroelectric triglycine sulfate,” Phys. Rev. B 2, 2194–2200 (1970).
[CrossRef]

Viehland, D.

D. Viehland, Z. Xu, and W.-H. Huang, “Structure-property relationships in strontium barium niobate I. needle-like nanopolar domains and the metastably-locked incommensurate structure,” Philos. Mag. A 71, 205–217 (1995).
[CrossRef]

Vilaseca, R.

V. Roppo, W. Wang, K. Kalinowski, Y. Kong, C. Cojocaru, J. Trull, R. Vilaseca, M. Scalora, W. Krolikowski, and Y. Kivshar, “The role of ferroelectric domain structure in second harmonic generation in random quadratic media,” Opt. Express 18, 4012–4022 (2010).
[CrossRef] [PubMed]

J. Trull, S. Saltiel, V. Roppo, C. Cojocaru, D. Dumay, W. Krolikowski, D. Neshev, R. Vilaseca, K. Staliunas, and Y. Kivshar, “Characterization of femtosecond pulses via transverse second-harmonic generation in random nonlinear media,” Appl. Phys. B 95, 609–615 (2009).
[CrossRef]

Voelker, U.

U. Voelker, U. Heine, C. Gödecker, and K. Betzler“Domain size effects in a uniaxial ferroelectric relaxor system: The case of SrxBa1–xNb2O6,” J. Appl. Phys. 102, 114112 (2007).
[CrossRef]

U. Voelker and K. Betzler, “Domain morphology from k-space spectroscopy of ferroelectric crystals,” Phys. Rev. B 74, 132104 (2006).
[CrossRef]

Volk, T.

T. Volk, D. Isakov, M. S. Belsley, and L. Ivleva, “Switching kinetics of a relaxor ferroelectric Sr0.75Ba0.25Nb2O6 observed by the second harmonic generation method,” Phys. Status Solidi A 2, 321–325 (2009).
[CrossRef]

Volk, T. R.

D. V. Isakov, T. R. Volk, and L. I. Ivleva, “Investigation of ferroelectric properties of strontium barium niobate crystals by second harmonic generation technique,” Phys. Solid State 51, 2334–2341 (2009).
[CrossRef]

K. A. Kuznetsov, G. K. Kitaeva, A. V. Shevlyuga, L. I. Ivleva, and T. R. Volk, “Second harmonic generation in a strontium barium niobate crystal with a random domain structure,” JETP Lett. 87, 98–102 (2008).
[CrossRef]

D. V. Isakov, M. S. Belsley, T. R. Volk, and L. I. Ivleva, “Diffuse second harmonic generation under the ferro-electric switching in Sr0.75Ba0.25Nb2O6 crystals,” Appl. Phys. Lett. 92, 032904 (2008).
[CrossRef]

Voloch, N.

A. Arie and N. Voloch, “Periodic, quasi-periodic, and random quadratic nonlinear photonic crystals,” Laser Photonics Rev. 4, 355–373 (2010).
[CrossRef]

Vyunishev, A. M.

A. S. Aleksandrovsky, A. M. Vyunishev, I. E. Shakhura, A. I. Zaitsev, and A. V. Zamkov, “Random quasi-phase-matching in a nonlinear photonic crystal structure of strontium tetraborate,” Phys. Rev. A 78, 031802 (2008).
[CrossRef]

Wang, J.

P. Molina, S. Álvarez García, M. O. Ramírez, J. García-Sole, L. E. Bausá, H. Zhang, W. Gao, J. Wang, and M. Jiang, “Nonlinear prism based on the natural ferroelectric domain structure in calcium barium niobate,” Appl. Phys. Lett. 94, 071111 (2009).
[CrossRef]

Wang, W.

Woike, T.

P. Lehnen, W. Kleemann, T. Woike, and R. Pankrath, “Ferroelectric nanodomains in the uniaxial relaxor system Sr0.61−x Ba0.39 Nb2 O6 :Cex3+,” Phys. Rev. B 64, 224109 (2001).
[CrossRef]

Xu, Z.

D. Viehland, Z. Xu, and W.-H. Huang, “Structure-property relationships in strontium barium niobate I. needle-like nanopolar domains and the metastably-locked incommensurate structure,” Philos. Mag. A 71, 205–217 (1995).
[CrossRef]

Zaitsev, A. I.

A. S. Aleksandrovsky, A. M. Vyunishev, I. E. Shakhura, A. I. Zaitsev, and A. V. Zamkov, “Random quasi-phase-matching in a nonlinear photonic crystal structure of strontium tetraborate,” Phys. Rev. A 78, 031802 (2008).
[CrossRef]

Zamkov, A. V.

A. S. Aleksandrovsky, A. M. Vyunishev, I. E. Shakhura, A. I. Zaitsev, and A. V. Zamkov, “Random quasi-phase-matching in a nonlinear photonic crystal structure of strontium tetraborate,” Phys. Rev. A 78, 031802 (2008).
[CrossRef]

Zhang, D.

Y. Sheng, J. Dou, B. Ma, B. Cheng, and D. Zhang, “Broadband efficient second harmonic generation in media with a short-range order,” Appl. Phys. Lett. 91, 011101 (2007).
[CrossRef]

Zhang, H.

P. Molina, S. Álvarez García, M. O. Ramírez, J. García-Sole, L. E. Bausá, H. Zhang, W. Gao, J. Wang, and M. Jiang, “Nonlinear prism based on the natural ferroelectric domain structure in calcium barium niobate,” Appl. Phys. Lett. 94, 071111 (2009).
[CrossRef]

Adv. Funct. Mater. (1)

P. Molina, M. de la O Ramírez, and L. E. Bausá, “Strontium barium niobate as a multifunctional two-dimensional nonlinear photonic glass,” Adv. Funct. Mater. 18, 709–715 (2008).
[CrossRef]

Appl. Phys. B (1)

J. Trull, S. Saltiel, V. Roppo, C. Cojocaru, D. Dumay, W. Krolikowski, D. Neshev, R. Vilaseca, K. Staliunas, and Y. Kivshar, “Characterization of femtosecond pulses via transverse second-harmonic generation in random nonlinear media,” Appl. Phys. B 95, 609–615 (2009).
[CrossRef]

Appl. Phys. Lett. (8)

R. Fischer, D. N. Neshev, S. M. Saltiel, A. A. Sukhorukov, W. Krolikowski, and Y. S. Kivshar, “Monitoring ultrashort pulses by transverse frequency doubling of counterpropagating pulses in random media,” Appl. Phys. Lett. 91, 031104 (2007).
[CrossRef]

R. Fischer, S. M. Saltiel, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Broadband femtosecond frequency doubling in random media,” Appl. Phys. Lett. 89, 191105 (2006).
[CrossRef]

P. Molina, S. Álvarez García, M. O. Ramírez, J. García-Sole, L. E. Bausá, H. Zhang, W. Gao, J. Wang, and M. Jiang, “Nonlinear prism based on the natural ferroelectric domain structure in calcium barium niobate,” Appl. Phys. Lett. 94, 071111 (2009).
[CrossRef]

S. Kawai, T. Ogawa, H. S. Lee, R. C. DeMattei, and R. S. Feigelson, “Second-harmonic generation from needle-like ferroelectric domains in Sr0.6Ba0.4Nd2O6 single crystals,” Appl. Phys. Lett. 73, 768–770 (1998).
[CrossRef]

D. V. Isakov, M. S. Belsley, T. R. Volk, and L. I. Ivleva, “Diffuse second harmonic generation under the ferro-electric switching in Sr0.75Ba0.25Nb2O6 crystals,” Appl. Phys. Lett. 92, 032904 (2008).
[CrossRef]

J. Dec, V. V. Shvartsman, and W. Kleemann, “Domainlike precursor clusters in the paraelectric phase of the uniaxial relaxor Sr0.61Ba0.39Nb2O6,” Appl. Phys. Lett. 89, 212901 (2006).
[CrossRef]

K. Terabe, S. Takekawa, M. Nakamura, K. Kitamura, S. Higuchi, Y. Gotoh, and A. Gruverman, “Imaging and engineering the nanoscale-domain structure of a Sr0.61Ba0.39Nb2O6 crystal using a scanning force microscope,” Appl. Phys. Lett. 81, 2044–2046 (2002).
[CrossRef]

Y. Sheng, J. Dou, B. Ma, B. Cheng, and D. Zhang, “Broadband efficient second harmonic generation in media with a short-range order,” Appl. Phys. Lett. 91, 011101 (2007).
[CrossRef]

IEEE J. Quantum. Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: Tuning and tolerances,” IEEE J. Quantum. Electron. 28, 2631–2654 (1992).
[CrossRef]

J. Appl. Phys. (2)

U. Voelker, U. Heine, C. Gödecker, and K. Betzler“Domain size effects in a uniaxial ferroelectric relaxor system: The case of SrxBa1–xNb2O6,” J. Appl. Phys. 102, 114112 (2007).
[CrossRef]

L. Tian, D. A. Scrymgeour, and V. Gopalan, “Real-time study of domain dynamics in ferroelectric Sr0.61Ba0.39Nb2O6,” J. Appl. Phys. 97, 114111 (2005).
[CrossRef]

J. Mater. Sci. (1)

K. Megumi, N. Nagatsuma, Y. Kashiwada, and Y. Furuhata, “The congruent melting composition of strontium barium niobate,” J. Mater. Sci. 11, 1583–1592 (1976).
[CrossRef]

J. Phys. B (1)

D. Dumay, S. M. Saltiel, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Pulse measurements by randomly quasi phase matched second harmonic generation in the regime of total internal reflection,” J. Phys. B 42, 175403 (2009).
[CrossRef]

JETP Lett. (1)

K. A. Kuznetsov, G. K. Kitaeva, A. V. Shevlyuga, L. I. Ivleva, and T. R. Volk, “Second harmonic generation in a strontium barium niobate crystal with a random domain structure,” JETP Lett. 87, 98–102 (2008).
[CrossRef]

Laser Photonics Rev. (1)

A. Arie and N. Voloch, “Periodic, quasi-periodic, and random quadratic nonlinear photonic crystals,” Laser Photonics Rev. 4, 355–373 (2010).
[CrossRef]

Nature (1)

M. Baudrier-Raybaut, R. Haidar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432, 374–376 (2004).
[CrossRef] [PubMed]

Opt. Commun. (1)

Y. Le Grand, D. Rouede, C. Odin, R. Aubry, and S. Mattauch, “Second-harmonic scattering by domains in RbH2PO4 ferroelectrics,” Opt. Commun. 200, 249–260 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Philos. Mag. A (1)

D. Viehland, Z. Xu, and W.-H. Huang, “Structure-property relationships in strontium barium niobate I. needle-like nanopolar domains and the metastably-locked incommensurate structure,” Philos. Mag. A 71, 205–217 (1995).
[CrossRef]

Phys. Rev. A (1)

A. S. Aleksandrovsky, A. M. Vyunishev, I. E. Shakhura, A. I. Zaitsev, and A. V. Zamkov, “Random quasi-phase-matching in a nonlinear photonic crystal structure of strontium tetraborate,” Phys. Rev. A 78, 031802 (2008).
[CrossRef]

Phys. Rev. B (4)

G. Dolino, J. Lajzerowicz, and M. Vallade, “Second-harmonic light scattering by domains in ferroelectric triglycine sulfate,” Phys. Rev. B 2, 2194–2200 (1970).
[CrossRef]

U. Voelker and K. Betzler, “Domain morphology from k-space spectroscopy of ferroelectric crystals,” Phys. Rev. B 74, 132104 (2006).
[CrossRef]

P. Lehnen, W. Kleemann, T. Woike, and R. Pankrath, “Ferroelectric nanodomains in the uniaxial relaxor system Sr0.61−x Ba0.39 Nb2 O6 :Cex3+,” Phys. Rev. B 64, 224109 (2001).
[CrossRef]

V. V. Shvartsman, W. Kleemann, T. Lukasiewicz, and J. Dec, “Nanopolar structure in SrxBa1–xNb2O6 single crystals tuned by Sr/Ba ratio and investigated by piezoelectric force microscopy,” Phys. Rev. B 77, 054105 (2008).
[CrossRef]

Phys. Rev. Lett. (3)

A. R. Tunyagi, M. Ulex, and K. Betzler, “Noncollinear optical frequency doubling in strontium barium niobate,” Phys. Rev. Lett. 90, 243901 (2003).
[CrossRef] [PubMed]

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81, 4136–4139 (1998).
[CrossRef]

I. Freund, “Nonlinear diffraction,” Phys. Rev. Lett. 21, 1404–1406 (1968).
[CrossRef]

Phys. Solid State (1)

D. V. Isakov, T. R. Volk, and L. I. Ivleva, “Investigation of ferroelectric properties of strontium barium niobate crystals by second harmonic generation technique,” Phys. Solid State 51, 2334–2341 (2009).
[CrossRef]

Phys. Status Solidi A (1)

T. Volk, D. Isakov, M. S. Belsley, and L. Ivleva, “Switching kinetics of a relaxor ferroelectric Sr0.75Ba0.25Nb2O6 observed by the second harmonic generation method,” Phys. Status Solidi A 2, 321–325 (2009).
[CrossRef]

Proc. SPIE (1)

F. Sibbers, J. Imbrock, and C. Denz, “Sum-frequency generation in disordered quadratic nonlinear media,” Proc. SPIE 7728, 77280Y (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Simulation of the spatial domain distribution and corresponding Fourier spectrum. The domains have a rectangular shape and are arbitrarily rotated around the c-axis that results in a fractal-like domain distribution. The widths of the domains are normally distributed with a mean width a and variance σ and half of the ferroelectric domains are inverted. In b) the domain width and dispersion are three times larger than the width and dispersion in a). Each Fourier spectrum consists of a broad ring. The dashed circles represent matching of the phase velocities of the fundamental and second harmonic beams. The inset in b) shows a phase contrast picture of a repoled crystal with an electrical field applied along the c-axis looking through the surface perpendicular to the c-axis.

Fig. 2
Fig. 2

Experimental setup for recording the SHG power behind the SBN crystal.

Fig. 3
Fig. 3

Photographs of the SH emission on a screen behind the crystal for different poling states of the SBN crystal. The fundamental wavelength is 1300 nm and the pulse energy is about 135 μJ. a) field cooled, b) unpoled, c) poled at room temperature, and d) repoled at room temperature.

Fig. 4
Fig. 4

a)–c) Normalized SH intensity distribution for a fundamental wavelength of 800 nm and an average power of 150 mW for three different unpoled SBN samples, indicating similar domain distributions. The lines are fits of Eq. (2) to the experimental data. d) Calculated mean domain width a in dependence of SH scattering angle according to Eq. (2) for a fixed wavelength and domain dispersion. The dashed lines represent the fit parameters of the three samples.

Fig. 5
Fig. 5

a) SH intensity distribution in dependence of input power at 800 nm; b) SHG power at five different angles in dependence of input power. The lines are quadratic fits.

Fig. 6
Fig. 6

Measurements of SH pattern during the poling process at 800 nm and input power of P = 150 mW by applying an electrical field at room temperature. The distinct peaks, which appear when no field is applied disappear at 2400 V/cm, producing one peak in the middle.

Fig. 7
Fig. 7

Scan of the SH pattern at the end of the poling process at 800 nm (see also SH intensity distribution in Fig. 6 at E = 4570V/cm). Domain sizes are greatly affected and become larger. The fitted width and dispersion are a = 3.1 μm and σ = 0.58 μm, respectively.

Fig. 8
Fig. 8

a) Scan of the SH distribution of 800 nm for 150 mW input power after the first repoling (blue curve) and the corresponding fit (green curve) with a = 3.64 μm and σ = 0.5 μm; b) scan after the second repoling (blue curve) and the corresponding fit (green curve) with a = 3.8 μm and σ = 0.5 μm.

Fig. 9
Fig. 9

a) Scans of SH distribution when further repoling the crystal. Both peaks experience no significant change more, but become sharper; b) The corresponding displacement current of the repoling processes. The measured spontaneous polarization is shown.

Fig. 10
Fig. 10

Scans of SH distribution of a wide range of input wavelengths from 800 – 1400 nm for an unpoled SBN (top). At larger wavelengths the peaks move out. This is confirmed theoretically (bottom).

Fig. 11
Fig. 11

Scans of SH distribution of a wide range of input wavelengths from 800 – 1500 nm for a two-times repoled SBN. This complex behavior is also confirmed theoretically.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I ( 2 ω ) ( | Δ k | )  ( I ( ω ) ) 2 d eff 2 | V g ( r ) e i Δ k  r d 3 r | 2 ,
I ( 2 ω ) ( | Δ k | ) 4 N ( | Δ k | ) 2 1 e σ 2 ( | Δ k | ) 2 1 + e σ 2 ( | Δ k | ) 2 + 2 cos ( | Δ k | a ) e σ 2 ( | Δ k | ) 2 / 2 ,
| G | = ( 4 | k ω | 2 + | k 2 ω | 2 4 | k ω | | k 2 ω | cos α ) 1 / 2 .

Metrics