Abstract

The integration of passive optical network (PON) and radio-over-fiber (ROF) networks could provide broadband services for both fixed and mobile users in a single and low-cost platform. Combining the long-reach (LR)-PON (>100 km) and the LR-ROF can further reduce the cost by simplifying the network architecture, sharing the same optical components and extending the coverage of ROF network. However, the transmission and distribution of ROF signal in LR network is very challenging due to the chromatic dispersion generated periodic power fading and code time-shifting effects in the optical fiber. In this work, we propose and experimentally demonstrate a LR-ROF signal distribution using single-sideband (SSB)-ROF signal generated by a silicon ring-modulator. The silicon modulator is compact and has low power consumption. Besides, one unique feature of the silicon ring-modulator is that it only modulates the signal wavelength at the resonant null. This makes it very suitable for the generation of the SSB-ROF signal. Numerical comparison of the SSB-ROF with the double-sideband (DSB)-ROF and optical carrier suppress (OCS)-ROF signals; as well as the fabrication of the silicon ring-modulator will be discussed.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. B. Payne and R. P. Davey, “The Future of fiber access systems,” BT Technol. J. 20(4), 104–114 (2002).
    [CrossRef]
  2. C. W. Chow and C. H. Yeh, “Long-reach WDM PONs,” in 23rd Annual Meeting of the IEEE Photonics Society, (IEEE, 2010), pp. 343–344 (Invited Talk).
  3. C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, C. L. Pan, and S. Chi, “WDM extended reach passive optical networks using OFDM-QAM,” Opt. Express 16(16), 12096–12101 (2008).
    [CrossRef] [PubMed]
  4. C. W. Chow and C. H. Yeh, “Mitigation of Rayleigh backscattering in 10-Gb/s downstream and 2.5-Gb/s upstream DWDM 100-km long-reach PONs,” Opt. Express 19(6), 4970–4976 (2011).
    [CrossRef] [PubMed]
  5. C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulated wired/wireless access using reflective semiconductor optical amplifier with wireless signal broadcast,” IEEE Photon. Technol. Lett. 21(19), 1459–1462 (2009).
    [CrossRef]
  6. J. Ma, J. Yu, C. Yu, X. Xin, J. Zeng, and L. Chen, “Fiber dispersion influence on transmission of the optical millimeter-waves generated using LN-MZM intensity modulation,” J. Lightwave Technol. 25(11), 3244–3256 (2007).
    [CrossRef]
  7. C. W. Chow, L. Xu, C. H. Yeh, C. H. Wang, F. Y. Shih, H. K. Tsang, C. L. Pan, and S. Chi, “Mitigation of signal distortions using reference signal distribution with colorless remote antenna units for radio-over-fiber applications,” J. Lightwave Technol. 27(21), 4773–4780 (2009).
    [CrossRef]
  8. H. C. Chien, A. Chowdhury, Z. Jia, Y. T. Hsueh, and G. K. Chang, “60 GHz millimeter-wave gigabit wireless services over long-reach passive optical network using remote signal regeneration and upconversion,” Opt. Express 17(5), 3016–3024 (2009).
    [CrossRef]
  9. L. Xu, C. W. Chow, and H. K. Tsang, “Long-reach multicast high split-ratio wired and wireless WDM-PON using SOA for remote upconversion,” IEEE Trans. Microw. Theory Tech. 58(11), 3136–3143 (2010).
    [CrossRef]
  10. J. Yu, M. F. Huang, Z. Jia, T. Wang, and G. K. Chang, “A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal,” IEEE Photon. Technol. Lett. 20(7), 478–480 (2008).
    [CrossRef]
  11. Y. Y. Won, H. S. Kim, Y. H. Son, and S. K. Han, “Network supporting simultaneous transmission of millimeter-wave band and baseband gigabit signals by sideband routing,” J. Lightwave Technol. 28(16), 2213–2218 (2010).
    [CrossRef]
  12. M. K. Hong, Y. Y. Won, and S. K. Han, “Gigabit optical access link for simultaneous wired and wireless signal transmission based on dual parallel injection-locked Fabry–Pérot laser diodes,” J. Lightwave Technol. 26(15), 2725–2731 (2008).
    [CrossRef]
  13. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  14. L. Xu, K. Padmaraju, L. Chen, M. Lipson, and K. Bergman, “First demonstration of symmetric 10-Gb/s access networks architecture based on silicon microring single sideband modulation for efficient upstream re-modulation,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThK2.

2011 (1)

2010 (2)

Y. Y. Won, H. S. Kim, Y. H. Son, and S. K. Han, “Network supporting simultaneous transmission of millimeter-wave band and baseband gigabit signals by sideband routing,” J. Lightwave Technol. 28(16), 2213–2218 (2010).
[CrossRef]

L. Xu, C. W. Chow, and H. K. Tsang, “Long-reach multicast high split-ratio wired and wireless WDM-PON using SOA for remote upconversion,” IEEE Trans. Microw. Theory Tech. 58(11), 3136–3143 (2010).
[CrossRef]

2009 (3)

2008 (3)

2007 (1)

2005 (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

2002 (1)

D. B. Payne and R. P. Davey, “The Future of fiber access systems,” BT Technol. J. 20(4), 104–114 (2002).
[CrossRef]

Chang, G. K.

H. C. Chien, A. Chowdhury, Z. Jia, Y. T. Hsueh, and G. K. Chang, “60 GHz millimeter-wave gigabit wireless services over long-reach passive optical network using remote signal regeneration and upconversion,” Opt. Express 17(5), 3016–3024 (2009).
[CrossRef]

J. Yu, M. F. Huang, Z. Jia, T. Wang, and G. K. Chang, “A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal,” IEEE Photon. Technol. Lett. 20(7), 478–480 (2008).
[CrossRef]

Chen, L.

Chi, S.

Chien, H. C.

Chow, C. W.

Chowdhury, A.

Davey, R. P.

D. B. Payne and R. P. Davey, “The Future of fiber access systems,” BT Technol. J. 20(4), 104–114 (2002).
[CrossRef]

Han, S. K.

Hong, M. K.

Hsueh, Y. T.

Huang, M. F.

J. Yu, M. F. Huang, Z. Jia, T. Wang, and G. K. Chang, “A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal,” IEEE Photon. Technol. Lett. 20(7), 478–480 (2008).
[CrossRef]

Jia, Z.

H. C. Chien, A. Chowdhury, Z. Jia, Y. T. Hsueh, and G. K. Chang, “60 GHz millimeter-wave gigabit wireless services over long-reach passive optical network using remote signal regeneration and upconversion,” Opt. Express 17(5), 3016–3024 (2009).
[CrossRef]

J. Yu, M. F. Huang, Z. Jia, T. Wang, and G. K. Chang, “A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal,” IEEE Photon. Technol. Lett. 20(7), 478–480 (2008).
[CrossRef]

Kim, H. S.

Lipson, M.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Ma, J.

Pan, C. L.

Payne, D. B.

D. B. Payne and R. P. Davey, “The Future of fiber access systems,” BT Technol. J. 20(4), 104–114 (2002).
[CrossRef]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Shih, F. Y.

Son, Y. H.

Tsang, H. K.

Wang, C. H.

Wang, T.

J. Yu, M. F. Huang, Z. Jia, T. Wang, and G. K. Chang, “A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal,” IEEE Photon. Technol. Lett. 20(7), 478–480 (2008).
[CrossRef]

Won, Y. Y.

Xin, X.

Xu, L.

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Yeh, C. H.

Yu, C.

Yu, J.

J. Yu, M. F. Huang, Z. Jia, T. Wang, and G. K. Chang, “A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal,” IEEE Photon. Technol. Lett. 20(7), 478–480 (2008).
[CrossRef]

J. Ma, J. Yu, C. Yu, X. Xin, J. Zeng, and L. Chen, “Fiber dispersion influence on transmission of the optical millimeter-waves generated using LN-MZM intensity modulation,” J. Lightwave Technol. 25(11), 3244–3256 (2007).
[CrossRef]

Zeng, J.

BT Technol. J. (1)

D. B. Payne and R. P. Davey, “The Future of fiber access systems,” BT Technol. J. 20(4), 104–114 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulated wired/wireless access using reflective semiconductor optical amplifier with wireless signal broadcast,” IEEE Photon. Technol. Lett. 21(19), 1459–1462 (2009).
[CrossRef]

J. Yu, M. F. Huang, Z. Jia, T. Wang, and G. K. Chang, “A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal,” IEEE Photon. Technol. Lett. 20(7), 478–480 (2008).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

L. Xu, C. W. Chow, and H. K. Tsang, “Long-reach multicast high split-ratio wired and wireless WDM-PON using SOA for remote upconversion,” IEEE Trans. Microw. Theory Tech. 58(11), 3136–3143 (2010).
[CrossRef]

J. Lightwave Technol. (4)

Nature (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Opt. Express (3)

Other (2)

L. Xu, K. Padmaraju, L. Chen, M. Lipson, and K. Bergman, “First demonstration of symmetric 10-Gb/s access networks architecture based on silicon microring single sideband modulation for efficient upstream re-modulation,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThK2.

C. W. Chow and C. H. Yeh, “Long-reach WDM PONs,” in 23rd Annual Meeting of the IEEE Photonics Society, (IEEE, 2010), pp. 343–344 (Invited Talk).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Simulation setups, optical spectra, time-domain patterns and eye-diagrams at 0 km and 100 km of the (a) DSB, (b) OCS and (c) conventional SSB-ROF signals.

Fig. 2
Fig. 2

(a) The cross section, (b) microscope photograph and (c) measured optical spectra of the silicon ring-modulator.

Fig. 3
Fig. 3

Architecture of the LR-ROF transmission experiment using SSB signal. MZM: Mach-Zehnder modulator, PD: photodiode, LPF: low pass filter. Inset: simulated time-domain patterns and eye-diagrams at 0 km and 100 km of the SSB-ROF signals.

Fig. 4
Fig. 4

(a) Measured BER performances of the baseband NRZ signals generated by the self-beating at the PD in the LR-ROF network. Insets: corresponding eye diagrams. (b) Measured optical spectrum of the SSB-ROF signal generated by the silicon ring-modulator.

Fig. 5
Fig. 5

(a) Simulated RF spectra of the generated 60 GHz RF signal without (upper graph) and with (lower graph) applying the electrical NRZ data to the silicon ring-modulator. (b) Simulated Q-values (dB) of the RF down-converted signal against different signal amplitudes.

Metrics