Abstract

Porous silicon waveguide biosensors that utilize grating couplers etched directly into porous silicon are demonstrated for improved molecular detection capabilities. Molecules are infiltrated through the grating couplers into the waveguide where they can interact with a guided waveguide mode. Hybridization of nucleic acids inside the waveguide is shown to significantly perturb the wave vector of the guided mode and is detected through angle-resolved reflectance measurements. A detection sensitivity of 7.3°/mM is demonstrated with selectivity better than 6:1 compared to mismatched sequences. Experimental results are in good agreement with calculations based on rigorous coupled wave analysis. Use of the all-porous silicon grating-coupled waveguide allows improved interaction of the optical field with surface-bound molecules compared to evanescent wave-based biosensors.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Lukosz and K. Tiefenthaler, “Sensitivity of integrated optical grating and prism couplers as (bio)chemical sensors,” Sens. Actuators B 15, 273–284 (1988).
    [CrossRef]
  2. R. G. Heideman, R. P. H. Kooyman, and J. Greve, “Performance of a highly sensitive optical wave-guide mach-zehnder interferometer immunosensor,” Sens. Actuators B 10(3), 209–217 (1993).
    [CrossRef]
  3. A. Brandenburg, R. Polzius, F. Bier, U. Bilitewski, and E. Wagner, “Direct observation of affinity reactions by reflected-mode operation of integrated optical grating coupler,” Sens. Actuators B 30(1), 55–59 (1996).
    [CrossRef]
  4. R. Polzius, T. Schneider, F. F. Biert, U. Bilitewski, and W. Koschinski, “Optimization of biosensing using grating couplers: immobilization on tantalum oxide waveguides,” Biosens. Bioelectron. 11(5), 503–514 (1996).
    [CrossRef] [PubMed]
  5. R. Polzius, E. Diessel, F. F. Bier, and U. Bilitewski, “Real-time observation of affinity reactions using grating couplers: determination of the detection limit and calculation of kinetic rate constants,” Anal. Biochem. 248(2), 269–276 (1997).
    [CrossRef] [PubMed]
  6. P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys. B 97(1), 5–8 (2009).
    [CrossRef]
  7. R. E. Kunz and K. Cottier, “Optimizing integrated optical chips for label-free (bio-)chemical sensing,” Anal. Bioanal. Chem. 384(1), 180–190 (2006).
    [CrossRef]
  8. J. H. Schmid, W. Sinclair, J. García, S. Janz, J. Lapointe, D. Poitras, Y. Li, T. Mischki, G. Lopinski, P. Cheben, A. Delâge, A. Densmore, P. Waldron, and D. X. Xu, “Silicon-on-insulator guided mode resonant grating for evanescent field molecular sensing,” Opt. Express 17(20), 18371–18380 (2009).
    [CrossRef] [PubMed]
  9. R. Magnusson, D. Wawro, S. Zimmerman, and Y. Ding, “Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel,” Sensors 11(2), 1476–1488 (2011).
    [CrossRef]
  10. D. J. Sirbuly, A. Tao, M. Law, R. Fan, and P. Yang, “Multifunctional Nanowire Evanescent Wave Optical Sensors,” Adv. Mater. 19(1), 61–66 (2007).
    [CrossRef]
  11. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
    [CrossRef] [PubMed]
  12. A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
    [CrossRef]
  13. A. Jane, R. Dronov, A. Hodges, and N. H. Voelcker, “Porous silicon biosensors on the advance,” Trends Biotechnol. 27(4), 230–239 (2009).
    [CrossRef] [PubMed]
  14. X. Wei, C. Kang, M. Liscidini, G. Rong, S. T. Retterer, M. Patrini, J. E. Sipe, and S. M. Weiss, “Grating couplers on porous silicon planar waveguides for sensing applications,” J. Appl. Phys. 104(12), 123113 (2008).
    [CrossRef]
  15. A. W. Snyder, and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  16. R. J. Stockermans and P. L. Rochon, “Narrow-band resonant grating waveguide filters constructed with azobenzene polymers,” Appl. Opt. 38(17), 3714–3719 (1999).
    [CrossRef]
  17. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).
    [CrossRef]
  18. Y. Jiao and S. M. Weiss, “Design parameters and sensitivity analysis of polymer-cladded porous silicon waveguides for small molecule detection,” Biosens. Bioelectron. 25(6), 1535–1538 (2010).
    [CrossRef]
  19. S. Grego, J. R. McDaniel, and B. R. Stoner, “Wavelength interrogation of grating-based optical biosensors in the input coupler configuration,” Sens. Actuators B 131(2), 347–355 (2008).
    [CrossRef]
  20. X. Wei, C. Kang, G. Rong, S. T. Retterer, and S. M. Weiss, “Porous silicon waveguide with integrated grating coupler for DNA sensing,” Proc. SPIE 7167, 71670C, 71670C-7 (2009).
    [CrossRef]
  21. J. L. Lawrie, Y. Jiao, and S. M. Weiss, “Size-dependent infiltration and optical detection of nucleic acids in nanoscale pores,” IEEE Trans. NanoTechnol. 9(5), 596–602 (2010).
    [CrossRef]
  22. M. Egholm, O. Buchardt, L. Christensen, C. Behrens, S. M. Freier, D. A. Driver, R. H. Berg, S. K. Kim, B. Norden, and P. E. Nielsen, “PNA Hybridizes to Complementary Oligonucleotides Obeying the Watson-Crick Hydrogen-Bonding Rules,” Nature 365(6446), 566–568 (1993).
    [CrossRef] [PubMed]
  23. F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2009).
    [CrossRef] [PubMed]
  24. M. M. Orosco, C. Pacholski, and M. J. Sailor, “Real-time monitoring of enzyme activity in a mesoporous silicon double layer,” Nat. Nanotechnol. 4(4), 255–258 (2009).
    [CrossRef] [PubMed]
  25. H. Ouyang, C. C. Striemer, and P. M. Fauchet, “Quantitative analysis of the sensitivity of porous silicon optical biosensors,” Appl. Phys. Lett. 88(16), 163108 (2006).
    [CrossRef]
  26. B. H. Clare and N. L. Abbott, “Orientations of nematic liquid crystals on surfaces presenting controlled densities of peptides: amplification of protein-peptide binding events,” Langmuir 21(14), 6451–6461 (2005).
    [CrossRef] [PubMed]
  27. A. W. Peterson, R. J. Heaton, and R. M. Georgiadis, “The effect of surface probe density on DNA hybridization,” Nucleic Acids Res. 29(24), 5163–5168 (2001).
    [CrossRef]
  28. S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20(13), 5539–5543 (2004).
    [CrossRef]

2011

R. Magnusson, D. Wawro, S. Zimmerman, and Y. Ding, “Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel,” Sensors 11(2), 1476–1488 (2011).
[CrossRef]

2010

Y. Jiao and S. M. Weiss, “Design parameters and sensitivity analysis of polymer-cladded porous silicon waveguides for small molecule detection,” Biosens. Bioelectron. 25(6), 1535–1538 (2010).
[CrossRef]

J. L. Lawrie, Y. Jiao, and S. M. Weiss, “Size-dependent infiltration and optical detection of nucleic acids in nanoscale pores,” IEEE Trans. NanoTechnol. 9(5), 596–602 (2010).
[CrossRef]

2009

X. Wei, C. Kang, G. Rong, S. T. Retterer, and S. M. Weiss, “Porous silicon waveguide with integrated grating coupler for DNA sensing,” Proc. SPIE 7167, 71670C, 71670C-7 (2009).
[CrossRef]

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2009).
[CrossRef] [PubMed]

M. M. Orosco, C. Pacholski, and M. J. Sailor, “Real-time monitoring of enzyme activity in a mesoporous silicon double layer,” Nat. Nanotechnol. 4(4), 255–258 (2009).
[CrossRef] [PubMed]

P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys. B 97(1), 5–8 (2009).
[CrossRef]

A. Jane, R. Dronov, A. Hodges, and N. H. Voelcker, “Porous silicon biosensors on the advance,” Trends Biotechnol. 27(4), 230–239 (2009).
[CrossRef] [PubMed]

J. H. Schmid, W. Sinclair, J. García, S. Janz, J. Lapointe, D. Poitras, Y. Li, T. Mischki, G. Lopinski, P. Cheben, A. Delâge, A. Densmore, P. Waldron, and D. X. Xu, “Silicon-on-insulator guided mode resonant grating for evanescent field molecular sensing,” Opt. Express 17(20), 18371–18380 (2009).
[CrossRef] [PubMed]

2008

X. Wei, C. Kang, M. Liscidini, G. Rong, S. T. Retterer, M. Patrini, J. E. Sipe, and S. M. Weiss, “Grating couplers on porous silicon planar waveguides for sensing applications,” J. Appl. Phys. 104(12), 123113 (2008).
[CrossRef]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

S. Grego, J. R. McDaniel, and B. R. Stoner, “Wavelength interrogation of grating-based optical biosensors in the input coupler configuration,” Sens. Actuators B 131(2), 347–355 (2008).
[CrossRef]

2007

D. J. Sirbuly, A. Tao, M. Law, R. Fan, and P. Yang, “Multifunctional Nanowire Evanescent Wave Optical Sensors,” Adv. Mater. 19(1), 61–66 (2007).
[CrossRef]

2006

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

R. E. Kunz and K. Cottier, “Optimizing integrated optical chips for label-free (bio-)chemical sensing,” Anal. Bioanal. Chem. 384(1), 180–190 (2006).
[CrossRef]

H. Ouyang, C. C. Striemer, and P. M. Fauchet, “Quantitative analysis of the sensitivity of porous silicon optical biosensors,” Appl. Phys. Lett. 88(16), 163108 (2006).
[CrossRef]

2005

B. H. Clare and N. L. Abbott, “Orientations of nematic liquid crystals on surfaces presenting controlled densities of peptides: amplification of protein-peptide binding events,” Langmuir 21(14), 6451–6461 (2005).
[CrossRef] [PubMed]

2004

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20(13), 5539–5543 (2004).
[CrossRef]

2001

A. W. Peterson, R. J. Heaton, and R. M. Georgiadis, “The effect of surface probe density on DNA hybridization,” Nucleic Acids Res. 29(24), 5163–5168 (2001).
[CrossRef]

1999

1997

R. Polzius, E. Diessel, F. F. Bier, and U. Bilitewski, “Real-time observation of affinity reactions using grating couplers: determination of the detection limit and calculation of kinetic rate constants,” Anal. Biochem. 248(2), 269–276 (1997).
[CrossRef] [PubMed]

1996

A. Brandenburg, R. Polzius, F. Bier, U. Bilitewski, and E. Wagner, “Direct observation of affinity reactions by reflected-mode operation of integrated optical grating coupler,” Sens. Actuators B 30(1), 55–59 (1996).
[CrossRef]

R. Polzius, T. Schneider, F. F. Biert, U. Bilitewski, and W. Koschinski, “Optimization of biosensing using grating couplers: immobilization on tantalum oxide waveguides,” Biosens. Bioelectron. 11(5), 503–514 (1996).
[CrossRef] [PubMed]

1995

1993

R. G. Heideman, R. P. H. Kooyman, and J. Greve, “Performance of a highly sensitive optical wave-guide mach-zehnder interferometer immunosensor,” Sens. Actuators B 10(3), 209–217 (1993).
[CrossRef]

M. Egholm, O. Buchardt, L. Christensen, C. Behrens, S. M. Freier, D. A. Driver, R. H. Berg, S. K. Kim, B. Norden, and P. E. Nielsen, “PNA Hybridizes to Complementary Oligonucleotides Obeying the Watson-Crick Hydrogen-Bonding Rules,” Nature 365(6446), 566–568 (1993).
[CrossRef] [PubMed]

1988

W. Lukosz and K. Tiefenthaler, “Sensitivity of integrated optical grating and prism couplers as (bio)chemical sensors,” Sens. Actuators B 15, 273–284 (1988).
[CrossRef]

Abbott, N. L.

B. H. Clare and N. L. Abbott, “Orientations of nematic liquid crystals on surfaces presenting controlled densities of peptides: amplification of protein-peptide binding events,” Langmuir 21(14), 6451–6461 (2005).
[CrossRef] [PubMed]

Behrens, C.

M. Egholm, O. Buchardt, L. Christensen, C. Behrens, S. M. Freier, D. A. Driver, R. H. Berg, S. K. Kim, B. Norden, and P. E. Nielsen, “PNA Hybridizes to Complementary Oligonucleotides Obeying the Watson-Crick Hydrogen-Bonding Rules,” Nature 365(6446), 566–568 (1993).
[CrossRef] [PubMed]

Berg, R. H.

M. Egholm, O. Buchardt, L. Christensen, C. Behrens, S. M. Freier, D. A. Driver, R. H. Berg, S. K. Kim, B. Norden, and P. E. Nielsen, “PNA Hybridizes to Complementary Oligonucleotides Obeying the Watson-Crick Hydrogen-Bonding Rules,” Nature 365(6446), 566–568 (1993).
[CrossRef] [PubMed]

Bier, F.

A. Brandenburg, R. Polzius, F. Bier, U. Bilitewski, and E. Wagner, “Direct observation of affinity reactions by reflected-mode operation of integrated optical grating coupler,” Sens. Actuators B 30(1), 55–59 (1996).
[CrossRef]

Bier, F. F.

R. Polzius, E. Diessel, F. F. Bier, and U. Bilitewski, “Real-time observation of affinity reactions using grating couplers: determination of the detection limit and calculation of kinetic rate constants,” Anal. Biochem. 248(2), 269–276 (1997).
[CrossRef] [PubMed]

Biert, F. F.

R. Polzius, T. Schneider, F. F. Biert, U. Bilitewski, and W. Koschinski, “Optimization of biosensing using grating couplers: immobilization on tantalum oxide waveguides,” Biosens. Bioelectron. 11(5), 503–514 (1996).
[CrossRef] [PubMed]

Bilitewski, U.

R. Polzius, E. Diessel, F. F. Bier, and U. Bilitewski, “Real-time observation of affinity reactions using grating couplers: determination of the detection limit and calculation of kinetic rate constants,” Anal. Biochem. 248(2), 269–276 (1997).
[CrossRef] [PubMed]

R. Polzius, T. Schneider, F. F. Biert, U. Bilitewski, and W. Koschinski, “Optimization of biosensing using grating couplers: immobilization on tantalum oxide waveguides,” Biosens. Bioelectron. 11(5), 503–514 (1996).
[CrossRef] [PubMed]

A. Brandenburg, R. Polzius, F. Bier, U. Bilitewski, and E. Wagner, “Direct observation of affinity reactions by reflected-mode operation of integrated optical grating coupler,” Sens. Actuators B 30(1), 55–59 (1996).
[CrossRef]

Brandenburg, A.

A. Brandenburg, R. Polzius, F. Bier, U. Bilitewski, and E. Wagner, “Direct observation of affinity reactions by reflected-mode operation of integrated optical grating coupler,” Sens. Actuators B 30(1), 55–59 (1996).
[CrossRef]

Buchardt, O.

M. Egholm, O. Buchardt, L. Christensen, C. Behrens, S. M. Freier, D. A. Driver, R. H. Berg, S. K. Kim, B. Norden, and P. E. Nielsen, “PNA Hybridizes to Complementary Oligonucleotides Obeying the Watson-Crick Hydrogen-Bonding Rules,” Nature 365(6446), 566–568 (1993).
[CrossRef] [PubMed]

Cheben, P.

J. H. Schmid, W. Sinclair, J. García, S. Janz, J. Lapointe, D. Poitras, Y. Li, T. Mischki, G. Lopinski, P. Cheben, A. Delâge, A. Densmore, P. Waldron, and D. X. Xu, “Silicon-on-insulator guided mode resonant grating for evanescent field molecular sensing,” Opt. Express 17(20), 18371–18380 (2009).
[CrossRef] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

Christensen, L.

M. Egholm, O. Buchardt, L. Christensen, C. Behrens, S. M. Freier, D. A. Driver, R. H. Berg, S. K. Kim, B. Norden, and P. E. Nielsen, “PNA Hybridizes to Complementary Oligonucleotides Obeying the Watson-Crick Hydrogen-Bonding Rules,” Nature 365(6446), 566–568 (1993).
[CrossRef] [PubMed]

Clare, B. H.

B. H. Clare and N. L. Abbott, “Orientations of nematic liquid crystals on surfaces presenting controlled densities of peptides: amplification of protein-peptide binding events,” Langmuir 21(14), 6451–6461 (2005).
[CrossRef] [PubMed]

Cottier, K.

P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys. B 97(1), 5–8 (2009).
[CrossRef]

R. E. Kunz and K. Cottier, “Optimizing integrated optical chips for label-free (bio-)chemical sensing,” Anal. Bioanal. Chem. 384(1), 180–190 (2006).
[CrossRef]

Delâge, A.

Delge, A.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

Densmore, A.

J. H. Schmid, W. Sinclair, J. García, S. Janz, J. Lapointe, D. Poitras, Y. Li, T. Mischki, G. Lopinski, P. Cheben, A. Delâge, A. Densmore, P. Waldron, and D. X. Xu, “Silicon-on-insulator guided mode resonant grating for evanescent field molecular sensing,” Opt. Express 17(20), 18371–18380 (2009).
[CrossRef] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

Descrovi, E.

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2009).
[CrossRef] [PubMed]

Diessel, E.

R. Polzius, E. Diessel, F. F. Bier, and U. Bilitewski, “Real-time observation of affinity reactions using grating couplers: determination of the detection limit and calculation of kinetic rate constants,” Anal. Biochem. 248(2), 269–276 (1997).
[CrossRef] [PubMed]

Ding, Y.

R. Magnusson, D. Wawro, S. Zimmerman, and Y. Ding, “Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel,” Sensors 11(2), 1476–1488 (2011).
[CrossRef]

Dominici, L.

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2009).
[CrossRef] [PubMed]

Driver, D. A.

M. Egholm, O. Buchardt, L. Christensen, C. Behrens, S. M. Freier, D. A. Driver, R. H. Berg, S. K. Kim, B. Norden, and P. E. Nielsen, “PNA Hybridizes to Complementary Oligonucleotides Obeying the Watson-Crick Hydrogen-Bonding Rules,” Nature 365(6446), 566–568 (1993).
[CrossRef] [PubMed]

Dronov, R.

A. Jane, R. Dronov, A. Hodges, and N. H. Voelcker, “Porous silicon biosensors on the advance,” Trends Biotechnol. 27(4), 230–239 (2009).
[CrossRef] [PubMed]

Egholm, M.

M. Egholm, O. Buchardt, L. Christensen, C. Behrens, S. M. Freier, D. A. Driver, R. H. Berg, S. K. Kim, B. Norden, and P. E. Nielsen, “PNA Hybridizes to Complementary Oligonucleotides Obeying the Watson-Crick Hydrogen-Bonding Rules,” Nature 365(6446), 566–568 (1993).
[CrossRef] [PubMed]

Elhadj, S.

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20(13), 5539–5543 (2004).
[CrossRef]

Fan, R.

D. J. Sirbuly, A. Tao, M. Law, R. Fan, and P. Yang, “Multifunctional Nanowire Evanescent Wave Optical Sensors,” Adv. Mater. 19(1), 61–66 (2007).
[CrossRef]

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Fauchet, P. M.

H. Ouyang, C. C. Striemer, and P. M. Fauchet, “Quantitative analysis of the sensitivity of porous silicon optical biosensors,” Appl. Phys. Lett. 88(16), 163108 (2006).
[CrossRef]

Freier, S. M.

M. Egholm, O. Buchardt, L. Christensen, C. Behrens, S. M. Freier, D. A. Driver, R. H. Berg, S. K. Kim, B. Norden, and P. E. Nielsen, “PNA Hybridizes to Complementary Oligonucleotides Obeying the Watson-Crick Hydrogen-Bonding Rules,” Nature 365(6446), 566–568 (1993).
[CrossRef] [PubMed]

García, J.

Gaylord, T. K.

Geobaldo, F.

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2009).
[CrossRef] [PubMed]

Georgiadis, R. M.

A. W. Peterson, R. J. Heaton, and R. M. Georgiadis, “The effect of surface probe density on DNA hybridization,” Nucleic Acids Res. 29(24), 5163–5168 (2001).
[CrossRef]

Giorgis, F.

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2009).
[CrossRef] [PubMed]

Grann, E. B.

Grego, S.

S. Grego, J. R. McDaniel, and B. R. Stoner, “Wavelength interrogation of grating-based optical biosensors in the input coupler configuration,” Sens. Actuators B 131(2), 347–355 (2008).
[CrossRef]

Greve, J.

R. G. Heideman, R. P. H. Kooyman, and J. Greve, “Performance of a highly sensitive optical wave-guide mach-zehnder interferometer immunosensor,” Sens. Actuators B 10(3), 209–217 (1993).
[CrossRef]

Hamori, A.

P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys. B 97(1), 5–8 (2009).
[CrossRef]

Heaton, R. J.

A. W. Peterson, R. J. Heaton, and R. M. Georgiadis, “The effect of surface probe density on DNA hybridization,” Nucleic Acids Res. 29(24), 5163–5168 (2001).
[CrossRef]

Heideman, R. G.

R. G. Heideman, R. P. H. Kooyman, and J. Greve, “Performance of a highly sensitive optical wave-guide mach-zehnder interferometer immunosensor,” Sens. Actuators B 10(3), 209–217 (1993).
[CrossRef]

Hodges, A.

A. Jane, R. Dronov, A. Hodges, and N. H. Voelcker, “Porous silicon biosensors on the advance,” Trends Biotechnol. 27(4), 230–239 (2009).
[CrossRef] [PubMed]

Horvath, R.

P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys. B 97(1), 5–8 (2009).
[CrossRef]

Jane, A.

A. Jane, R. Dronov, A. Hodges, and N. H. Voelcker, “Porous silicon biosensors on the advance,” Trends Biotechnol. 27(4), 230–239 (2009).
[CrossRef] [PubMed]

Janz, S.

J. H. Schmid, W. Sinclair, J. García, S. Janz, J. Lapointe, D. Poitras, Y. Li, T. Mischki, G. Lopinski, P. Cheben, A. Delâge, A. Densmore, P. Waldron, and D. X. Xu, “Silicon-on-insulator guided mode resonant grating for evanescent field molecular sensing,” Opt. Express 17(20), 18371–18380 (2009).
[CrossRef] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

Jiao, Y.

Y. Jiao and S. M. Weiss, “Design parameters and sensitivity analysis of polymer-cladded porous silicon waveguides for small molecule detection,” Biosens. Bioelectron. 25(6), 1535–1538 (2010).
[CrossRef]

J. L. Lawrie, Y. Jiao, and S. M. Weiss, “Size-dependent infiltration and optical detection of nucleic acids in nanoscale pores,” IEEE Trans. NanoTechnol. 9(5), 596–602 (2010).
[CrossRef]

Kang, C.

X. Wei, C. Kang, G. Rong, S. T. Retterer, and S. M. Weiss, “Porous silicon waveguide with integrated grating coupler for DNA sensing,” Proc. SPIE 7167, 71670C, 71670C-7 (2009).
[CrossRef]

X. Wei, C. Kang, M. Liscidini, G. Rong, S. T. Retterer, M. Patrini, J. E. Sipe, and S. M. Weiss, “Grating couplers on porous silicon planar waveguides for sensing applications,” J. Appl. Phys. 104(12), 123113 (2008).
[CrossRef]

Kim, S. K.

M. Egholm, O. Buchardt, L. Christensen, C. Behrens, S. M. Freier, D. A. Driver, R. H. Berg, S. K. Kim, B. Norden, and P. E. Nielsen, “PNA Hybridizes to Complementary Oligonucleotides Obeying the Watson-Crick Hydrogen-Bonding Rules,” Nature 365(6446), 566–568 (1993).
[CrossRef] [PubMed]

Kooyman, R. P. H.

R. G. Heideman, R. P. H. Kooyman, and J. Greve, “Performance of a highly sensitive optical wave-guide mach-zehnder interferometer immunosensor,” Sens. Actuators B 10(3), 209–217 (1993).
[CrossRef]

Koschinski, W.

R. Polzius, T. Schneider, F. F. Biert, U. Bilitewski, and W. Koschinski, “Optimization of biosensing using grating couplers: immobilization on tantalum oxide waveguides,” Biosens. Bioelectron. 11(5), 503–514 (1996).
[CrossRef] [PubMed]

Kozma, P.

P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys. B 97(1), 5–8 (2009).
[CrossRef]

Kunz, R. E.

R. E. Kunz and K. Cottier, “Optimizing integrated optical chips for label-free (bio-)chemical sensing,” Anal. Bioanal. Chem. 384(1), 180–190 (2006).
[CrossRef]

Kurunczi, S.

P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys. B 97(1), 5–8 (2009).
[CrossRef]

Lamontagne, B.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

Lapointe, J.

J. H. Schmid, W. Sinclair, J. García, S. Janz, J. Lapointe, D. Poitras, Y. Li, T. Mischki, G. Lopinski, P. Cheben, A. Delâge, A. Densmore, P. Waldron, and D. X. Xu, “Silicon-on-insulator guided mode resonant grating for evanescent field molecular sensing,” Opt. Express 17(20), 18371–18380 (2009).
[CrossRef] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

Law, M.

D. J. Sirbuly, A. Tao, M. Law, R. Fan, and P. Yang, “Multifunctional Nanowire Evanescent Wave Optical Sensors,” Adv. Mater. 19(1), 61–66 (2007).
[CrossRef]

Lawrie, J. L.

J. L. Lawrie, Y. Jiao, and S. M. Weiss, “Size-dependent infiltration and optical detection of nucleic acids in nanoscale pores,” IEEE Trans. NanoTechnol. 9(5), 596–602 (2010).
[CrossRef]

Li, Y.

Liscidini, M.

X. Wei, C. Kang, M. Liscidini, G. Rong, S. T. Retterer, M. Patrini, J. E. Sipe, and S. M. Weiss, “Grating couplers on porous silicon planar waveguides for sensing applications,” J. Appl. Phys. 104(12), 123113 (2008).
[CrossRef]

Lopinski, G.

Lukosz, W.

W. Lukosz and K. Tiefenthaler, “Sensitivity of integrated optical grating and prism couplers as (bio)chemical sensors,” Sens. Actuators B 15, 273–284 (1988).
[CrossRef]

Magnusson, R.

R. Magnusson, D. Wawro, S. Zimmerman, and Y. Ding, “Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel,” Sensors 11(2), 1476–1488 (2011).
[CrossRef]

McDaniel, J. R.

S. Grego, J. R. McDaniel, and B. R. Stoner, “Wavelength interrogation of grating-based optical biosensors in the input coupler configuration,” Sens. Actuators B 131(2), 347–355 (2008).
[CrossRef]

Michelotti, F.

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2009).
[CrossRef] [PubMed]

Mischki, T.

Moharam, M. G.

Nielsen, P. E.

M. Egholm, O. Buchardt, L. Christensen, C. Behrens, S. M. Freier, D. A. Driver, R. H. Berg, S. K. Kim, B. Norden, and P. E. Nielsen, “PNA Hybridizes to Complementary Oligonucleotides Obeying the Watson-Crick Hydrogen-Bonding Rules,” Nature 365(6446), 566–568 (1993).
[CrossRef] [PubMed]

Norden, B.

M. Egholm, O. Buchardt, L. Christensen, C. Behrens, S. M. Freier, D. A. Driver, R. H. Berg, S. K. Kim, B. Norden, and P. E. Nielsen, “PNA Hybridizes to Complementary Oligonucleotides Obeying the Watson-Crick Hydrogen-Bonding Rules,” Nature 365(6446), 566–568 (1993).
[CrossRef] [PubMed]

Orosco, M. M.

M. M. Orosco, C. Pacholski, and M. J. Sailor, “Real-time monitoring of enzyme activity in a mesoporous silicon double layer,” Nat. Nanotechnol. 4(4), 255–258 (2009).
[CrossRef] [PubMed]

Ouyang, H.

H. Ouyang, C. C. Striemer, and P. M. Fauchet, “Quantitative analysis of the sensitivity of porous silicon optical biosensors,” Appl. Phys. Lett. 88(16), 163108 (2006).
[CrossRef]

Pacholski, C.

M. M. Orosco, C. Pacholski, and M. J. Sailor, “Real-time monitoring of enzyme activity in a mesoporous silicon double layer,” Nat. Nanotechnol. 4(4), 255–258 (2009).
[CrossRef] [PubMed]

Patrini, M.

X. Wei, C. Kang, M. Liscidini, G. Rong, S. T. Retterer, M. Patrini, J. E. Sipe, and S. M. Weiss, “Grating couplers on porous silicon planar waveguides for sensing applications,” J. Appl. Phys. 104(12), 123113 (2008).
[CrossRef]

Peterson, A. W.

A. W. Peterson, R. J. Heaton, and R. M. Georgiadis, “The effect of surface probe density on DNA hybridization,” Nucleic Acids Res. 29(24), 5163–5168 (2001).
[CrossRef]

Poitras, D.

Polzius, R.

R. Polzius, E. Diessel, F. F. Bier, and U. Bilitewski, “Real-time observation of affinity reactions using grating couplers: determination of the detection limit and calculation of kinetic rate constants,” Anal. Biochem. 248(2), 269–276 (1997).
[CrossRef] [PubMed]

R. Polzius, T. Schneider, F. F. Biert, U. Bilitewski, and W. Koschinski, “Optimization of biosensing using grating couplers: immobilization on tantalum oxide waveguides,” Biosens. Bioelectron. 11(5), 503–514 (1996).
[CrossRef] [PubMed]

A. Brandenburg, R. Polzius, F. Bier, U. Bilitewski, and E. Wagner, “Direct observation of affinity reactions by reflected-mode operation of integrated optical grating coupler,” Sens. Actuators B 30(1), 55–59 (1996).
[CrossRef]

Pommet, D. A.

Post, E.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

Quaglio, M.

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2009).
[CrossRef] [PubMed]

Retterer, S. T.

X. Wei, C. Kang, G. Rong, S. T. Retterer, and S. M. Weiss, “Porous silicon waveguide with integrated grating coupler for DNA sensing,” Proc. SPIE 7167, 71670C, 71670C-7 (2009).
[CrossRef]

X. Wei, C. Kang, M. Liscidini, G. Rong, S. T. Retterer, M. Patrini, J. E. Sipe, and S. M. Weiss, “Grating couplers on porous silicon planar waveguides for sensing applications,” J. Appl. Phys. 104(12), 123113 (2008).
[CrossRef]

Rochon, P. L.

Rong, G.

X. Wei, C. Kang, G. Rong, S. T. Retterer, and S. M. Weiss, “Porous silicon waveguide with integrated grating coupler for DNA sensing,” Proc. SPIE 7167, 71670C, 71670C-7 (2009).
[CrossRef]

X. Wei, C. Kang, M. Liscidini, G. Rong, S. T. Retterer, M. Patrini, J. E. Sipe, and S. M. Weiss, “Grating couplers on porous silicon planar waveguides for sensing applications,” J. Appl. Phys. 104(12), 123113 (2008).
[CrossRef]

Sailor, M. J.

M. M. Orosco, C. Pacholski, and M. J. Sailor, “Real-time monitoring of enzyme activity in a mesoporous silicon double layer,” Nat. Nanotechnol. 4(4), 255–258 (2009).
[CrossRef] [PubMed]

Saraf, R. F.

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20(13), 5539–5543 (2004).
[CrossRef]

Schmid, J. H.

J. H. Schmid, W. Sinclair, J. García, S. Janz, J. Lapointe, D. Poitras, Y. Li, T. Mischki, G. Lopinski, P. Cheben, A. Delâge, A. Densmore, P. Waldron, and D. X. Xu, “Silicon-on-insulator guided mode resonant grating for evanescent field molecular sensing,” Opt. Express 17(20), 18371–18380 (2009).
[CrossRef] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

Schneider, T.

R. Polzius, T. Schneider, F. F. Biert, U. Bilitewski, and W. Koschinski, “Optimization of biosensing using grating couplers: immobilization on tantalum oxide waveguides,” Biosens. Bioelectron. 11(5), 503–514 (1996).
[CrossRef] [PubMed]

Sciacca, B.

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2009).
[CrossRef] [PubMed]

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Sinclair, W.

Singh, G.

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20(13), 5539–5543 (2004).
[CrossRef]

Sipe, J. E.

X. Wei, C. Kang, M. Liscidini, G. Rong, S. T. Retterer, M. Patrini, J. E. Sipe, and S. M. Weiss, “Grating couplers on porous silicon planar waveguides for sensing applications,” J. Appl. Phys. 104(12), 123113 (2008).
[CrossRef]

Sirbuly, D. J.

D. J. Sirbuly, A. Tao, M. Law, R. Fan, and P. Yang, “Multifunctional Nanowire Evanescent Wave Optical Sensors,” Adv. Mater. 19(1), 61–66 (2007).
[CrossRef]

Stockermans, R. J.

Stoner, B. R.

S. Grego, J. R. McDaniel, and B. R. Stoner, “Wavelength interrogation of grating-based optical biosensors in the input coupler configuration,” Sens. Actuators B 131(2), 347–355 (2008).
[CrossRef]

Striemer, C. C.

H. Ouyang, C. C. Striemer, and P. M. Fauchet, “Quantitative analysis of the sensitivity of porous silicon optical biosensors,” Appl. Phys. Lett. 88(16), 163108 (2006).
[CrossRef]

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Tao, A.

D. J. Sirbuly, A. Tao, M. Law, R. Fan, and P. Yang, “Multifunctional Nanowire Evanescent Wave Optical Sensors,” Adv. Mater. 19(1), 61–66 (2007).
[CrossRef]

Tiefenthaler, K.

W. Lukosz and K. Tiefenthaler, “Sensitivity of integrated optical grating and prism couplers as (bio)chemical sensors,” Sens. Actuators B 15, 273–284 (1988).
[CrossRef]

Voelcker, N. H.

A. Jane, R. Dronov, A. Hodges, and N. H. Voelcker, “Porous silicon biosensors on the advance,” Trends Biotechnol. 27(4), 230–239 (2009).
[CrossRef] [PubMed]

Wagner, E.

A. Brandenburg, R. Polzius, F. Bier, U. Bilitewski, and E. Wagner, “Direct observation of affinity reactions by reflected-mode operation of integrated optical grating coupler,” Sens. Actuators B 30(1), 55–59 (1996).
[CrossRef]

Waldron, P.

J. H. Schmid, W. Sinclair, J. García, S. Janz, J. Lapointe, D. Poitras, Y. Li, T. Mischki, G. Lopinski, P. Cheben, A. Delâge, A. Densmore, P. Waldron, and D. X. Xu, “Silicon-on-insulator guided mode resonant grating for evanescent field molecular sensing,” Opt. Express 17(20), 18371–18380 (2009).
[CrossRef] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

Wawro, D.

R. Magnusson, D. Wawro, S. Zimmerman, and Y. Ding, “Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel,” Sensors 11(2), 1476–1488 (2011).
[CrossRef]

Wei, X.

X. Wei, C. Kang, G. Rong, S. T. Retterer, and S. M. Weiss, “Porous silicon waveguide with integrated grating coupler for DNA sensing,” Proc. SPIE 7167, 71670C, 71670C-7 (2009).
[CrossRef]

X. Wei, C. Kang, M. Liscidini, G. Rong, S. T. Retterer, M. Patrini, J. E. Sipe, and S. M. Weiss, “Grating couplers on porous silicon planar waveguides for sensing applications,” J. Appl. Phys. 104(12), 123113 (2008).
[CrossRef]

Weiss, S. M.

Y. Jiao and S. M. Weiss, “Design parameters and sensitivity analysis of polymer-cladded porous silicon waveguides for small molecule detection,” Biosens. Bioelectron. 25(6), 1535–1538 (2010).
[CrossRef]

J. L. Lawrie, Y. Jiao, and S. M. Weiss, “Size-dependent infiltration and optical detection of nucleic acids in nanoscale pores,” IEEE Trans. NanoTechnol. 9(5), 596–602 (2010).
[CrossRef]

X. Wei, C. Kang, G. Rong, S. T. Retterer, and S. M. Weiss, “Porous silicon waveguide with integrated grating coupler for DNA sensing,” Proc. SPIE 7167, 71670C, 71670C-7 (2009).
[CrossRef]

X. Wei, C. Kang, M. Liscidini, G. Rong, S. T. Retterer, M. Patrini, J. E. Sipe, and S. M. Weiss, “Grating couplers on porous silicon planar waveguides for sensing applications,” J. Appl. Phys. 104(12), 123113 (2008).
[CrossRef]

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Xu, D. X.

Xu, D.-X.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

Yang, P.

D. J. Sirbuly, A. Tao, M. Law, R. Fan, and P. Yang, “Multifunctional Nanowire Evanescent Wave Optical Sensors,” Adv. Mater. 19(1), 61–66 (2007).
[CrossRef]

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Zimmerman, S.

R. Magnusson, D. Wawro, S. Zimmerman, and Y. Ding, “Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel,” Sensors 11(2), 1476–1488 (2011).
[CrossRef]

Adv. Mater.

D. J. Sirbuly, A. Tao, M. Law, R. Fan, and P. Yang, “Multifunctional Nanowire Evanescent Wave Optical Sensors,” Adv. Mater. 19(1), 61–66 (2007).
[CrossRef]

Anal. Bioanal. Chem.

R. E. Kunz and K. Cottier, “Optimizing integrated optical chips for label-free (bio-)chemical sensing,” Anal. Bioanal. Chem. 384(1), 180–190 (2006).
[CrossRef]

Anal. Biochem.

R. Polzius, E. Diessel, F. F. Bier, and U. Bilitewski, “Real-time observation of affinity reactions using grating couplers: determination of the detection limit and calculation of kinetic rate constants,” Anal. Biochem. 248(2), 269–276 (1997).
[CrossRef] [PubMed]

Anal. Chim. Acta

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. B

P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys. B 97(1), 5–8 (2009).
[CrossRef]

Appl. Phys. Lett.

H. Ouyang, C. C. Striemer, and P. M. Fauchet, “Quantitative analysis of the sensitivity of porous silicon optical biosensors,” Appl. Phys. Lett. 88(16), 163108 (2006).
[CrossRef]

Biosens. Bioelectron.

Y. Jiao and S. M. Weiss, “Design parameters and sensitivity analysis of polymer-cladded porous silicon waveguides for small molecule detection,” Biosens. Bioelectron. 25(6), 1535–1538 (2010).
[CrossRef]

R. Polzius, T. Schneider, F. F. Biert, U. Bilitewski, and W. Koschinski, “Optimization of biosensing using grating couplers: immobilization on tantalum oxide waveguides,” Biosens. Bioelectron. 11(5), 503–514 (1996).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

IEEE Trans. NanoTechnol.

J. L. Lawrie, Y. Jiao, and S. M. Weiss, “Size-dependent infiltration and optical detection of nucleic acids in nanoscale pores,” IEEE Trans. NanoTechnol. 9(5), 596–602 (2010).
[CrossRef]

J. Appl. Phys.

X. Wei, C. Kang, M. Liscidini, G. Rong, S. T. Retterer, M. Patrini, J. E. Sipe, and S. M. Weiss, “Grating couplers on porous silicon planar waveguides for sensing applications,” J. Appl. Phys. 104(12), 123113 (2008).
[CrossRef]

J. Opt. Soc. Am. A

Langmuir

B. H. Clare and N. L. Abbott, “Orientations of nematic liquid crystals on surfaces presenting controlled densities of peptides: amplification of protein-peptide binding events,” Langmuir 21(14), 6451–6461 (2005).
[CrossRef] [PubMed]

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20(13), 5539–5543 (2004).
[CrossRef]

Nat. Nanotechnol.

M. M. Orosco, C. Pacholski, and M. J. Sailor, “Real-time monitoring of enzyme activity in a mesoporous silicon double layer,” Nat. Nanotechnol. 4(4), 255–258 (2009).
[CrossRef] [PubMed]

Nature

M. Egholm, O. Buchardt, L. Christensen, C. Behrens, S. M. Freier, D. A. Driver, R. H. Berg, S. K. Kim, B. Norden, and P. E. Nielsen, “PNA Hybridizes to Complementary Oligonucleotides Obeying the Watson-Crick Hydrogen-Bonding Rules,” Nature 365(6446), 566–568 (1993).
[CrossRef] [PubMed]

Nucleic Acids Res.

A. W. Peterson, R. J. Heaton, and R. M. Georgiadis, “The effect of surface probe density on DNA hybridization,” Nucleic Acids Res. 29(24), 5163–5168 (2001).
[CrossRef]

Opt. Express

Phys. Chem. Chem. Phys.

F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2009).
[CrossRef] [PubMed]

Proc. SPIE

X. Wei, C. Kang, G. Rong, S. T. Retterer, and S. M. Weiss, “Porous silicon waveguide with integrated grating coupler for DNA sensing,” Proc. SPIE 7167, 71670C, 71670C-7 (2009).
[CrossRef]

Sens. Actuators B

S. Grego, J. R. McDaniel, and B. R. Stoner, “Wavelength interrogation of grating-based optical biosensors in the input coupler configuration,” Sens. Actuators B 131(2), 347–355 (2008).
[CrossRef]

W. Lukosz and K. Tiefenthaler, “Sensitivity of integrated optical grating and prism couplers as (bio)chemical sensors,” Sens. Actuators B 15, 273–284 (1988).
[CrossRef]

R. G. Heideman, R. P. H. Kooyman, and J. Greve, “Performance of a highly sensitive optical wave-guide mach-zehnder interferometer immunosensor,” Sens. Actuators B 10(3), 209–217 (1993).
[CrossRef]

A. Brandenburg, R. Polzius, F. Bier, U. Bilitewski, and E. Wagner, “Direct observation of affinity reactions by reflected-mode operation of integrated optical grating coupler,” Sens. Actuators B 30(1), 55–59 (1996).
[CrossRef]

Sensors

R. Magnusson, D. Wawro, S. Zimmerman, and Y. Ding, “Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel,” Sensors 11(2), 1476–1488 (2011).
[CrossRef]

Trends Biotechnol.

A. Jane, R. Dronov, A. Hodges, and N. H. Voelcker, “Porous silicon biosensors on the advance,” Trends Biotechnol. 27(4), 230–239 (2009).
[CrossRef] [PubMed]

Other

A. W. Snyder, and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic of a grating coupler on a waveguide. The incident beam (I0), zeroth order reflected beam (R), minus first-order diffracted beam (I-1), and the guided mode (G) are shown. (b) The reflected light intensity peaks at the angle corresponding to light coupling into the waveguide and depends on the effective index of the waveguide mode such that biomolecule infiltration shifts the angular position of the reflection peak.

Fig. 2
Fig. 2

RCWA calculations showing (a) magnetic field distribution of the SOI guided mode resonance sensor (thickness of gratings hg = 180nm; grating period Λ = 1240nm; refractive index of gratings ng = 1.45; thickness of waveguide layer hw = 220nm; refractive index of waveguide layer nw = 3.476; thickness of substrate hs = 3000nm; refractive index of substrate ns = 1.45; incident light wavelength λ = 1531nm) (b) electric field distribution of the photoresist grating-coupled PSi waveguide (hg = 380nm; Λ = 1590nm; ng = 1.54; hw = 340nm; nw = 1.80; hs = 1500nm; ns = 1.21; λ = 1550nm); and (c) electric field distribution of the all-PSi grating waveguide structure (hg = 135nm; Λ = 1685nm; ng = 1.80; hw = 190nm; nw = 1.80; hs = 1500nm; ns = 1.21; λ = 1550nm). Reflectance spectra of (d) SOI guided mode resonance sensor, (e) photoresist grating-coupled PSi waveguide, and (f) all-PSi grating-coupled waveguide structure before and after attaching a 0.8 nm thick monolayer of biomolecules.

Fig. 3
Fig. 3

SEM image of the all-PSi gratings and the waveguide (cross-section).

Fig. 4
Fig. 4

SEM images of (a) photoresist gratings on top of a PSi waveguide and (b) SOI waveguide with SiO2 gratings. The image in (a) was taken at an angle of 30° to the planar surface. The apparent non-planarity of the interface between the silicon waveguide and SiO2 substrate layer in (b) is an artifact due to the sample cleavage.

Fig. 5
Fig. 5

Schematic of the measurement configuration for the grating coupled waveguides.

Fig. 6
Fig. 6

(a) Measured and (b) calculated angle-resolved reflectance spectra at 1550 nm (TE) for all-PSi grating-coupled waveguide after oxidation (solid line) and after 3-APTES attachment (dashed line).

Fig. 7
Fig. 7

(a) Reflectance spectra of all-PSi grating-coupled waveguide after oxidation and attachment of 3-APTES, Sulfo-SMCC, 16-mer probe DNA (50 μM) and complimentary PNA (50 μM). (b) Resonance shifts of all-PSi grating-coupled waveguides functionalized with 16-base probe DNA (50 μM) after exposure to complimentary PNA (50 μM), mismatch PNA (50 μM) and HEPES buffer.

Fig. 8
Fig. 8

Detection sensitivity estimation for all-PSi grating-coupled waveguide sensor based on resonance angle shifts due to exposure of sensor to different complementary PNA concentrations. The 16-mer probe DNA concentration for all samples represented in the figure is 100 μM. The typical sample-to-sample variation in the resonance angle for each data point is ± 0.1°.

Tables (1)

Tables Icon

Table 1 Resonance Angle Shifts after Various Molecular Attachments in All-PSi Grating-Coupled Waveguide, Photoresist Grating-Coupled PSi Waveguide, and SOI Waveguide with SiO2 Gratings

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n e f f = n c sin θ + m λ 0 Λ

Metrics