Abstract

Our recent work has showed that diffractively coupled nanoplasmonic arrays for Fourier transform infrared (FTIR) microspectroscopy can enhance the Amide I protein vibrational stretch by up to 105 times as compared to plain substrates. In this work we consider computationally the impact of a microscope objective illumination cone on array performance. We derive an approach for computing angular- and spatially-averaged reflectance for various numerical aperture (NA) objectives. We then use this approach to show that arrays that are perfectly optimized for normal incidence undergo significant response degradation even at modest NAs, whereas arrays that are slightly detuned from the perfect grating condition at normal incidence irradiation exhibit only a slight drop in performance when analyzed with a microscope objective. Our simulation results are in good agreement with microscope measurements of experimentally optimized periodic nanoplasmonic arrays.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
    [CrossRef] [PubMed]
  2. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
    [CrossRef] [PubMed]
  3. T. K. Gaylord and G. R. Kilby, “Optical single-angle plane-wave transmittances/reflectances from Schwarzschild objective variable-angle measurements,” Rev. Sci. Instrum. 75(2), 317–323 (2004).
    [CrossRef]
  4. C. P. Burrows and W. L. Barnes, “Large spectral extinction due to overlap of dipolar and quadrupolar plasmonic modes of metallic nanoparticles in arrays,” Opt. Express 18(3), 3187–3198 (2010).
    [CrossRef] [PubMed]
  5. A. O. Pinchuk, “Angle dependent collective surface plasmon resonance in an array of silver nanoparticles,” J. Phys. Chem. A 113(16), 4430–4436 (2009).
    [CrossRef] [PubMed]
  6. Y. A. Urzhumov and G. Shvets, “Applications of nanoparticle arrays to coherent anti-Stokes Raman spectroscopy of chiral molecules,” Proc. SPIE 5927, 59271D, 59271D-12 (2005).
    [CrossRef]
  7. H. P. Paudel, K. Bayat, M. F. Baroughi, S. May, and D. W. Galipeau, “FDTD simulation of metallic gratings for enhancement of electromagnetic field by surface plasmon resonance,” Proc. SPIE 7597, 759706, 759706-8 (2010).
    [CrossRef]
  8. F. Le and P. Nordlander, “Optical properties of metallic nanoparticle arrays for oblique excitation using the multiple unit cell method,” J. Comput. Theor. Nanosci. 6(9), 2031–2039 (2009).
    [CrossRef]
  9. S. Malynych and G. Chumanov, “Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays,” J. Am. Chem. Soc. 125(10), 2896–2898 (2003).
    [CrossRef] [PubMed]
  10. N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123(22), 221103 (2005).
    [CrossRef] [PubMed]
  11. N. Félidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays,” Phys. Rev. B 66(24), 245407 (2002).
    [CrossRef]
  12. Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
    [CrossRef]
  13. G. R. Kilby and T. K. Gaylord, “Fourier transform infrared transmission microspectroscopy of photonic crystal structures,” Appl. Opt. 48(19), 3716–3721 (2009).
    [CrossRef] [PubMed]
  14. B. J. Davis, P. S. Carney, and R. Bhargava, “Theory of midinfrared absorption microspectroscopy: I. Homogeneous samples,” Anal. Chem. 82(9), 3474–3486 (2010).
    [CrossRef] [PubMed]
  15. B. J. Davis, P. S. Carney, and R. Bhargava, “Theory of mid-infrared absorption microspectroscopy: II. Heterogeneous samples,” Anal. Chem. 82(9), 3487–3499 (2010).
    [CrossRef] [PubMed]
  16. M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
    [CrossRef] [PubMed]
  17. R. Bhargava, “Towards a practical Fourier transform infrared chemical imaging protocol for cancer histopathology,” Anal. Bioanal. Chem. 389(4), 1155–1169 (2007).
    [CrossRef] [PubMed]
  18. R. Adato, A. A. Yanik, C.-H. Wu, G. Shvets, and H. Altug, “Radiative engineering of plasmon lifetimes in embedded nanoantenna arrays,” Opt. Express 18(5), 4526–4537 (2010).
    [CrossRef] [PubMed]
  19. L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107(30), 7343–7350 (2003).
    [CrossRef]
  20. FDTD Solutions, Lumerical, Inc..
  21. P. Harms, R. Mittra, and W. Ko, “Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures,” IEEE Trans. Antenn. Propag. 42(9), 1317–1324 (1994).
    [CrossRef]
  22. A. Taflove and S. C. Hagness, Computational Electrodynamics. The Finite-Difference Time-Domain Method (Artech House, 2005), Ch. 13.
  23. M. Mishrikey, A. Fallahi, C. Hafner, and R. Vahldieck, “Improved performance of thin film broadband antireflective coatings,” Proc. SPIE 6717, 67102 (2007).
  24. N. T. Bliss, R. Bond, J. Kepner, H. Kim, and A. Reuther, “Interactive grid computing at Lincoln Laboratory,” Lincoln Lab. J. 16, 165–216 (2006).
  25. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  26. G. R. Kilby and Ph. D. Dissertation, Infrared Methods Applied to Photonic Crystal Device Development (Georgia Institute of Technology, 2005).
  27. T. Tague, (personal communication, 2010).
  28. M. Boulet-Audet, T. Buffeteau, S. Boudreault, N. Daugey, and M. Pézolet, “Quantitative determination of band distortions in diamond attenuated total reflectance infrared spectra,” J. Phys. Chem. B 114(24), 8255–8261 (2010).
    [CrossRef] [PubMed]
  29. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
    [CrossRef]

2011

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
[CrossRef] [PubMed]

2010

B. J. Davis, P. S. Carney, and R. Bhargava, “Theory of midinfrared absorption microspectroscopy: I. Homogeneous samples,” Anal. Chem. 82(9), 3474–3486 (2010).
[CrossRef] [PubMed]

B. J. Davis, P. S. Carney, and R. Bhargava, “Theory of mid-infrared absorption microspectroscopy: II. Heterogeneous samples,” Anal. Chem. 82(9), 3487–3499 (2010).
[CrossRef] [PubMed]

H. P. Paudel, K. Bayat, M. F. Baroughi, S. May, and D. W. Galipeau, “FDTD simulation of metallic gratings for enhancement of electromagnetic field by surface plasmon resonance,” Proc. SPIE 7597, 759706, 759706-8 (2010).
[CrossRef]

M. Boulet-Audet, T. Buffeteau, S. Boudreault, N. Daugey, and M. Pézolet, “Quantitative determination of band distortions in diamond attenuated total reflectance infrared spectra,” J. Phys. Chem. B 114(24), 8255–8261 (2010).
[CrossRef] [PubMed]

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

C. P. Burrows and W. L. Barnes, “Large spectral extinction due to overlap of dipolar and quadrupolar plasmonic modes of metallic nanoparticles in arrays,” Opt. Express 18(3), 3187–3198 (2010).
[CrossRef] [PubMed]

R. Adato, A. A. Yanik, C.-H. Wu, G. Shvets, and H. Altug, “Radiative engineering of plasmon lifetimes in embedded nanoantenna arrays,” Opt. Express 18(5), 4526–4537 (2010).
[CrossRef] [PubMed]

2009

G. R. Kilby and T. K. Gaylord, “Fourier transform infrared transmission microspectroscopy of photonic crystal structures,” Appl. Opt. 48(19), 3716–3721 (2009).
[CrossRef] [PubMed]

F. Le and P. Nordlander, “Optical properties of metallic nanoparticle arrays for oblique excitation using the multiple unit cell method,” J. Comput. Theor. Nanosci. 6(9), 2031–2039 (2009).
[CrossRef]

A. O. Pinchuk, “Angle dependent collective surface plasmon resonance in an array of silver nanoparticles,” J. Phys. Chem. A 113(16), 4430–4436 (2009).
[CrossRef] [PubMed]

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[CrossRef] [PubMed]

2008

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[CrossRef]

2007

R. Bhargava, “Towards a practical Fourier transform infrared chemical imaging protocol for cancer histopathology,” Anal. Bioanal. Chem. 389(4), 1155–1169 (2007).
[CrossRef] [PubMed]

M. Mishrikey, A. Fallahi, C. Hafner, and R. Vahldieck, “Improved performance of thin film broadband antireflective coatings,” Proc. SPIE 6717, 67102 (2007).

2006

N. T. Bliss, R. Bond, J. Kepner, H. Kim, and A. Reuther, “Interactive grid computing at Lincoln Laboratory,” Lincoln Lab. J. 16, 165–216 (2006).

2005

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123(22), 221103 (2005).
[CrossRef] [PubMed]

Y. A. Urzhumov and G. Shvets, “Applications of nanoparticle arrays to coherent anti-Stokes Raman spectroscopy of chiral molecules,” Proc. SPIE 5927, 59271D, 59271D-12 (2005).
[CrossRef]

2004

T. K. Gaylord and G. R. Kilby, “Optical single-angle plane-wave transmittances/reflectances from Schwarzschild objective variable-angle measurements,” Rev. Sci. Instrum. 75(2), 317–323 (2004).
[CrossRef]

2003

L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107(30), 7343–7350 (2003).
[CrossRef]

S. Malynych and G. Chumanov, “Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays,” J. Am. Chem. Soc. 125(10), 2896–2898 (2003).
[CrossRef] [PubMed]

2002

N. Félidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays,” Phys. Rev. B 66(24), 245407 (2002).
[CrossRef]

2000

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

1994

P. Harms, R. Mittra, and W. Ko, “Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures,” IEEE Trans. Antenn. Propag. 42(9), 1317–1324 (1994).
[CrossRef]

Adato, R.

R. Adato, A. A. Yanik, C.-H. Wu, G. Shvets, and H. Altug, “Radiative engineering of plasmon lifetimes in embedded nanoantenna arrays,” Opt. Express 18(5), 4526–4537 (2010).
[CrossRef] [PubMed]

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[CrossRef] [PubMed]

Altug, H.

R. Adato, A. A. Yanik, C.-H. Wu, G. Shvets, and H. Altug, “Radiative engineering of plasmon lifetimes in embedded nanoantenna arrays,” Opt. Express 18(5), 4526–4537 (2010).
[CrossRef] [PubMed]

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[CrossRef] [PubMed]

Amsden, J. J.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[CrossRef] [PubMed]

Aubard, J.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123(22), 221103 (2005).
[CrossRef] [PubMed]

N. Félidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays,” Phys. Rev. B 66(24), 245407 (2002).
[CrossRef]

Aussenegg, F. R.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123(22), 221103 (2005).
[CrossRef] [PubMed]

N. Félidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays,” Phys. Rev. B 66(24), 245407 (2002).
[CrossRef]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Barnes, W. L.

Baroughi, M. F.

H. P. Paudel, K. Bayat, M. F. Baroughi, S. May, and D. W. Galipeau, “FDTD simulation of metallic gratings for enhancement of electromagnetic field by surface plasmon resonance,” Proc. SPIE 7597, 759706, 759706-8 (2010).
[CrossRef]

Bayat, K.

H. P. Paudel, K. Bayat, M. F. Baroughi, S. May, and D. W. Galipeau, “FDTD simulation of metallic gratings for enhancement of electromagnetic field by surface plasmon resonance,” Proc. SPIE 7597, 759706, 759706-8 (2010).
[CrossRef]

Bhargava, R.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
[CrossRef] [PubMed]

B. J. Davis, P. S. Carney, and R. Bhargava, “Theory of midinfrared absorption microspectroscopy: I. Homogeneous samples,” Anal. Chem. 82(9), 3474–3486 (2010).
[CrossRef] [PubMed]

B. J. Davis, P. S. Carney, and R. Bhargava, “Theory of mid-infrared absorption microspectroscopy: II. Heterogeneous samples,” Anal. Chem. 82(9), 3487–3499 (2010).
[CrossRef] [PubMed]

R. Bhargava, “Towards a practical Fourier transform infrared chemical imaging protocol for cancer histopathology,” Anal. Bioanal. Chem. 389(4), 1155–1169 (2007).
[CrossRef] [PubMed]

Bliss, N. T.

N. T. Bliss, R. Bond, J. Kepner, H. Kim, and A. Reuther, “Interactive grid computing at Lincoln Laboratory,” Lincoln Lab. J. 16, 165–216 (2006).

Bond, R.

N. T. Bliss, R. Bond, J. Kepner, H. Kim, and A. Reuther, “Interactive grid computing at Lincoln Laboratory,” Lincoln Lab. J. 16, 165–216 (2006).

Boudreault, S.

M. Boulet-Audet, T. Buffeteau, S. Boudreault, N. Daugey, and M. Pézolet, “Quantitative determination of band distortions in diamond attenuated total reflectance infrared spectra,” J. Phys. Chem. B 114(24), 8255–8261 (2010).
[CrossRef] [PubMed]

Boulet-Audet, M.

M. Boulet-Audet, T. Buffeteau, S. Boudreault, N. Daugey, and M. Pézolet, “Quantitative determination of band distortions in diamond attenuated total reflectance infrared spectra,” J. Phys. Chem. B 114(24), 8255–8261 (2010).
[CrossRef] [PubMed]

Buffeteau, T.

M. Boulet-Audet, T. Buffeteau, S. Boudreault, N. Daugey, and M. Pézolet, “Quantitative determination of band distortions in diamond attenuated total reflectance infrared spectra,” J. Phys. Chem. B 114(24), 8255–8261 (2010).
[CrossRef] [PubMed]

Burrows, C. P.

Capasso, F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

Carney, P. S.

B. J. Davis, P. S. Carney, and R. Bhargava, “Theory of midinfrared absorption microspectroscopy: I. Homogeneous samples,” Anal. Chem. 82(9), 3474–3486 (2010).
[CrossRef] [PubMed]

B. J. Davis, P. S. Carney, and R. Bhargava, “Theory of mid-infrared absorption microspectroscopy: II. Heterogeneous samples,” Anal. Chem. 82(9), 3487–3499 (2010).
[CrossRef] [PubMed]

Chu, Y.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[CrossRef]

Chumanov, G.

S. Malynych and G. Chumanov, “Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays,” J. Am. Chem. Soc. 125(10), 2896–2898 (2003).
[CrossRef] [PubMed]

Crozier, K. B.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[CrossRef]

Curl, R. F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

Daugey, N.

M. Boulet-Audet, T. Buffeteau, S. Boudreault, N. Daugey, and M. Pézolet, “Quantitative determination of band distortions in diamond attenuated total reflectance infrared spectra,” J. Phys. Chem. B 114(24), 8255–8261 (2010).
[CrossRef] [PubMed]

Davis, B. J.

B. J. Davis, P. S. Carney, and R. Bhargava, “Theory of midinfrared absorption microspectroscopy: I. Homogeneous samples,” Anal. Chem. 82(9), 3474–3486 (2010).
[CrossRef] [PubMed]

B. J. Davis, P. S. Carney, and R. Bhargava, “Theory of mid-infrared absorption microspectroscopy: II. Heterogeneous samples,” Anal. Chem. 82(9), 3487–3499 (2010).
[CrossRef] [PubMed]

Ditlbacher, H.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Erramilli, S.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[CrossRef] [PubMed]

Fallahi, A.

M. Mishrikey, A. Fallahi, C. Hafner, and R. Vahldieck, “Improved performance of thin film broadband antireflective coatings,” Proc. SPIE 6717, 67102 (2007).

Félidj, N.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123(22), 221103 (2005).
[CrossRef] [PubMed]

N. Félidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays,” Phys. Rev. B 66(24), 245407 (2002).
[CrossRef]

Galipeau, D. W.

H. P. Paudel, K. Bayat, M. F. Baroughi, S. May, and D. W. Galipeau, “FDTD simulation of metallic gratings for enhancement of electromagnetic field by surface plasmon resonance,” Proc. SPIE 7597, 759706, 759706-8 (2010).
[CrossRef]

Gaylord, T. K.

G. R. Kilby and T. K. Gaylord, “Fourier transform infrared transmission microspectroscopy of photonic crystal structures,” Appl. Opt. 48(19), 3716–3721 (2009).
[CrossRef] [PubMed]

T. K. Gaylord and G. R. Kilby, “Optical single-angle plane-wave transmittances/reflectances from Schwarzschild objective variable-angle measurements,” Rev. Sci. Instrum. 75(2), 317–323 (2004).
[CrossRef]

Gmachl, C.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

Hafner, C.

M. Mishrikey, A. Fallahi, C. Hafner, and R. Vahldieck, “Improved performance of thin film broadband antireflective coatings,” Proc. SPIE 6717, 67102 (2007).

Harms, P.

P. Harms, R. Mittra, and W. Ko, “Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures,” IEEE Trans. Antenn. Propag. 42(9), 1317–1324 (1994).
[CrossRef]

Hirschmugl, C. J.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
[CrossRef] [PubMed]

Hohenau, A.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123(22), 221103 (2005).
[CrossRef] [PubMed]

Hong, M. K.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[CrossRef] [PubMed]

Kajdacsy-Balla, A.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
[CrossRef] [PubMed]

Kaplan, D. L.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[CrossRef] [PubMed]

Kelly, K. L.

L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107(30), 7343–7350 (2003).
[CrossRef]

Kepner, J.

N. T. Bliss, R. Bond, J. Kepner, H. Kim, and A. Reuther, “Interactive grid computing at Lincoln Laboratory,” Lincoln Lab. J. 16, 165–216 (2006).

Kilby, G. R.

G. R. Kilby and T. K. Gaylord, “Fourier transform infrared transmission microspectroscopy of photonic crystal structures,” Appl. Opt. 48(19), 3716–3721 (2009).
[CrossRef] [PubMed]

T. K. Gaylord and G. R. Kilby, “Optical single-angle plane-wave transmittances/reflectances from Schwarzschild objective variable-angle measurements,” Rev. Sci. Instrum. 75(2), 317–323 (2004).
[CrossRef]

Kim, H.

N. T. Bliss, R. Bond, J. Kepner, H. Kim, and A. Reuther, “Interactive grid computing at Lincoln Laboratory,” Lincoln Lab. J. 16, 165–216 (2006).

Ko, W.

P. Harms, R. Mittra, and W. Ko, “Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures,” IEEE Trans. Antenn. Propag. 42(9), 1317–1324 (1994).
[CrossRef]

Kosterev, A. A.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

Krenn, J. R.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123(22), 221103 (2005).
[CrossRef] [PubMed]

N. Félidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays,” Phys. Rev. B 66(24), 245407 (2002).
[CrossRef]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Lamprecht, B.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Laurent, G.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123(22), 221103 (2005).
[CrossRef] [PubMed]

Le, F.

F. Le and P. Nordlander, “Optical properties of metallic nanoparticle arrays for oblique excitation using the multiple unit cell method,” J. Comput. Theor. Nanosci. 6(9), 2031–2039 (2009).
[CrossRef]

Lechner, R. T.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Leitner, A.

N. Félidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays,” Phys. Rev. B 66(24), 245407 (2002).
[CrossRef]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Levi, G.

N. Félidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays,” Phys. Rev. B 66(24), 245407 (2002).
[CrossRef]

Lévi, G.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123(22), 221103 (2005).
[CrossRef] [PubMed]

Lewicki, R.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

Macias, V.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
[CrossRef] [PubMed]

Malynych, S.

S. Malynych and G. Chumanov, “Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays,” J. Am. Chem. Soc. 125(10), 2896–2898 (2003).
[CrossRef] [PubMed]

Mattson, E. C.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
[CrossRef] [PubMed]

May, S.

H. P. Paudel, K. Bayat, M. F. Baroughi, S. May, and D. W. Galipeau, “FDTD simulation of metallic gratings for enhancement of electromagnetic field by surface plasmon resonance,” Proc. SPIE 7597, 759706, 759706-8 (2010).
[CrossRef]

McManus, B.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

Mishrikey, M.

M. Mishrikey, A. Fallahi, C. Hafner, and R. Vahldieck, “Improved performance of thin film broadband antireflective coatings,” Proc. SPIE 6717, 67102 (2007).

Mittra, R.

P. Harms, R. Mittra, and W. Ko, “Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures,” IEEE Trans. Antenn. Propag. 42(9), 1317–1324 (1994).
[CrossRef]

Nasse, M. J.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
[CrossRef] [PubMed]

Nordlander, P.

F. Le and P. Nordlander, “Optical properties of metallic nanoparticle arrays for oblique excitation using the multiple unit cell method,” J. Comput. Theor. Nanosci. 6(9), 2031–2039 (2009).
[CrossRef]

Omenetto, F. G.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[CrossRef] [PubMed]

Paudel, H. P.

H. P. Paudel, K. Bayat, M. F. Baroughi, S. May, and D. W. Galipeau, “FDTD simulation of metallic gratings for enhancement of electromagnetic field by surface plasmon resonance,” Proc. SPIE 7597, 759706, 759706-8 (2010).
[CrossRef]

Pézolet, M.

M. Boulet-Audet, T. Buffeteau, S. Boudreault, N. Daugey, and M. Pézolet, “Quantitative determination of band distortions in diamond attenuated total reflectance infrared spectra,” J. Phys. Chem. B 114(24), 8255–8261 (2010).
[CrossRef] [PubMed]

Pinchuk, A. O.

A. O. Pinchuk, “Angle dependent collective surface plasmon resonance in an array of silver nanoparticles,” J. Phys. Chem. A 113(16), 4430–4436 (2009).
[CrossRef] [PubMed]

Pusharsky, M.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

Reininger, R.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
[CrossRef] [PubMed]

Reuther, A.

N. T. Bliss, R. Bond, J. Kepner, H. Kim, and A. Reuther, “Interactive grid computing at Lincoln Laboratory,” Lincoln Lab. J. 16, 165–216 (2006).

Schatz, G. C.

L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107(30), 7343–7350 (2003).
[CrossRef]

Schider, G.

N. Félidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays,” Phys. Rev. B 66(24), 245407 (2002).
[CrossRef]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Schonbrun, E.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[CrossRef]

Shvets, G.

R. Adato, A. A. Yanik, C.-H. Wu, G. Shvets, and H. Altug, “Radiative engineering of plasmon lifetimes in embedded nanoantenna arrays,” Opt. Express 18(5), 4526–4537 (2010).
[CrossRef] [PubMed]

Y. A. Urzhumov and G. Shvets, “Applications of nanoparticle arrays to coherent anti-Stokes Raman spectroscopy of chiral molecules,” Proc. SPIE 5927, 59271D, 59271D-12 (2005).
[CrossRef]

Tittel, F. K.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

Urzhumov, Y. A.

Y. A. Urzhumov and G. Shvets, “Applications of nanoparticle arrays to coherent anti-Stokes Raman spectroscopy of chiral molecules,” Proc. SPIE 5927, 59271D, 59271D-12 (2005).
[CrossRef]

Vahldieck, R.

M. Mishrikey, A. Fallahi, C. Hafner, and R. Vahldieck, “Improved performance of thin film broadband antireflective coatings,” Proc. SPIE 6717, 67102 (2007).

Walsh, M. J.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
[CrossRef] [PubMed]

Wu, C.-H.

Wysocki, G.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

Yang, T.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[CrossRef]

Yanik, A. A.

R. Adato, A. A. Yanik, C.-H. Wu, G. Shvets, and H. Altug, “Radiative engineering of plasmon lifetimes in embedded nanoantenna arrays,” Opt. Express 18(5), 4526–4537 (2010).
[CrossRef] [PubMed]

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[CrossRef] [PubMed]

Zhao, L.

L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107(30), 7343–7350 (2003).
[CrossRef]

Anal. Bioanal. Chem.

R. Bhargava, “Towards a practical Fourier transform infrared chemical imaging protocol for cancer histopathology,” Anal. Bioanal. Chem. 389(4), 1155–1169 (2007).
[CrossRef] [PubMed]

Anal. Chem.

B. J. Davis, P. S. Carney, and R. Bhargava, “Theory of midinfrared absorption microspectroscopy: I. Homogeneous samples,” Anal. Chem. 82(9), 3474–3486 (2010).
[CrossRef] [PubMed]

B. J. Davis, P. S. Carney, and R. Bhargava, “Theory of mid-infrared absorption microspectroscopy: II. Heterogeneous samples,” Anal. Chem. 82(9), 3487–3499 (2010).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[CrossRef]

Chem. Phys. Lett.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

IEEE Trans. Antenn. Propag.

P. Harms, R. Mittra, and W. Ko, “Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures,” IEEE Trans. Antenn. Propag. 42(9), 1317–1324 (1994).
[CrossRef]

J. Am. Chem. Soc.

S. Malynych and G. Chumanov, “Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays,” J. Am. Chem. Soc. 125(10), 2896–2898 (2003).
[CrossRef] [PubMed]

J. Chem. Phys.

N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123(22), 221103 (2005).
[CrossRef] [PubMed]

J. Comput. Theor. Nanosci.

F. Le and P. Nordlander, “Optical properties of metallic nanoparticle arrays for oblique excitation using the multiple unit cell method,” J. Comput. Theor. Nanosci. 6(9), 2031–2039 (2009).
[CrossRef]

J. Phys. Chem. A

A. O. Pinchuk, “Angle dependent collective surface plasmon resonance in an array of silver nanoparticles,” J. Phys. Chem. A 113(16), 4430–4436 (2009).
[CrossRef] [PubMed]

J. Phys. Chem. B

L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107(30), 7343–7350 (2003).
[CrossRef]

M. Boulet-Audet, T. Buffeteau, S. Boudreault, N. Daugey, and M. Pézolet, “Quantitative determination of band distortions in diamond attenuated total reflectance infrared spectra,” J. Phys. Chem. B 114(24), 8255–8261 (2010).
[CrossRef] [PubMed]

Lincoln Lab. J.

N. T. Bliss, R. Bond, J. Kepner, H. Kim, and A. Reuther, “Interactive grid computing at Lincoln Laboratory,” Lincoln Lab. J. 16, 165–216 (2006).

Nat. Methods

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. B

N. Félidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays,” Phys. Rev. B 66(24), 245407 (2002).
[CrossRef]

Phys. Rev. Lett.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[CrossRef] [PubMed]

Proc. SPIE

Y. A. Urzhumov and G. Shvets, “Applications of nanoparticle arrays to coherent anti-Stokes Raman spectroscopy of chiral molecules,” Proc. SPIE 5927, 59271D, 59271D-12 (2005).
[CrossRef]

H. P. Paudel, K. Bayat, M. F. Baroughi, S. May, and D. W. Galipeau, “FDTD simulation of metallic gratings for enhancement of electromagnetic field by surface plasmon resonance,” Proc. SPIE 7597, 759706, 759706-8 (2010).
[CrossRef]

M. Mishrikey, A. Fallahi, C. Hafner, and R. Vahldieck, “Improved performance of thin film broadband antireflective coatings,” Proc. SPIE 6717, 67102 (2007).

Rev. Sci. Instrum.

T. K. Gaylord and G. R. Kilby, “Optical single-angle plane-wave transmittances/reflectances from Schwarzschild objective variable-angle measurements,” Rev. Sci. Instrum. 75(2), 317–323 (2004).
[CrossRef]

Other

A. Taflove and S. C. Hagness, Computational Electrodynamics. The Finite-Difference Time-Domain Method (Artech House, 2005), Ch. 13.

FDTD Solutions, Lumerical, Inc..

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

G. R. Kilby and Ph. D. Dissertation, Infrared Methods Applied to Photonic Crystal Device Development (Georgia Institute of Technology, 2005).

T. Tague, (personal communication, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Optical path of a reflecting Schwarzschild microscope objective.

Fig. 2
Fig. 2

A. Dimensions of the two arrays simulated in the paper. B&C: Modeled illumination geometry and field monitors for s-polarization (B) and p-polarization (C).

Fig. 3
Fig. 3

Computed normal incidence reflectance of the two array geometries of Fig. 2(A).

Fig. 7
Fig. 7

Peak field intensity vs. angle of incidence for all field monitors of Figs. 2(B) and 2(C) for both array geometries.

Fig. 4
Fig. 4

Spectral reflectance for Array I for A. s-polarization and B. p-polarization for several angles of incidence.

Fig. 6
Fig. 6

Spectral dependence of peak near field intensity vs. angle of incidence for Array I: A. Corner S1 and B. Corner P1 .

Fig. 5
Fig. 5

Dependence of peak reflectance on an angle of incidence for arrays I and II at two incident polarizations.

Fig. 8
Fig. 8

Array I response for normal incidence irradiation for A. Reflectance and B. Peak field intensity as the period along the Y direction is changed.

Fig. 9
Fig. 9

Grating transition wavelengths for the first three orders vs. the angle of incidence.

Fig. 10
Fig. 10

Response of Arrays I and II when illuminated and measured with a Schwarzschild microscope objective for two different NAs, as compared to normal-incidence response.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

k s u b = k i n c ± G x ± G y
( 2 π λ i , j n s u b ) 2 = ( 2 π λ i , j sin θ i cos ϕ + i 2 π d ) 2 + ( 2 π λ i , j sin θ i sin ϕ + j 2 π d ) 2
R ( λ ) = θ min θ max 0.5 [ r s ( θ ) + r s ( θ ) ] A ( θ ) sin θ d θ θ min θ max A ( θ ) sin θ d θ = θ min θ max 0.5 [ r s , i + r p , i ] A i sin θ θ min θ max A i sin θ

Metrics