Abstract

A lidar system based on the coherent detection of oppositely chirped pulses generated using a 20 MHz mode locked laser and chirped fiber Bragg gratings is presented. Sub millimeter resolution ranging is performed with > 25 dB signal to noise ratio. Simultaneous, range and Doppler velocity measurements are experimentally demonstrated using a target moving at > 330 km/h inside the laboratory.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Fujii, and T. Fukuchi, Laser Remote Sensing (Taylor & Francis, 2005).
  2. M. I. Skolnik, Introduction to Radar Systems (McGraw-Hill, 2001).
  3. H. Araki, S. Tazawa, H. Noda, Y. Ishihara, S. Goossens, S. Sasaki, N. Kawano, I. Kamiya, H. Otake, J. Oberst, and C. Shum, “Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry,” Science 323(5916), 897–900 (2009).
    [CrossRef] [PubMed]
  4. “Lidar Tracks CO2,” Gary Gimmestad, SPIE Professional January, 2011.
  5. B. W. Schilling, D. N. Barr, G. C. Templeton, L. J. Mizerka, and C. W. Trussell, “Multiple-return laser radar for three-dimensional imaging through obscurations,” Appl. Opt. 41(15), 2791–2799 (2002).
    [CrossRef] [PubMed]
  6. M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10 (2001).
    [CrossRef]
  7. R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Range-resolved pulsed and CWFM lidars: potential capabilities comparison,” Appl. Phys. B 85(1), 149–162 (2006).
    [CrossRef]
  8. X. Sun, J. B. Abshire, M. A. Krainak, and W. B. Hasselbrack, “Photon counting pseudorandom noise code laser altimeters,” Proc. SPIE 6771, 677100 (2007).
  9. P. A. Hiskett, C. S. Parry, A. McCarthy, and G. S. Buller, “A photon-counting time-of-flight ranging technique developed for the avoidance of range ambiguity at gigahertz clock rates,” Opt. Express 16(18), 13685–13698 (2008).
    [CrossRef] [PubMed]
  10. J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
    [CrossRef]
  11. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
    [CrossRef]
  12. Z. W. Barber, W. R. Babbitt, B. Kaylor, R. R. Reibel, and P. A. Roos, “Accuracy of active chirp linearization for broadband frequency modulated continuous wave ladar,” Appl. Opt. 49(2), 213–219 (2010).
    [CrossRef] [PubMed]
  13. K. W. Holman, D. G. Kocher, and S. Kaushik, “MIT/LL development of broadband linear frequency chirp for high-resolution ladar,” Proc. SPIE 6572, 65720J (2007).
    [CrossRef]
  14. N. Satyan, A. Vasilyev, G. Rakuljic, V. Leyva, and A. Yariv, “Precise control of broadband frequency chirps using optoelectronic feedback,” Opt. Express 17(18), 15991–15999 (2009).
    [CrossRef] [PubMed]
  15. A. Vasilyev, N. Satyan, S. Xu, G. Rakuljic, and A. Yariv, “Multiple source frequency-modulated continuous-wave optical reflectometry: theory and experiment,” Appl. Opt. 49(10), 1932–1937 (2010).
    [CrossRef] [PubMed]
  16. P. A. Roos, R. R. Reibel, T. Berg, B. Kaylor, Z. W. Barber, and W. R. Babbitt, “Ultrabroadband optical chirp linearization for precision metrology applications,” Opt. Lett. 34(23), 3692–3694 (2009).
    [CrossRef] [PubMed]
  17. S. M. Beck, J. R. Buck, W. F. Buell, R. P. Dickinson, D. A. Kozlowski, N. J. Marechal, and T. J. Wright, “Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing,” Appl. Opt. 44(35), 7621–7629 (2005).
    [CrossRef] [PubMed]
  18. C. J. Karlsson, F. A. A. Olsson, D. Letalick, and M. Harris, “All-fiber multifunction continuous-wave coherent laser radar at 1.55μm for range, speed, vibration, and wind measurements,” Appl. Opt. 39(21), 3716–3726 (2000).
    [CrossRef]
  19. R. Schneider, P. Thurmel, and M. Stockmann, “Distance measurement of moving objects by frequency modulated laser radar,” Opt. Eng. 40(1), 33–37 (2001).
    [CrossRef]
  20. D. F. Pierrottet, F. Amzajerdian, L. Petway, B. Barnes, G. Lockard, and M. Rubio, “Linear FMCW laser radar for precision range and vector velocity measurements,” Proc. Mater. Res. Soc. Symp. (2008).
  21. R. E. Saperstein, N. Alic, S. Zamek, K. Ikeda, B. Slutsky, and Y. Fainman, “Processing advantages of linear chirped fiber Bragg gratings in the time domain realization of optical frequency-domain reflectometry,” Opt. Express 15(23), 15464–15479 (2007).
    [CrossRef] [PubMed]
  22. K. Kim, S. Lee, and P. J. Delfyett, “eXtreme chirped pulse amplification beyond the fundamental energy storage limit of semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 12(2), 245–254 (2006).
    [CrossRef]
  23. S. Lee, D. Mandridis, and P. J. Delfyett., “eXtreme chirped pulse oscillator operating in the nanosecond stretched pulse regime,” Opt. Express 16(7), 4766–4773 (2008).
    [CrossRef] [PubMed]
  24. M. U. Piracha, D. Nguyen, D. Mandridis, T. Yilmaz, I. Ozdur, S. Ozharar, and P. J. Delfyett, “Range resolved lidar for long distance ranging with sub-millimeter resolution,” Opt. Express 18(7), 7184–7189 (2010).
    [CrossRef] [PubMed]
  25. J. A. Conway, G. A. Sefler, J. T. Chou, and G. C. Valley, “Phase ripple correction: theory and application,” Opt. Lett. 33(10), 1108–1110 (2008).
    [CrossRef] [PubMed]
  26. T.-J. Ahn, J. Y. Lee, and D. Y. Kim, “Suppression of nonlinear frequency sweep in an optical frequency-domain reflectometer by use of Hilbert transformation,” Appl. Opt. 44(35), 7630–7634 (2005).
    [CrossRef] [PubMed]

2010

2009

N. Satyan, A. Vasilyev, G. Rakuljic, V. Leyva, and A. Yariv, “Precise control of broadband frequency chirps using optoelectronic feedback,” Opt. Express 17(18), 15991–15999 (2009).
[CrossRef] [PubMed]

P. A. Roos, R. R. Reibel, T. Berg, B. Kaylor, Z. W. Barber, and W. R. Babbitt, “Ultrabroadband optical chirp linearization for precision metrology applications,” Opt. Lett. 34(23), 3692–3694 (2009).
[CrossRef] [PubMed]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

H. Araki, S. Tazawa, H. Noda, Y. Ishihara, S. Goossens, S. Sasaki, N. Kawano, I. Kamiya, H. Otake, J. Oberst, and C. Shum, “Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry,” Science 323(5916), 897–900 (2009).
[CrossRef] [PubMed]

2008

2007

R. E. Saperstein, N. Alic, S. Zamek, K. Ikeda, B. Slutsky, and Y. Fainman, “Processing advantages of linear chirped fiber Bragg gratings in the time domain realization of optical frequency-domain reflectometry,” Opt. Express 15(23), 15464–15479 (2007).
[CrossRef] [PubMed]

X. Sun, J. B. Abshire, M. A. Krainak, and W. B. Hasselbrack, “Photon counting pseudorandom noise code laser altimeters,” Proc. SPIE 6771, 677100 (2007).

K. W. Holman, D. G. Kocher, and S. Kaushik, “MIT/LL development of broadband linear frequency chirp for high-resolution ladar,” Proc. SPIE 6572, 65720J (2007).
[CrossRef]

2006

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Range-resolved pulsed and CWFM lidars: potential capabilities comparison,” Appl. Phys. B 85(1), 149–162 (2006).
[CrossRef]

K. Kim, S. Lee, and P. J. Delfyett, “eXtreme chirped pulse amplification beyond the fundamental energy storage limit of semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 12(2), 245–254 (2006).
[CrossRef]

2005

2002

2001

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10 (2001).
[CrossRef]

R. Schneider, P. Thurmel, and M. Stockmann, “Distance measurement of moving objects by frequency modulated laser radar,” Opt. Eng. 40(1), 33–37 (2001).
[CrossRef]

2000

Abshire, J. B.

X. Sun, J. B. Abshire, M. A. Krainak, and W. B. Hasselbrack, “Photon counting pseudorandom noise code laser altimeters,” Proc. SPIE 6771, 677100 (2007).

Agishev, R.

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Range-resolved pulsed and CWFM lidars: potential capabilities comparison,” Appl. Phys. B 85(1), 149–162 (2006).
[CrossRef]

Ahmed, S.

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Range-resolved pulsed and CWFM lidars: potential capabilities comparison,” Appl. Phys. B 85(1), 149–162 (2006).
[CrossRef]

Ahn, T.-J.

Alic, N.

Amann, M.-C.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10 (2001).
[CrossRef]

Araki, H.

H. Araki, S. Tazawa, H. Noda, Y. Ishihara, S. Goossens, S. Sasaki, N. Kawano, I. Kamiya, H. Otake, J. Oberst, and C. Shum, “Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry,” Science 323(5916), 897–900 (2009).
[CrossRef] [PubMed]

Babbitt, W. R.

Barber, Z. W.

Barr, D. N.

Beck, S. M.

Berg, T.

Bosch, T.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10 (2001).
[CrossRef]

Buck, J. R.

Buell, W. F.

Buller, G. S.

Chou, J. T.

Coddington, I.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

Conway, J. A.

Delfyett, P. J.

Dickinson, R. P.

Fainman, Y.

Gilerson, A.

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Range-resolved pulsed and CWFM lidars: potential capabilities comparison,” Appl. Phys. B 85(1), 149–162 (2006).
[CrossRef]

Goossens, S.

H. Araki, S. Tazawa, H. Noda, Y. Ishihara, S. Goossens, S. Sasaki, N. Kawano, I. Kamiya, H. Otake, J. Oberst, and C. Shum, “Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry,” Science 323(5916), 897–900 (2009).
[CrossRef] [PubMed]

Gross, B.

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Range-resolved pulsed and CWFM lidars: potential capabilities comparison,” Appl. Phys. B 85(1), 149–162 (2006).
[CrossRef]

Harris, M.

Hasselbrack, W. B.

X. Sun, J. B. Abshire, M. A. Krainak, and W. B. Hasselbrack, “Photon counting pseudorandom noise code laser altimeters,” Proc. SPIE 6771, 677100 (2007).

Hiskett, P. A.

Holman, K. W.

K. W. Holman, D. G. Kocher, and S. Kaushik, “MIT/LL development of broadband linear frequency chirp for high-resolution ladar,” Proc. SPIE 6572, 65720J (2007).
[CrossRef]

Ikeda, K.

Ishihara, Y.

H. Araki, S. Tazawa, H. Noda, Y. Ishihara, S. Goossens, S. Sasaki, N. Kawano, I. Kamiya, H. Otake, J. Oberst, and C. Shum, “Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry,” Science 323(5916), 897–900 (2009).
[CrossRef] [PubMed]

Kamiya, I.

H. Araki, S. Tazawa, H. Noda, Y. Ishihara, S. Goossens, S. Sasaki, N. Kawano, I. Kamiya, H. Otake, J. Oberst, and C. Shum, “Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry,” Science 323(5916), 897–900 (2009).
[CrossRef] [PubMed]

Karlsson, C. J.

Kaushik, S.

K. W. Holman, D. G. Kocher, and S. Kaushik, “MIT/LL development of broadband linear frequency chirp for high-resolution ladar,” Proc. SPIE 6572, 65720J (2007).
[CrossRef]

Kawano, N.

H. Araki, S. Tazawa, H. Noda, Y. Ishihara, S. Goossens, S. Sasaki, N. Kawano, I. Kamiya, H. Otake, J. Oberst, and C. Shum, “Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry,” Science 323(5916), 897–900 (2009).
[CrossRef] [PubMed]

Kaylor, B.

Kim, D. Y.

Kim, K.

K. Kim, S. Lee, and P. J. Delfyett, “eXtreme chirped pulse amplification beyond the fundamental energy storage limit of semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 12(2), 245–254 (2006).
[CrossRef]

Kim, S.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

Kim, Y.-J.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

Kocher, D. G.

K. W. Holman, D. G. Kocher, and S. Kaushik, “MIT/LL development of broadband linear frequency chirp for high-resolution ladar,” Proc. SPIE 6572, 65720J (2007).
[CrossRef]

Kozlowski, D. A.

Krainak, M. A.

X. Sun, J. B. Abshire, M. A. Krainak, and W. B. Hasselbrack, “Photon counting pseudorandom noise code laser altimeters,” Proc. SPIE 6771, 677100 (2007).

Lee, J.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

Lee, J. Y.

Lee, K.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

Lee, S.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

S. Lee, D. Mandridis, and P. J. Delfyett., “eXtreme chirped pulse oscillator operating in the nanosecond stretched pulse regime,” Opt. Express 16(7), 4766–4773 (2008).
[CrossRef] [PubMed]

K. Kim, S. Lee, and P. J. Delfyett, “eXtreme chirped pulse amplification beyond the fundamental energy storage limit of semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 12(2), 245–254 (2006).
[CrossRef]

Lescure, M.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10 (2001).
[CrossRef]

Letalick, D.

Leyva, V.

Mandridis, D.

Marechal, N. J.

McCarthy, A.

Mizerka, L. J.

Moshary, F.

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Range-resolved pulsed and CWFM lidars: potential capabilities comparison,” Appl. Phys. B 85(1), 149–162 (2006).
[CrossRef]

Myllylä, R.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10 (2001).
[CrossRef]

Nenadovic, L.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

Newbury, N. R.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

Nguyen, D.

Noda, H.

H. Araki, S. Tazawa, H. Noda, Y. Ishihara, S. Goossens, S. Sasaki, N. Kawano, I. Kamiya, H. Otake, J. Oberst, and C. Shum, “Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry,” Science 323(5916), 897–900 (2009).
[CrossRef] [PubMed]

Oberst, J.

H. Araki, S. Tazawa, H. Noda, Y. Ishihara, S. Goossens, S. Sasaki, N. Kawano, I. Kamiya, H. Otake, J. Oberst, and C. Shum, “Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry,” Science 323(5916), 897–900 (2009).
[CrossRef] [PubMed]

Olsson, F. A. A.

Otake, H.

H. Araki, S. Tazawa, H. Noda, Y. Ishihara, S. Goossens, S. Sasaki, N. Kawano, I. Kamiya, H. Otake, J. Oberst, and C. Shum, “Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry,” Science 323(5916), 897–900 (2009).
[CrossRef] [PubMed]

Ozdur, I.

Ozharar, S.

Parry, C. S.

Piracha, M. U.

Rakuljic, G.

Reibel, R. R.

Rioux, M.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10 (2001).
[CrossRef]

Roos, P. A.

Saperstein, R. E.

Sasaki, S.

H. Araki, S. Tazawa, H. Noda, Y. Ishihara, S. Goossens, S. Sasaki, N. Kawano, I. Kamiya, H. Otake, J. Oberst, and C. Shum, “Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry,” Science 323(5916), 897–900 (2009).
[CrossRef] [PubMed]

Satyan, N.

Schilling, B. W.

Schneider, R.

R. Schneider, P. Thurmel, and M. Stockmann, “Distance measurement of moving objects by frequency modulated laser radar,” Opt. Eng. 40(1), 33–37 (2001).
[CrossRef]

Sefler, G. A.

Shum, C.

H. Araki, S. Tazawa, H. Noda, Y. Ishihara, S. Goossens, S. Sasaki, N. Kawano, I. Kamiya, H. Otake, J. Oberst, and C. Shum, “Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry,” Science 323(5916), 897–900 (2009).
[CrossRef] [PubMed]

Slutsky, B.

Stockmann, M.

R. Schneider, P. Thurmel, and M. Stockmann, “Distance measurement of moving objects by frequency modulated laser radar,” Opt. Eng. 40(1), 33–37 (2001).
[CrossRef]

Sun, X.

X. Sun, J. B. Abshire, M. A. Krainak, and W. B. Hasselbrack, “Photon counting pseudorandom noise code laser altimeters,” Proc. SPIE 6771, 677100 (2007).

Swann, W. C.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

Tazawa, S.

H. Araki, S. Tazawa, H. Noda, Y. Ishihara, S. Goossens, S. Sasaki, N. Kawano, I. Kamiya, H. Otake, J. Oberst, and C. Shum, “Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry,” Science 323(5916), 897–900 (2009).
[CrossRef] [PubMed]

Templeton, G. C.

Thurmel, P.

R. Schneider, P. Thurmel, and M. Stockmann, “Distance measurement of moving objects by frequency modulated laser radar,” Opt. Eng. 40(1), 33–37 (2001).
[CrossRef]

Trussell, C. W.

Valley, G. C.

Vasilyev, A.

Wright, T. J.

Xu, S.

Yariv, A.

Yilmaz, T.

Zamek, S.

Appl. Opt.

Appl. Phys. B

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Range-resolved pulsed and CWFM lidars: potential capabilities comparison,” Appl. Phys. B 85(1), 149–162 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

K. Kim, S. Lee, and P. J. Delfyett, “eXtreme chirped pulse amplification beyond the fundamental energy storage limit of semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 12(2), 245–254 (2006).
[CrossRef]

Nat. Photonics

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

Opt. Eng.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10 (2001).
[CrossRef]

R. Schneider, P. Thurmel, and M. Stockmann, “Distance measurement of moving objects by frequency modulated laser radar,” Opt. Eng. 40(1), 33–37 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

K. W. Holman, D. G. Kocher, and S. Kaushik, “MIT/LL development of broadband linear frequency chirp for high-resolution ladar,” Proc. SPIE 6572, 65720J (2007).
[CrossRef]

X. Sun, J. B. Abshire, M. A. Krainak, and W. B. Hasselbrack, “Photon counting pseudorandom noise code laser altimeters,” Proc. SPIE 6771, 677100 (2007).

Science

H. Araki, S. Tazawa, H. Noda, Y. Ishihara, S. Goossens, S. Sasaki, N. Kawano, I. Kamiya, H. Otake, J. Oberst, and C. Shum, “Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry,” Science 323(5916), 897–900 (2009).
[CrossRef] [PubMed]

Other

“Lidar Tracks CO2,” Gary Gimmestad, SPIE Professional January, 2011.

T. Fujii, and T. Fukuchi, Laser Remote Sensing (Taylor & Francis, 2005).

M. I. Skolnik, Introduction to Radar Systems (McGraw-Hill, 2001).

D. F. Pierrottet, F. Amzajerdian, L. Petway, B. Barnes, G. Lockard, and M. Rubio, “Linear FMCW laser radar for precision range and vector velocity measurements,” Proc. Mater. Res. Soc. Symp. (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) The interference of oppositely chirped pulse trains. One pulse train is Doppler shifted and temporally delayed with respect to the other (b) This results in the generation of a beat signal that contains decoupled distance and velocity information.

Fig. 2
Fig. 2

Lidar schematic. (a) Setup for generation of temporally stretched, oppositely chirped pulses. (b) lidar interferometer setup. MLL, Mode Locked Laser; PC, Polarization Controller; CFBG, Chirped Fiber Bragg Grating; P. Train, Pulse Train; VOD, Variable Optical Delay; EDFA, Erbium Doped Fiber Amplifier.

Fig. 3
Fig. 3

A 1 µs time window is used to take Fourier transforms (F.T) of different segments of the acquired pulse train to observe beat tones that provide distance and velocity information.

Fig. 4
Fig. 4

(a) The observed beat notes at different times (b) Target distance and velocity at different times.

Fig. 5
Fig. 5

(a) GDR of the two CFBGs (b) Simulation results at different target distances confirm the broadening of the RF beat tones.

Metrics