Abstract

This research uses a roll-to-roll based ultraviolet (UV) resin process to make sub-wavelength gratings for display applications. Based on the rigorous coupling wave analysis (RCWA), we analyze the relationship between the first order transmission/reflection efficiency and the pitch of the grating for various shapes as rays pass through the sub-wavelength gratings, patterned with a backlight. The objective is to turn the R/G/B (620 nm, 520nm, and 450nm) incident rays into uniformly and normally output white light with high illuminance from the surface of a light guide.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Yamada, S. Ono, and Y. Taira, “Dual layered very thin flat surface micro prism array directly molded in an LCD cell,” in Eurodisplay 2002 (2002), pp. 339–342.
  2. R. Caputo, L. De Sio, M. J. J. Jak, E. J. Hornix, D. K. G. de Boer, and H. J. Cornelissen, “Short period holographic structures for backlight display applications,” Opt. Express 15(17), 10540–10552 (2007).
    [CrossRef] [PubMed]
  3. S. M. Lee, H. W. Choi, M. G. Lee, J. H. Min, J. S. Choi, J. H. Kim, S. I. Kim, Y. S. Choi, and K. H. Lee, “New concept for improvement of white color balance in hologram back-light units,” in Society of Information Display (SID) 03 Digest 49, 1361–1363 (2003).
  4. Y. Ye, D. Pu, Y. Zhou, and L. Chen, “Diffraction characteristics of a submicrometer grating for a light guide plate,” Appl. Opt. 46(17), 3396–3399 (2007).
    [CrossRef] [PubMed]
  5. S. R. Park, O. J. Kwon, D. Shin, S. H. Song, H. S. Lee, and H. Y. Choi, “Grating micro-dot patterned light guide plates for LED backlights,” Opt. Express 15(6), 2888–2899 (2007).
    [CrossRef] [PubMed]
  6. M. T. Gale, C. H. Gimkiewicz, S. Obi, M. Schnieper, J. Söchtig, H. Thiele, and S. Westenhöfer, “Replication technology for optical microsystems,” Opt. Lasers Eng. 43(3-5), 373–386 (2005).
    [CrossRef]
  7. H. Tan, A. Gilbertson, and S. Y. Chou, “Roller nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3926–3928 (1998).
    [CrossRef]
  8. T. Mäkelä, T. Haatainen, P. Majander, and J. Ahopelto, “Continuous roll to roll nanoimprinting of inherently conducting polyaniline,” Microelectron. Eng. 84(5-8), 877–879 (2007).
    [CrossRef]
  9. T. Mäkelä, S. Jussila, H. Kosonen, T. Bäcklund, H. Sandberg, and H. Stubb, “Utilizing roll-to-roll techniques for manufacturing source-drain electrodes for all-polymer transistors,” Synth. Met. 153(1-3), 285–288 (2005).
    [CrossRef]
  10. H. H. Lin, C. H. Lee, and M. H. Lu, “Dye-less color filter fabricated by roll-to-roll imprinting for liquid crystal display applications,” Opt. Express 17(15), 12397–12406 (2009).
    [CrossRef] [PubMed]
  11. S. W. Fan, “Vector theory analysis and numerical calculation for any shape profile dielectric gratings,” Optics Precis. Eng. 8, 5–10 (2000).
  12. Y. Ye, D. L. Pu, L. L. Wang, and L. S. Chen, “Diffraction characteristics of sub-micro gratings for light guide plate,” J. Optoelectron. Laser 17, 1301–1305 (2006).
  13. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).
    [CrossRef]
  14. X. H. Rao, J. G. Cai, G. T. Shen, B. C. Yang, Z. Q. Zhang, J. H. Zheng, and S. L. Zhuang, “Study on the zero order reflection efficiency of sub-wavelength grating,” J. Shanghai Jaiotong Univ. 29(3), 245–249 (2007).

2009 (1)

2007 (5)

2006 (1)

Y. Ye, D. L. Pu, L. L. Wang, and L. S. Chen, “Diffraction characteristics of sub-micro gratings for light guide plate,” J. Optoelectron. Laser 17, 1301–1305 (2006).

2005 (2)

T. Mäkelä, S. Jussila, H. Kosonen, T. Bäcklund, H. Sandberg, and H. Stubb, “Utilizing roll-to-roll techniques for manufacturing source-drain electrodes for all-polymer transistors,” Synth. Met. 153(1-3), 285–288 (2005).
[CrossRef]

M. T. Gale, C. H. Gimkiewicz, S. Obi, M. Schnieper, J. Söchtig, H. Thiele, and S. Westenhöfer, “Replication technology for optical microsystems,” Opt. Lasers Eng. 43(3-5), 373–386 (2005).
[CrossRef]

2000 (1)

S. W. Fan, “Vector theory analysis and numerical calculation for any shape profile dielectric gratings,” Optics Precis. Eng. 8, 5–10 (2000).

1998 (1)

H. Tan, A. Gilbertson, and S. Y. Chou, “Roller nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3926–3928 (1998).
[CrossRef]

1995 (1)

Ahopelto, J.

T. Mäkelä, T. Haatainen, P. Majander, and J. Ahopelto, “Continuous roll to roll nanoimprinting of inherently conducting polyaniline,” Microelectron. Eng. 84(5-8), 877–879 (2007).
[CrossRef]

Bäcklund, T.

T. Mäkelä, S. Jussila, H. Kosonen, T. Bäcklund, H. Sandberg, and H. Stubb, “Utilizing roll-to-roll techniques for manufacturing source-drain electrodes for all-polymer transistors,” Synth. Met. 153(1-3), 285–288 (2005).
[CrossRef]

Cai, J. G.

X. H. Rao, J. G. Cai, G. T. Shen, B. C. Yang, Z. Q. Zhang, J. H. Zheng, and S. L. Zhuang, “Study on the zero order reflection efficiency of sub-wavelength grating,” J. Shanghai Jaiotong Univ. 29(3), 245–249 (2007).

Caputo, R.

Chen, L.

Chen, L. S.

Y. Ye, D. L. Pu, L. L. Wang, and L. S. Chen, “Diffraction characteristics of sub-micro gratings for light guide plate,” J. Optoelectron. Laser 17, 1301–1305 (2006).

Choi, H. Y.

Chou, S. Y.

H. Tan, A. Gilbertson, and S. Y. Chou, “Roller nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3926–3928 (1998).
[CrossRef]

Cornelissen, H. J.

de Boer, D. K. G.

De Sio, L.

Gale, M. T.

M. T. Gale, C. H. Gimkiewicz, S. Obi, M. Schnieper, J. Söchtig, H. Thiele, and S. Westenhöfer, “Replication technology for optical microsystems,” Opt. Lasers Eng. 43(3-5), 373–386 (2005).
[CrossRef]

Gaylord, T. K.

Gilbertson, A.

H. Tan, A. Gilbertson, and S. Y. Chou, “Roller nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3926–3928 (1998).
[CrossRef]

Gimkiewicz, C. H.

M. T. Gale, C. H. Gimkiewicz, S. Obi, M. Schnieper, J. Söchtig, H. Thiele, and S. Westenhöfer, “Replication technology for optical microsystems,” Opt. Lasers Eng. 43(3-5), 373–386 (2005).
[CrossRef]

Grann, E. B.

Haatainen, T.

T. Mäkelä, T. Haatainen, P. Majander, and J. Ahopelto, “Continuous roll to roll nanoimprinting of inherently conducting polyaniline,” Microelectron. Eng. 84(5-8), 877–879 (2007).
[CrossRef]

Hornix, E. J.

Jak, M. J. J.

Jussila, S.

T. Mäkelä, S. Jussila, H. Kosonen, T. Bäcklund, H. Sandberg, and H. Stubb, “Utilizing roll-to-roll techniques for manufacturing source-drain electrodes for all-polymer transistors,” Synth. Met. 153(1-3), 285–288 (2005).
[CrossRef]

Kosonen, H.

T. Mäkelä, S. Jussila, H. Kosonen, T. Bäcklund, H. Sandberg, and H. Stubb, “Utilizing roll-to-roll techniques for manufacturing source-drain electrodes for all-polymer transistors,” Synth. Met. 153(1-3), 285–288 (2005).
[CrossRef]

Kwon, O. J.

Lee, C. H.

Lee, H. S.

Lin, H. H.

Lu, M. H.

Majander, P.

T. Mäkelä, T. Haatainen, P. Majander, and J. Ahopelto, “Continuous roll to roll nanoimprinting of inherently conducting polyaniline,” Microelectron. Eng. 84(5-8), 877–879 (2007).
[CrossRef]

Mäkelä, T.

T. Mäkelä, T. Haatainen, P. Majander, and J. Ahopelto, “Continuous roll to roll nanoimprinting of inherently conducting polyaniline,” Microelectron. Eng. 84(5-8), 877–879 (2007).
[CrossRef]

T. Mäkelä, S. Jussila, H. Kosonen, T. Bäcklund, H. Sandberg, and H. Stubb, “Utilizing roll-to-roll techniques for manufacturing source-drain electrodes for all-polymer transistors,” Synth. Met. 153(1-3), 285–288 (2005).
[CrossRef]

Moharam, M. G.

Obi, S.

M. T. Gale, C. H. Gimkiewicz, S. Obi, M. Schnieper, J. Söchtig, H. Thiele, and S. Westenhöfer, “Replication technology for optical microsystems,” Opt. Lasers Eng. 43(3-5), 373–386 (2005).
[CrossRef]

Park, S. R.

Pommet, D. A.

Pu, D.

Pu, D. L.

Y. Ye, D. L. Pu, L. L. Wang, and L. S. Chen, “Diffraction characteristics of sub-micro gratings for light guide plate,” J. Optoelectron. Laser 17, 1301–1305 (2006).

Rao, X. H.

X. H. Rao, J. G. Cai, G. T. Shen, B. C. Yang, Z. Q. Zhang, J. H. Zheng, and S. L. Zhuang, “Study on the zero order reflection efficiency of sub-wavelength grating,” J. Shanghai Jaiotong Univ. 29(3), 245–249 (2007).

Sandberg, H.

T. Mäkelä, S. Jussila, H. Kosonen, T. Bäcklund, H. Sandberg, and H. Stubb, “Utilizing roll-to-roll techniques for manufacturing source-drain electrodes for all-polymer transistors,” Synth. Met. 153(1-3), 285–288 (2005).
[CrossRef]

Schnieper, M.

M. T. Gale, C. H. Gimkiewicz, S. Obi, M. Schnieper, J. Söchtig, H. Thiele, and S. Westenhöfer, “Replication technology for optical microsystems,” Opt. Lasers Eng. 43(3-5), 373–386 (2005).
[CrossRef]

Shen, G. T.

X. H. Rao, J. G. Cai, G. T. Shen, B. C. Yang, Z. Q. Zhang, J. H. Zheng, and S. L. Zhuang, “Study on the zero order reflection efficiency of sub-wavelength grating,” J. Shanghai Jaiotong Univ. 29(3), 245–249 (2007).

Shin, D.

Söchtig, J.

M. T. Gale, C. H. Gimkiewicz, S. Obi, M. Schnieper, J. Söchtig, H. Thiele, and S. Westenhöfer, “Replication technology for optical microsystems,” Opt. Lasers Eng. 43(3-5), 373–386 (2005).
[CrossRef]

Song, S. H.

Stubb, H.

T. Mäkelä, S. Jussila, H. Kosonen, T. Bäcklund, H. Sandberg, and H. Stubb, “Utilizing roll-to-roll techniques for manufacturing source-drain electrodes for all-polymer transistors,” Synth. Met. 153(1-3), 285–288 (2005).
[CrossRef]

Tan, H.

H. Tan, A. Gilbertson, and S. Y. Chou, “Roller nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3926–3928 (1998).
[CrossRef]

Thiele, H.

M. T. Gale, C. H. Gimkiewicz, S. Obi, M. Schnieper, J. Söchtig, H. Thiele, and S. Westenhöfer, “Replication technology for optical microsystems,” Opt. Lasers Eng. 43(3-5), 373–386 (2005).
[CrossRef]

Wang, L. L.

Y. Ye, D. L. Pu, L. L. Wang, and L. S. Chen, “Diffraction characteristics of sub-micro gratings for light guide plate,” J. Optoelectron. Laser 17, 1301–1305 (2006).

Westenhöfer, S.

M. T. Gale, C. H. Gimkiewicz, S. Obi, M. Schnieper, J. Söchtig, H. Thiele, and S. Westenhöfer, “Replication technology for optical microsystems,” Opt. Lasers Eng. 43(3-5), 373–386 (2005).
[CrossRef]

Yang, B. C.

X. H. Rao, J. G. Cai, G. T. Shen, B. C. Yang, Z. Q. Zhang, J. H. Zheng, and S. L. Zhuang, “Study on the zero order reflection efficiency of sub-wavelength grating,” J. Shanghai Jaiotong Univ. 29(3), 245–249 (2007).

Ye, Y.

Y. Ye, D. Pu, Y. Zhou, and L. Chen, “Diffraction characteristics of a submicrometer grating for a light guide plate,” Appl. Opt. 46(17), 3396–3399 (2007).
[CrossRef] [PubMed]

Y. Ye, D. L. Pu, L. L. Wang, and L. S. Chen, “Diffraction characteristics of sub-micro gratings for light guide plate,” J. Optoelectron. Laser 17, 1301–1305 (2006).

Zhang, Z. Q.

X. H. Rao, J. G. Cai, G. T. Shen, B. C. Yang, Z. Q. Zhang, J. H. Zheng, and S. L. Zhuang, “Study on the zero order reflection efficiency of sub-wavelength grating,” J. Shanghai Jaiotong Univ. 29(3), 245–249 (2007).

Zheng, J. H.

X. H. Rao, J. G. Cai, G. T. Shen, B. C. Yang, Z. Q. Zhang, J. H. Zheng, and S. L. Zhuang, “Study on the zero order reflection efficiency of sub-wavelength grating,” J. Shanghai Jaiotong Univ. 29(3), 245–249 (2007).

Zhou, Y.

Zhuang, S. L.

X. H. Rao, J. G. Cai, G. T. Shen, B. C. Yang, Z. Q. Zhang, J. H. Zheng, and S. L. Zhuang, “Study on the zero order reflection efficiency of sub-wavelength grating,” J. Shanghai Jaiotong Univ. 29(3), 245–249 (2007).

Appl. Opt. (1)

J. Opt. Soc. Am. A (1)

J. Optoelectron. Laser (1)

Y. Ye, D. L. Pu, L. L. Wang, and L. S. Chen, “Diffraction characteristics of sub-micro gratings for light guide plate,” J. Optoelectron. Laser 17, 1301–1305 (2006).

J. Shanghai Jaiotong Univ. (1)

X. H. Rao, J. G. Cai, G. T. Shen, B. C. Yang, Z. Q. Zhang, J. H. Zheng, and S. L. Zhuang, “Study on the zero order reflection efficiency of sub-wavelength grating,” J. Shanghai Jaiotong Univ. 29(3), 245–249 (2007).

J. Vac. Sci. Technol. B (1)

H. Tan, A. Gilbertson, and S. Y. Chou, “Roller nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3926–3928 (1998).
[CrossRef]

Microelectron. Eng. (1)

T. Mäkelä, T. Haatainen, P. Majander, and J. Ahopelto, “Continuous roll to roll nanoimprinting of inherently conducting polyaniline,” Microelectron. Eng. 84(5-8), 877–879 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lasers Eng. (1)

M. T. Gale, C. H. Gimkiewicz, S. Obi, M. Schnieper, J. Söchtig, H. Thiele, and S. Westenhöfer, “Replication technology for optical microsystems,” Opt. Lasers Eng. 43(3-5), 373–386 (2005).
[CrossRef]

Optics Precis. Eng. (1)

S. W. Fan, “Vector theory analysis and numerical calculation for any shape profile dielectric gratings,” Optics Precis. Eng. 8, 5–10 (2000).

Synth. Met. (1)

T. Mäkelä, S. Jussila, H. Kosonen, T. Bäcklund, H. Sandberg, and H. Stubb, “Utilizing roll-to-roll techniques for manufacturing source-drain electrodes for all-polymer transistors,” Synth. Met. 153(1-3), 285–288 (2005).
[CrossRef]

Other (2)

F. Yamada, S. Ono, and Y. Taira, “Dual layered very thin flat surface micro prism array directly molded in an LCD cell,” in Eurodisplay 2002 (2002), pp. 339–342.

S. M. Lee, H. W. Choi, M. G. Lee, J. H. Min, J. S. Choi, J. H. Kim, S. I. Kim, Y. S. Choi, and K. H. Lee, “New concept for improvement of white color balance in hologram back-light units,” in Society of Information Display (SID) 03 Digest 49, 1361–1363 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Behavior of light rays at the junction between LED module and the light guide. (a) The entrance facet is flat. (b) The entrance facet is textured. (c) The light is from a light bar with an array of sub-wavelength gratings.

Fig. 2
Fig. 2

Diffraction geometry for the blazed grating diffraction problem analyzed herein.

Fig. 3
Fig. 3

A light bar including an array of five gratings. The gratings on top of the LB separates incoming light into white, which is composed of different directions of red, green and blue colors.

Fig. 4
Fig. 4

Calculated relative intensity distribution as a function of the refracted angle, which is determined by the radiant intensity of the LED and the transmission derived from Fresnel equations.

Fig. 5
Fig. 5

Diffraction efficiency as a function of wavelength (horizontal axis) and incident angle (vertical axis) for different periods of the SWG with profile of 90° vertex angle grooves.

Fig. 6
Fig. 6

Average diffraction efficiency as a function of incident angle for SWG periods ranging from 350 nm to 500 nm with profile of 90° vertex angle grooves.

Fig. 7
Fig. 7

The distribution of extracted intensity, which is the multiplication of the incoming incident angle’s intensity distribution and the corresponding average DE.

Fig. 8
Fig. 8

Pictures of (a) the ITRI-made drum roll lathe and (b) the roller for imprinting the sub-wavelength gratings.

Fig. 9
Fig. 9

Zone width for each grating is 600 um; spacing between each grating is 100 um; the total width of 10 sets of gratings are about 350mm. The total cutting length is 35.9 km.

Fig. 10
Fig. 10

(a) The UV embossing equipment. (b) Schematic diagram showing the process: the UV resin was first dispensed on the PET film, imprinted by the roller, and cured with UV source.

Fig. 11
Fig. 11

SEM images of the fabricated SWGs. The periods of SWG A, B, C, D, and E are 359 nm, 480nm, 456 nm, 410 nm and 382 nm, respectively.

Fig. 12
Fig. 12

SEM image: the cross-section of SWG D with period 410 nm.

Fig. 13
Fig. 13

The prototype of LB with SWGs.

Fig. 14
Fig. 14

(a) The measurement setup generates collimated white light to measure the performance of a LB with SWGs. (b) Photograph of color pattern of the LB with SWGs captured by a CCD camera.

Fig. 15
Fig. 15

(a) LED attached on the side of LB to measure the performance of a LB with SWGs. (b) LED illuminated photograph of color pattern of the LB with SWGs captured by a CCD camera.

Fig. 16
Fig. 16

Color points in CIE x-y space, created by sampling the pattern shown in Fig. 14 (b). Points A, B, C, D and E of the red dashed polygon correspond to the SWG A, SWG B, SWG C, SWG D and SWG E. The LED’s color coordinates (points R, G and B) are also shown for reference. Points R、G and B of the black dashed triangle represents the gamut of colors of the LED.

Fig. 17
Fig. 17

Light propagating in the LB is extracted outwardly by a plurality of sub-wavelength grating. Highest luminance (designed to be white light) occurs at the viewing angle = 0°.

Fig. 18
Fig. 18

In cutting, the cutting side of the tool is easily damaged, generating rough SWG surfaces and asymmetric profile.

Tables (4)

Tables Icon

Table 1 Calculated DE for Five Sub-wavelength Gratings with Shape of 90° Vertex Angle Grooves

Tables Icon

Table 2 Curing Condition Between UV Power and Forming Feed Rate

Tables Icon

Table 3 Color Patterns and Luminance of Each Grating Area Illuminated by LED of (a) Red, (b) Green, and(c) Blue Light Source

Tables Icon

Table 4 Calculated diffraction efficiencies of sub-wavelength gratings replicated from an imprinting Cu roller, cut using the wear of the diamond bite.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E I = exp [ j k 0 n I ( y sin θ + x cos θ ] + i R i exp [ j ( k y i y k I , x i x ) ] ,
E I I = i T i exp { j [ k y i y + k I I , x i ( x H ) ] } .
k y i = k 0 [ n I sin ( θ ) i ( λ 0 P ) ] ,
k l , x i = ( k 0 2 n l 2 k y i 2 ) 1 / 2 , l = I , I I .
D E r i = R i R i * Re [ k I , x i / k 0 n I cos ( θ ) ] ,
D E t i = T i T i * Re ( k I I , x i / n I I 2 ) / [ k 0 cos ( θ ) n I ] ..
I = I 0 cos θ ,
T = 1 2 ( T s + T p ) = 1 2 [ n 2 cos θ 2 n 1 cos θ 1 4 sin 2 θ 2 cos 2 θ 1 sin 2 ( θ 1 + θ 2 ) + n 2 cos θ 2 n 1 cos θ 1 4 sin 2 θ 2 cos 2 θ 1 sin 2 ( θ 1 + θ 2 ) cos 2 ( θ 1 θ 2 ) ] ,
m λ = Λ ( n 2 sin θ d i f n 1 sin θ i n c ) ,

Metrics