Abstract

We demonstrate a nanoplasmonic probe that incorporates a subwavelength aperture coupled to a fine probing tip. This probe is used in a hybrid near-field scanning optical microscope and atomic force microscope system that can simultaneously map the optical near-field and the topography of nanostructures. By spatially isolating but optically coupling the aperture and the localizing point, we obtained near-field images at a resolution of 45 nm, corresponding to λ/14. This nanoplasmonic probe design overcomes the resolution challenges of conventional apertured near-field optical probes and can provide substantially higher resolution than demonstrated in this work.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Zia, J. Schuller, and M. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B 74(16), 165415 (2006).
    [CrossRef]
  2. M. H. Chowdhury, J. M. Catchmark, and J. R. Lakowicz, “Imaging three-dimensional light propagation through periodic nanohole arrays using scanning aperture microscopy,” Appl. Phys. Lett. 91(10), 103118 (2007).
    [CrossRef]
  3. E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88(15), 153110 (2006).
    [CrossRef]
  4. R. Guo, E. C. Kinzel, Y. Li, S. M. Uppuluri, A. Raman, and X. Xu, “Three-dimensional mapping of optical near field of a nanoscale bowtie antenna,” Opt. Express 18(5), 4961–4971 (2010).
    [CrossRef] [PubMed]
  5. N. F. van Hulst, M. H. P. Moers, O. F. J. Noordman, R. G. Tack, F. B. Segerink, and B. Bölger, “Near-field optical microscope using a silicon-nitride probe,” Appl. Phys. Lett. 62(5), 461–463 (1993).
    [CrossRef]
  6. B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
    [CrossRef]
  7. A. Jauß, J. Koenen, K. Weishaupt, and O. Hollricher, “Scanning near-field optical microscopy in life science,” Single Mol. 3(4), 232–235 (2002).
    [CrossRef]
  8. J. W. Kingsley, S. K. Ray, A. M. Adawi, G. J. Leggett, and D. G. Lidzey, “Optical nanolithography using a scanning near-field probe with an integrated light source,” Appl. Phys. Lett. 93(21), 213103 (2008).
    [CrossRef]
  9. M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, and G. Cerullo, “Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: a tool for nonlinear optics at the nanoscale,” Rev. Sci. Instrum. 80(3), 033704 (2009).
    [CrossRef] [PubMed]
  10. P. Biagioni, M. Celebrano, M. Zavelani-Rossi, D. Polli, M. Labardi, G. Lanzani, G. Cerullo, M. Finazzi, and L. Duò, “High-resolution imaging of local oxidation in polyfluorene thin films by nonlinear near-field microscopy,” Appl. Phys. Lett. 91(19), 191118 (2007).
    [CrossRef]
  11. S. Chen, H. Hsiung, W. Su, and D. Tsai, “Convenient near-field optical measurement and analysis of polystyrene spheres,” Vacuum 81(1), 129–132 (2006).
    [CrossRef]
  12. R. M. Stöckle, N. Schaller, V. Deckert, C. Fokas, and R. Zenobi, “Brighter near-field optical probes by means of improving the optical destruction threshold,” J. Microsc. 194(2-3), 378–382 (1999).
    [CrossRef]
  13. A. Dechant, S. K. Dew, S. E. Irvine, and A. Y. Elezzabi, “High-transmission solid-immersion apertured optical probes for near-field scanning optical microscopy,” Appl. Phys. Lett. 86(1), 013102 (2005).
    [CrossRef]
  14. H. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944).
    [CrossRef]
  15. R. Vogelgesang, J. Dorfmüller, R. Esteban, R. T. Weitz, A. Dmitriev, and K. Kern, “Plasmonic nanostructures in aperture-less scanning near-field optical microscopy (aSNOM),” Phys. Status Solidi B 245(10), 2255–2260 (2008).
    [CrossRef]
  16. Y. Zou and K. B. Crozier, “Experimental measurement of surface plasmon resonance of pyramidal metal nanoparticle tips,” Proc. SPIE 7033, 70331X (2008).
    [CrossRef]
  17. A. Naber, D. Molenda, U. C. Fischer, H.-J. Maas, C. Höppener, N. Lu, and H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89(21), 210801 (2002).
    [CrossRef] [PubMed]
  18. M. Specht, J. D. Pedarnig, W. M. Heckl, and T. W. Hänsch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68(4), 476–479 (1992).
    [CrossRef] [PubMed]
  19. F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269(5227), 1083–1085 (1995).
    [CrossRef] [PubMed]
  20. Y. Inouye and S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19(3), 159–161 (1994).
    [CrossRef] [PubMed]
  21. R. Esteban, R. Vogelgesang, and K. Kern, “Full simulations of the apertureless scanning near field optical microscopy signal: achievable resolution and contrast,” Opt. Express 17(4), 2518–2529 (2009).
    [CrossRef] [PubMed]
  22. M. C. Quong and A. Y. Elezzabi, “Offset-apertured near-field scanning optical microscope probes,” Opt. Express 15(16), 10163–10174 (2007).
    [CrossRef] [PubMed]
  23. In particular, our nanoplasmonic probe had an imperfectly pyramidal tip (Fig. 3), a gold coating, and a large aperture, while the numerically-studied probe [22] had a perfectly conical tip, a metal coating of different thickness and material (silver), a different cantilever thickness, and a smaller cone angle. These differences preclude any quantitative comparison between the optical properties of the two probes.
  24. R. Qiang, R. Chen, and J. Chen, “Modeling electrical properties of gold films at infrared frequency using FDTD method,” Int. J. Infrared Millim. Waves 25(8), 1263–1270 (2004).
    [CrossRef]
  25. M. Yan and M. Qiu, “Guided plasmon polariton at 2D metal corners,” J. Opt. Soc. Am. B 24(9), 2333–2342 (2007).
    [CrossRef]

2010 (1)

2009 (2)

M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, and G. Cerullo, “Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: a tool for nonlinear optics at the nanoscale,” Rev. Sci. Instrum. 80(3), 033704 (2009).
[CrossRef] [PubMed]

R. Esteban, R. Vogelgesang, and K. Kern, “Full simulations of the apertureless scanning near field optical microscopy signal: achievable resolution and contrast,” Opt. Express 17(4), 2518–2529 (2009).
[CrossRef] [PubMed]

2008 (3)

R. Vogelgesang, J. Dorfmüller, R. Esteban, R. T. Weitz, A. Dmitriev, and K. Kern, “Plasmonic nanostructures in aperture-less scanning near-field optical microscopy (aSNOM),” Phys. Status Solidi B 245(10), 2255–2260 (2008).
[CrossRef]

Y. Zou and K. B. Crozier, “Experimental measurement of surface plasmon resonance of pyramidal metal nanoparticle tips,” Proc. SPIE 7033, 70331X (2008).
[CrossRef]

J. W. Kingsley, S. K. Ray, A. M. Adawi, G. J. Leggett, and D. G. Lidzey, “Optical nanolithography using a scanning near-field probe with an integrated light source,” Appl. Phys. Lett. 93(21), 213103 (2008).
[CrossRef]

2007 (4)

M. H. Chowdhury, J. M. Catchmark, and J. R. Lakowicz, “Imaging three-dimensional light propagation through periodic nanohole arrays using scanning aperture microscopy,” Appl. Phys. Lett. 91(10), 103118 (2007).
[CrossRef]

P. Biagioni, M. Celebrano, M. Zavelani-Rossi, D. Polli, M. Labardi, G. Lanzani, G. Cerullo, M. Finazzi, and L. Duò, “High-resolution imaging of local oxidation in polyfluorene thin films by nonlinear near-field microscopy,” Appl. Phys. Lett. 91(19), 191118 (2007).
[CrossRef]

M. C. Quong and A. Y. Elezzabi, “Offset-apertured near-field scanning optical microscope probes,” Opt. Express 15(16), 10163–10174 (2007).
[CrossRef] [PubMed]

M. Yan and M. Qiu, “Guided plasmon polariton at 2D metal corners,” J. Opt. Soc. Am. B 24(9), 2333–2342 (2007).
[CrossRef]

2006 (3)

S. Chen, H. Hsiung, W. Su, and D. Tsai, “Convenient near-field optical measurement and analysis of polystyrene spheres,” Vacuum 81(1), 129–132 (2006).
[CrossRef]

E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88(15), 153110 (2006).
[CrossRef]

R. Zia, J. Schuller, and M. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B 74(16), 165415 (2006).
[CrossRef]

2005 (1)

A. Dechant, S. K. Dew, S. E. Irvine, and A. Y. Elezzabi, “High-transmission solid-immersion apertured optical probes for near-field scanning optical microscopy,” Appl. Phys. Lett. 86(1), 013102 (2005).
[CrossRef]

2004 (1)

R. Qiang, R. Chen, and J. Chen, “Modeling electrical properties of gold films at infrared frequency using FDTD method,” Int. J. Infrared Millim. Waves 25(8), 1263–1270 (2004).
[CrossRef]

2002 (2)

A. Jauß, J. Koenen, K. Weishaupt, and O. Hollricher, “Scanning near-field optical microscopy in life science,” Single Mol. 3(4), 232–235 (2002).
[CrossRef]

A. Naber, D. Molenda, U. C. Fischer, H.-J. Maas, C. Höppener, N. Lu, and H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89(21), 210801 (2002).
[CrossRef] [PubMed]

2000 (1)

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[CrossRef]

1999 (1)

R. M. Stöckle, N. Schaller, V. Deckert, C. Fokas, and R. Zenobi, “Brighter near-field optical probes by means of improving the optical destruction threshold,” J. Microsc. 194(2-3), 378–382 (1999).
[CrossRef]

1995 (1)

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269(5227), 1083–1085 (1995).
[CrossRef] [PubMed]

1994 (1)

1993 (1)

N. F. van Hulst, M. H. P. Moers, O. F. J. Noordman, R. G. Tack, F. B. Segerink, and B. Bölger, “Near-field optical microscope using a silicon-nitride probe,” Appl. Phys. Lett. 62(5), 461–463 (1993).
[CrossRef]

1992 (1)

M. Specht, J. D. Pedarnig, W. M. Heckl, and T. W. Hänsch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68(4), 476–479 (1992).
[CrossRef] [PubMed]

1944 (1)

H. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944).
[CrossRef]

Adawi, A. M.

J. W. Kingsley, S. K. Ray, A. M. Adawi, G. J. Leggett, and D. G. Lidzey, “Optical nanolithography using a scanning near-field probe with an integrated light source,” Appl. Phys. Lett. 93(21), 213103 (2008).
[CrossRef]

Allegrini, M.

M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, and G. Cerullo, “Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: a tool for nonlinear optics at the nanoscale,” Rev. Sci. Instrum. 80(3), 033704 (2009).
[CrossRef] [PubMed]

Bethe, H.

H. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944).
[CrossRef]

Biagioni, P.

M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, and G. Cerullo, “Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: a tool for nonlinear optics at the nanoscale,” Rev. Sci. Instrum. 80(3), 033704 (2009).
[CrossRef] [PubMed]

P. Biagioni, M. Celebrano, M. Zavelani-Rossi, D. Polli, M. Labardi, G. Lanzani, G. Cerullo, M. Finazzi, and L. Duò, “High-resolution imaging of local oxidation in polyfluorene thin films by nonlinear near-field microscopy,” Appl. Phys. Lett. 91(19), 191118 (2007).
[CrossRef]

Bölger, B.

N. F. van Hulst, M. H. P. Moers, O. F. J. Noordman, R. G. Tack, F. B. Segerink, and B. Bölger, “Near-field optical microscope using a silicon-nitride probe,” Appl. Phys. Lett. 62(5), 461–463 (1993).
[CrossRef]

Brongersma, M.

R. Zia, J. Schuller, and M. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B 74(16), 165415 (2006).
[CrossRef]

Catchmark, J. M.

M. H. Chowdhury, J. M. Catchmark, and J. R. Lakowicz, “Imaging three-dimensional light propagation through periodic nanohole arrays using scanning aperture microscopy,” Appl. Phys. Lett. 91(10), 103118 (2007).
[CrossRef]

Celebrano, M.

M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, and G. Cerullo, “Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: a tool for nonlinear optics at the nanoscale,” Rev. Sci. Instrum. 80(3), 033704 (2009).
[CrossRef] [PubMed]

P. Biagioni, M. Celebrano, M. Zavelani-Rossi, D. Polli, M. Labardi, G. Lanzani, G. Cerullo, M. Finazzi, and L. Duò, “High-resolution imaging of local oxidation in polyfluorene thin films by nonlinear near-field microscopy,” Appl. Phys. Lett. 91(19), 191118 (2007).
[CrossRef]

Cerullo, G.

M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, and G. Cerullo, “Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: a tool for nonlinear optics at the nanoscale,” Rev. Sci. Instrum. 80(3), 033704 (2009).
[CrossRef] [PubMed]

P. Biagioni, M. Celebrano, M. Zavelani-Rossi, D. Polli, M. Labardi, G. Lanzani, G. Cerullo, M. Finazzi, and L. Duò, “High-resolution imaging of local oxidation in polyfluorene thin films by nonlinear near-field microscopy,” Appl. Phys. Lett. 91(19), 191118 (2007).
[CrossRef]

Chen, J.

R. Qiang, R. Chen, and J. Chen, “Modeling electrical properties of gold films at infrared frequency using FDTD method,” Int. J. Infrared Millim. Waves 25(8), 1263–1270 (2004).
[CrossRef]

Chen, R.

R. Qiang, R. Chen, and J. Chen, “Modeling electrical properties of gold films at infrared frequency using FDTD method,” Int. J. Infrared Millim. Waves 25(8), 1263–1270 (2004).
[CrossRef]

Chen, S.

S. Chen, H. Hsiung, W. Su, and D. Tsai, “Convenient near-field optical measurement and analysis of polystyrene spheres,” Vacuum 81(1), 129–132 (2006).
[CrossRef]

Chowdhury, M. H.

M. H. Chowdhury, J. M. Catchmark, and J. R. Lakowicz, “Imaging three-dimensional light propagation through periodic nanohole arrays using scanning aperture microscopy,” Appl. Phys. Lett. 91(10), 103118 (2007).
[CrossRef]

Crozier, K. B.

Y. Zou and K. B. Crozier, “Experimental measurement of surface plasmon resonance of pyramidal metal nanoparticle tips,” Proc. SPIE 7033, 70331X (2008).
[CrossRef]

Dechant, A.

A. Dechant, S. K. Dew, S. E. Irvine, and A. Y. Elezzabi, “High-transmission solid-immersion apertured optical probes for near-field scanning optical microscopy,” Appl. Phys. Lett. 86(1), 013102 (2005).
[CrossRef]

Deckert, V.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[CrossRef]

R. M. Stöckle, N. Schaller, V. Deckert, C. Fokas, and R. Zenobi, “Brighter near-field optical probes by means of improving the optical destruction threshold,” J. Microsc. 194(2-3), 378–382 (1999).
[CrossRef]

Dew, S. K.

A. Dechant, S. K. Dew, S. E. Irvine, and A. Y. Elezzabi, “High-transmission solid-immersion apertured optical probes for near-field scanning optical microscopy,” Appl. Phys. Lett. 86(1), 013102 (2005).
[CrossRef]

Dmitriev, A.

R. Vogelgesang, J. Dorfmüller, R. Esteban, R. T. Weitz, A. Dmitriev, and K. Kern, “Plasmonic nanostructures in aperture-less scanning near-field optical microscopy (aSNOM),” Phys. Status Solidi B 245(10), 2255–2260 (2008).
[CrossRef]

Dorfmüller, J.

R. Vogelgesang, J. Dorfmüller, R. Esteban, R. T. Weitz, A. Dmitriev, and K. Kern, “Plasmonic nanostructures in aperture-less scanning near-field optical microscopy (aSNOM),” Phys. Status Solidi B 245(10), 2255–2260 (2008).
[CrossRef]

Duò, L.

M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, and G. Cerullo, “Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: a tool for nonlinear optics at the nanoscale,” Rev. Sci. Instrum. 80(3), 033704 (2009).
[CrossRef] [PubMed]

P. Biagioni, M. Celebrano, M. Zavelani-Rossi, D. Polli, M. Labardi, G. Lanzani, G. Cerullo, M. Finazzi, and L. Duò, “High-resolution imaging of local oxidation in polyfluorene thin films by nonlinear near-field microscopy,” Appl. Phys. Lett. 91(19), 191118 (2007).
[CrossRef]

Elezzabi, A. Y.

M. C. Quong and A. Y. Elezzabi, “Offset-apertured near-field scanning optical microscope probes,” Opt. Express 15(16), 10163–10174 (2007).
[CrossRef] [PubMed]

A. Dechant, S. K. Dew, S. E. Irvine, and A. Y. Elezzabi, “High-transmission solid-immersion apertured optical probes for near-field scanning optical microscopy,” Appl. Phys. Lett. 86(1), 013102 (2005).
[CrossRef]

Esteban, R.

R. Esteban, R. Vogelgesang, and K. Kern, “Full simulations of the apertureless scanning near field optical microscopy signal: achievable resolution and contrast,” Opt. Express 17(4), 2518–2529 (2009).
[CrossRef] [PubMed]

R. Vogelgesang, J. Dorfmüller, R. Esteban, R. T. Weitz, A. Dmitriev, and K. Kern, “Plasmonic nanostructures in aperture-less scanning near-field optical microscopy (aSNOM),” Phys. Status Solidi B 245(10), 2255–2260 (2008).
[CrossRef]

Finazzi, M.

M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, and G. Cerullo, “Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: a tool for nonlinear optics at the nanoscale,” Rev. Sci. Instrum. 80(3), 033704 (2009).
[CrossRef] [PubMed]

P. Biagioni, M. Celebrano, M. Zavelani-Rossi, D. Polli, M. Labardi, G. Lanzani, G. Cerullo, M. Finazzi, and L. Duò, “High-resolution imaging of local oxidation in polyfluorene thin films by nonlinear near-field microscopy,” Appl. Phys. Lett. 91(19), 191118 (2007).
[CrossRef]

Fischer, U. C.

A. Naber, D. Molenda, U. C. Fischer, H.-J. Maas, C. Höppener, N. Lu, and H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89(21), 210801 (2002).
[CrossRef] [PubMed]

Fokas, C.

R. M. Stöckle, N. Schaller, V. Deckert, C. Fokas, and R. Zenobi, “Brighter near-field optical probes by means of improving the optical destruction threshold,” J. Microsc. 194(2-3), 378–382 (1999).
[CrossRef]

Fuchs, H.

A. Naber, D. Molenda, U. C. Fischer, H.-J. Maas, C. Höppener, N. Lu, and H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89(21), 210801 (2002).
[CrossRef] [PubMed]

Guo, R.

Hänsch, T. W.

M. Specht, J. D. Pedarnig, W. M. Heckl, and T. W. Hänsch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68(4), 476–479 (1992).
[CrossRef] [PubMed]

Hecht, B.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[CrossRef]

Heckl, W. M.

M. Specht, J. D. Pedarnig, W. M. Heckl, and T. W. Hänsch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68(4), 476–479 (1992).
[CrossRef] [PubMed]

Hollricher, O.

A. Jauß, J. Koenen, K. Weishaupt, and O. Hollricher, “Scanning near-field optical microscopy in life science,” Single Mol. 3(4), 232–235 (2002).
[CrossRef]

Höppener, C.

A. Naber, D. Molenda, U. C. Fischer, H.-J. Maas, C. Höppener, N. Lu, and H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89(21), 210801 (2002).
[CrossRef] [PubMed]

Hsiung, H.

S. Chen, H. Hsiung, W. Su, and D. Tsai, “Convenient near-field optical measurement and analysis of polystyrene spheres,” Vacuum 81(1), 129–132 (2006).
[CrossRef]

Inouye, Y.

Irvine, S. E.

A. Dechant, S. K. Dew, S. E. Irvine, and A. Y. Elezzabi, “High-transmission solid-immersion apertured optical probes for near-field scanning optical microscopy,” Appl. Phys. Lett. 86(1), 013102 (2005).
[CrossRef]

Jauß, A.

A. Jauß, J. Koenen, K. Weishaupt, and O. Hollricher, “Scanning near-field optical microscopy in life science,” Single Mol. 3(4), 232–235 (2002).
[CrossRef]

Jin, E. X.

E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88(15), 153110 (2006).
[CrossRef]

Kawata, S.

Kern, K.

R. Esteban, R. Vogelgesang, and K. Kern, “Full simulations of the apertureless scanning near field optical microscopy signal: achievable resolution and contrast,” Opt. Express 17(4), 2518–2529 (2009).
[CrossRef] [PubMed]

R. Vogelgesang, J. Dorfmüller, R. Esteban, R. T. Weitz, A. Dmitriev, and K. Kern, “Plasmonic nanostructures in aperture-less scanning near-field optical microscopy (aSNOM),” Phys. Status Solidi B 245(10), 2255–2260 (2008).
[CrossRef]

Kingsley, J. W.

J. W. Kingsley, S. K. Ray, A. M. Adawi, G. J. Leggett, and D. G. Lidzey, “Optical nanolithography using a scanning near-field probe with an integrated light source,” Appl. Phys. Lett. 93(21), 213103 (2008).
[CrossRef]

Kinzel, E. C.

Koenen, J.

A. Jauß, J. Koenen, K. Weishaupt, and O. Hollricher, “Scanning near-field optical microscopy in life science,” Single Mol. 3(4), 232–235 (2002).
[CrossRef]

Labardi, M.

M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, and G. Cerullo, “Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: a tool for nonlinear optics at the nanoscale,” Rev. Sci. Instrum. 80(3), 033704 (2009).
[CrossRef] [PubMed]

P. Biagioni, M. Celebrano, M. Zavelani-Rossi, D. Polli, M. Labardi, G. Lanzani, G. Cerullo, M. Finazzi, and L. Duò, “High-resolution imaging of local oxidation in polyfluorene thin films by nonlinear near-field microscopy,” Appl. Phys. Lett. 91(19), 191118 (2007).
[CrossRef]

Lakowicz, J. R.

M. H. Chowdhury, J. M. Catchmark, and J. R. Lakowicz, “Imaging three-dimensional light propagation through periodic nanohole arrays using scanning aperture microscopy,” Appl. Phys. Lett. 91(10), 103118 (2007).
[CrossRef]

Lanzani, G.

P. Biagioni, M. Celebrano, M. Zavelani-Rossi, D. Polli, M. Labardi, G. Lanzani, G. Cerullo, M. Finazzi, and L. Duò, “High-resolution imaging of local oxidation in polyfluorene thin films by nonlinear near-field microscopy,” Appl. Phys. Lett. 91(19), 191118 (2007).
[CrossRef]

Leggett, G. J.

J. W. Kingsley, S. K. Ray, A. M. Adawi, G. J. Leggett, and D. G. Lidzey, “Optical nanolithography using a scanning near-field probe with an integrated light source,” Appl. Phys. Lett. 93(21), 213103 (2008).
[CrossRef]

Li, Y.

Lidzey, D. G.

J. W. Kingsley, S. K. Ray, A. M. Adawi, G. J. Leggett, and D. G. Lidzey, “Optical nanolithography using a scanning near-field probe with an integrated light source,” Appl. Phys. Lett. 93(21), 213103 (2008).
[CrossRef]

Lu, N.

A. Naber, D. Molenda, U. C. Fischer, H.-J. Maas, C. Höppener, N. Lu, and H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89(21), 210801 (2002).
[CrossRef] [PubMed]

Maas, H.-J.

A. Naber, D. Molenda, U. C. Fischer, H.-J. Maas, C. Höppener, N. Lu, and H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89(21), 210801 (2002).
[CrossRef] [PubMed]

Martin, O. J. F.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[CrossRef]

Martin, Y.

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269(5227), 1083–1085 (1995).
[CrossRef] [PubMed]

Moers, M. H. P.

N. F. van Hulst, M. H. P. Moers, O. F. J. Noordman, R. G. Tack, F. B. Segerink, and B. Bölger, “Near-field optical microscope using a silicon-nitride probe,” Appl. Phys. Lett. 62(5), 461–463 (1993).
[CrossRef]

Molenda, D.

A. Naber, D. Molenda, U. C. Fischer, H.-J. Maas, C. Höppener, N. Lu, and H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89(21), 210801 (2002).
[CrossRef] [PubMed]

Naber, A.

A. Naber, D. Molenda, U. C. Fischer, H.-J. Maas, C. Höppener, N. Lu, and H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89(21), 210801 (2002).
[CrossRef] [PubMed]

Noordman, O. F. J.

N. F. van Hulst, M. H. P. Moers, O. F. J. Noordman, R. G. Tack, F. B. Segerink, and B. Bölger, “Near-field optical microscope using a silicon-nitride probe,” Appl. Phys. Lett. 62(5), 461–463 (1993).
[CrossRef]

Pedarnig, J. D.

M. Specht, J. D. Pedarnig, W. M. Heckl, and T. W. Hänsch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68(4), 476–479 (1992).
[CrossRef] [PubMed]

Pohl, D. W.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[CrossRef]

Polli, D.

M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, and G. Cerullo, “Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: a tool for nonlinear optics at the nanoscale,” Rev. Sci. Instrum. 80(3), 033704 (2009).
[CrossRef] [PubMed]

P. Biagioni, M. Celebrano, M. Zavelani-Rossi, D. Polli, M. Labardi, G. Lanzani, G. Cerullo, M. Finazzi, and L. Duò, “High-resolution imaging of local oxidation in polyfluorene thin films by nonlinear near-field microscopy,” Appl. Phys. Lett. 91(19), 191118 (2007).
[CrossRef]

Qiang, R.

R. Qiang, R. Chen, and J. Chen, “Modeling electrical properties of gold films at infrared frequency using FDTD method,” Int. J. Infrared Millim. Waves 25(8), 1263–1270 (2004).
[CrossRef]

Qiu, M.

Quong, M. C.

Raman, A.

Ray, S. K.

J. W. Kingsley, S. K. Ray, A. M. Adawi, G. J. Leggett, and D. G. Lidzey, “Optical nanolithography using a scanning near-field probe with an integrated light source,” Appl. Phys. Lett. 93(21), 213103 (2008).
[CrossRef]

Schaller, N.

R. M. Stöckle, N. Schaller, V. Deckert, C. Fokas, and R. Zenobi, “Brighter near-field optical probes by means of improving the optical destruction threshold,” J. Microsc. 194(2-3), 378–382 (1999).
[CrossRef]

Schuller, J.

R. Zia, J. Schuller, and M. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B 74(16), 165415 (2006).
[CrossRef]

Segerink, F. B.

N. F. van Hulst, M. H. P. Moers, O. F. J. Noordman, R. G. Tack, F. B. Segerink, and B. Bölger, “Near-field optical microscope using a silicon-nitride probe,” Appl. Phys. Lett. 62(5), 461–463 (1993).
[CrossRef]

Sick, B.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[CrossRef]

Specht, M.

M. Specht, J. D. Pedarnig, W. M. Heckl, and T. W. Hänsch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68(4), 476–479 (1992).
[CrossRef] [PubMed]

Stöckle, R. M.

R. M. Stöckle, N. Schaller, V. Deckert, C. Fokas, and R. Zenobi, “Brighter near-field optical probes by means of improving the optical destruction threshold,” J. Microsc. 194(2-3), 378–382 (1999).
[CrossRef]

Su, W.

S. Chen, H. Hsiung, W. Su, and D. Tsai, “Convenient near-field optical measurement and analysis of polystyrene spheres,” Vacuum 81(1), 129–132 (2006).
[CrossRef]

Tack, R. G.

N. F. van Hulst, M. H. P. Moers, O. F. J. Noordman, R. G. Tack, F. B. Segerink, and B. Bölger, “Near-field optical microscope using a silicon-nitride probe,” Appl. Phys. Lett. 62(5), 461–463 (1993).
[CrossRef]

Tsai, D.

S. Chen, H. Hsiung, W. Su, and D. Tsai, “Convenient near-field optical measurement and analysis of polystyrene spheres,” Vacuum 81(1), 129–132 (2006).
[CrossRef]

Uppuluri, S. M.

van Hulst, N. F.

N. F. van Hulst, M. H. P. Moers, O. F. J. Noordman, R. G. Tack, F. B. Segerink, and B. Bölger, “Near-field optical microscope using a silicon-nitride probe,” Appl. Phys. Lett. 62(5), 461–463 (1993).
[CrossRef]

Vogelgesang, R.

R. Esteban, R. Vogelgesang, and K. Kern, “Full simulations of the apertureless scanning near field optical microscopy signal: achievable resolution and contrast,” Opt. Express 17(4), 2518–2529 (2009).
[CrossRef] [PubMed]

R. Vogelgesang, J. Dorfmüller, R. Esteban, R. T. Weitz, A. Dmitriev, and K. Kern, “Plasmonic nanostructures in aperture-less scanning near-field optical microscopy (aSNOM),” Phys. Status Solidi B 245(10), 2255–2260 (2008).
[CrossRef]

Weishaupt, K.

A. Jauß, J. Koenen, K. Weishaupt, and O. Hollricher, “Scanning near-field optical microscopy in life science,” Single Mol. 3(4), 232–235 (2002).
[CrossRef]

Weitz, R. T.

R. Vogelgesang, J. Dorfmüller, R. Esteban, R. T. Weitz, A. Dmitriev, and K. Kern, “Plasmonic nanostructures in aperture-less scanning near-field optical microscopy (aSNOM),” Phys. Status Solidi B 245(10), 2255–2260 (2008).
[CrossRef]

Wickramasinghe, H. K.

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269(5227), 1083–1085 (1995).
[CrossRef] [PubMed]

Wild, U. P.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[CrossRef]

Xu, X.

Yan, M.

Zavelani-Rossi, M.

M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, and G. Cerullo, “Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: a tool for nonlinear optics at the nanoscale,” Rev. Sci. Instrum. 80(3), 033704 (2009).
[CrossRef] [PubMed]

P. Biagioni, M. Celebrano, M. Zavelani-Rossi, D. Polli, M. Labardi, G. Lanzani, G. Cerullo, M. Finazzi, and L. Duò, “High-resolution imaging of local oxidation in polyfluorene thin films by nonlinear near-field microscopy,” Appl. Phys. Lett. 91(19), 191118 (2007).
[CrossRef]

Zenhausern, F.

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269(5227), 1083–1085 (1995).
[CrossRef] [PubMed]

Zenobi, R.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[CrossRef]

R. M. Stöckle, N. Schaller, V. Deckert, C. Fokas, and R. Zenobi, “Brighter near-field optical probes by means of improving the optical destruction threshold,” J. Microsc. 194(2-3), 378–382 (1999).
[CrossRef]

Zia, R.

R. Zia, J. Schuller, and M. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B 74(16), 165415 (2006).
[CrossRef]

Zou, Y.

Y. Zou and K. B. Crozier, “Experimental measurement of surface plasmon resonance of pyramidal metal nanoparticle tips,” Proc. SPIE 7033, 70331X (2008).
[CrossRef]

Appl. Phys. Lett. (6)

M. H. Chowdhury, J. M. Catchmark, and J. R. Lakowicz, “Imaging three-dimensional light propagation through periodic nanohole arrays using scanning aperture microscopy,” Appl. Phys. Lett. 91(10), 103118 (2007).
[CrossRef]

E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88(15), 153110 (2006).
[CrossRef]

N. F. van Hulst, M. H. P. Moers, O. F. J. Noordman, R. G. Tack, F. B. Segerink, and B. Bölger, “Near-field optical microscope using a silicon-nitride probe,” Appl. Phys. Lett. 62(5), 461–463 (1993).
[CrossRef]

J. W. Kingsley, S. K. Ray, A. M. Adawi, G. J. Leggett, and D. G. Lidzey, “Optical nanolithography using a scanning near-field probe with an integrated light source,” Appl. Phys. Lett. 93(21), 213103 (2008).
[CrossRef]

P. Biagioni, M. Celebrano, M. Zavelani-Rossi, D. Polli, M. Labardi, G. Lanzani, G. Cerullo, M. Finazzi, and L. Duò, “High-resolution imaging of local oxidation in polyfluorene thin films by nonlinear near-field microscopy,” Appl. Phys. Lett. 91(19), 191118 (2007).
[CrossRef]

A. Dechant, S. K. Dew, S. E. Irvine, and A. Y. Elezzabi, “High-transmission solid-immersion apertured optical probes for near-field scanning optical microscopy,” Appl. Phys. Lett. 86(1), 013102 (2005).
[CrossRef]

Int. J. Infrared Millim. Waves (1)

R. Qiang, R. Chen, and J. Chen, “Modeling electrical properties of gold films at infrared frequency using FDTD method,” Int. J. Infrared Millim. Waves 25(8), 1263–1270 (2004).
[CrossRef]

J. Chem. Phys. (1)

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[CrossRef]

J. Microsc. (1)

R. M. Stöckle, N. Schaller, V. Deckert, C. Fokas, and R. Zenobi, “Brighter near-field optical probes by means of improving the optical destruction threshold,” J. Microsc. 194(2-3), 378–382 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. (1)

H. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944).
[CrossRef]

Phys. Rev. B (1)

R. Zia, J. Schuller, and M. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B 74(16), 165415 (2006).
[CrossRef]

Phys. Rev. Lett. (2)

A. Naber, D. Molenda, U. C. Fischer, H.-J. Maas, C. Höppener, N. Lu, and H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89(21), 210801 (2002).
[CrossRef] [PubMed]

M. Specht, J. D. Pedarnig, W. M. Heckl, and T. W. Hänsch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68(4), 476–479 (1992).
[CrossRef] [PubMed]

Phys. Status Solidi B (1)

R. Vogelgesang, J. Dorfmüller, R. Esteban, R. T. Weitz, A. Dmitriev, and K. Kern, “Plasmonic nanostructures in aperture-less scanning near-field optical microscopy (aSNOM),” Phys. Status Solidi B 245(10), 2255–2260 (2008).
[CrossRef]

Proc. SPIE (1)

Y. Zou and K. B. Crozier, “Experimental measurement of surface plasmon resonance of pyramidal metal nanoparticle tips,” Proc. SPIE 7033, 70331X (2008).
[CrossRef]

Rev. Sci. Instrum. (1)

M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, and G. Cerullo, “Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: a tool for nonlinear optics at the nanoscale,” Rev. Sci. Instrum. 80(3), 033704 (2009).
[CrossRef] [PubMed]

Science (1)

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269(5227), 1083–1085 (1995).
[CrossRef] [PubMed]

Single Mol. (1)

A. Jauß, J. Koenen, K. Weishaupt, and O. Hollricher, “Scanning near-field optical microscopy in life science,” Single Mol. 3(4), 232–235 (2002).
[CrossRef]

Vacuum (1)

S. Chen, H. Hsiung, W. Su, and D. Tsai, “Convenient near-field optical measurement and analysis of polystyrene spheres,” Vacuum 81(1), 129–132 (2006).
[CrossRef]

Other (1)

In particular, our nanoplasmonic probe had an imperfectly pyramidal tip (Fig. 3), a gold coating, and a large aperture, while the numerically-studied probe [22] had a perfectly conical tip, a metal coating of different thickness and material (silver), a different cantilever thickness, and a smaller cone angle. These differences preclude any quantitative comparison between the optical properties of the two probes.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Illustration of the collection-mode operation of a nanoplasmonic offset-aperture (NOA) probe.

Fig. 2
Fig. 2

Schematic diagram of the collection-mode near-field optical imaging system. NOA probe: nanoplasmonic offset-aperture probe; APD: avalanche photodiode. Inset: scanning electron micrograph of the NOA probe before any scanning was performed.

Fig. 3
Fig. 3

Scanning electron micrograph of the nanoplasmonic offset-aperture probe after approximately 1000 scans. Inset: Apex of the tip shown at a higher magnification. The highest protrusion at the apex had a radius of curvature of 125 nm from this perspective.

Fig. 4
Fig. 4

Images acquired with the nanoplasmonic offset-aperture probe, showing clusters of 30 nm Au nanoparticles. (a) Contact-force topography. (b) Near-field optical collection. (c) Averaged line profiles taken from the same area in each image (as indicated by the arrows). These line profiles display a 10%–90% criterion resolution of 227 nm for the topographical image and 71 nm for the optical image. The zero points for both signal voltage and height were selected based on the lowest values present in the data.

Fig. 5
Fig. 5

Images acquired with the nanoplasmonic offset-aperture probe, showing a gold nanostructure. (a) Contact-force topography. (b) Near-field optical collection. (c) Averaged line profiles taken from the same area in each image (as indicated by the arrows). These line profiles display a 10%–90% criterion resolution of 112 nm for the topographical image and 45 nm for the optical image (on the rising edge of the peak). The zero points for both signal voltage and height were selected based on the lowest values present in the data.

Fig. 6
Fig. 6

Overview of an imaging mechanism that is consistent with the experimental results presented for the nanoplasmonic offset-aperture (NOA) probe. The upper panels of this figure depict a sequence of events which allowed formation of the image shown in Fig. 4(b). The lower panels depict a similar sequence of events which allowed the formation of the image shown in Fig. 5(b). (a) The orientation of the probe with respect to the image as acquired is shown (not to scale). The arrow indicates the direction of the line profile shown in Fig. 4(c), taken from the shown location of the probe tip. (b) The probe tip is in contact with the substrate, mediated by small numbers of nanoparticles (not shown); a moderately strong optical signal is detected. (c) The probe tip is far from any surface, while the tip side is in contact with the sample; a weak signal is detected. (d) The probe tip nears the top of the nanoparticle cluster; a strong signal is detected. (e) The probe tip is atop the nanoparticle cluster; a strong signal is detected. (f) As in (a), the orientation and location of the probe (not to scale) and the direction of the line profile from this location are indicated, but for the bulk gold sample of Fig. 5. (g) The probe tip is in contact with the substrate, mediated by small amounts of bulk gold (not shown); a moderately strong signal is detected. (h) The probe tip is far from any surface, while the tip side is in contact with the sample; a weak signal is detected. (i) The probe tip nears the top of the bulk gold sample; a moderate signal is detected. (j) The probe tip is atop the bulk gold sample; no signal is detected.

Fig. 7
Fig. 7

The inherent asymmetry of the nanoplasmonic offset-aperture (NOA) probe leads to slight directional artifacts in the optical images. (a) Despite the depiction in Fig. 6, light coupling from the sample to the probe apex propagates up the entire surface of the pyramidal tip. However, only light propagating on the ridge adjacent to the aperture will be coupled into the far field and detected. (This ridge is indicated by the arrow and label.) (b) As in Fig. 6(h), the probe is in contact with the edge of a gold nanostructure. The apex is too far from any surface to couple light efficiently, and the side of the probe adjacent to the aperture couples light weakly. (c) The probe is in contact with the opposite side of the same nanostructure depicted in (b). Again, the apex does not couple efficiently, and the side of the probe couples light weakly. However, the side which couples is opposite the aperture, and no light is guided to the aperture. (d,e) The mechanism illustrated by (a) through (c) explains the observed directional artifacts in the optical images obtained. The areas to the lower left of each nanostructure tend to be brighter than the areas to their upper right. The mechanism of (b) takes place to the lower left; the mechanism of (c) takes place to the upper right. Note that the probe is oriented relative to the sample as indicated in Figs. 6(a) and 6(f).

Metrics