Abstract

We investigated the pump power dependence of femtosecond two-color optical Kerr shutter (OKS) signals, which showed a damped sinusoidal variation with increasing pump power. The sinusoidal dependence was attributed to the polarization rotation caused by light-induced birefringence effect. The numerical analysis indicated that, the damping of OKS signal intensity could be attributed to the temporal profile change of probe pulse passing through the OKS setup, due to the non-uniform transient refractive index change induced by pump pulse. Because of the large phase shift of probe pulse, the time-resolved OKS signals showed modulated temporal intensity when pump power was increased.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Righini, “Ultrafast optical kerr effect in liquids and solids,” Science 262(5138), 1386–1390 (1993).
    [CrossRef] [PubMed]
  2. Y. Liu, F. Qin, Z. Y. Wei, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, “10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95, 13116–3 (2009).
  3. D. G. Kong, W. B. Duan, X. R. Zhang, C. Y. He, Q. Chang, Y. X. Wang, Y. C. Gao, and Y. L. Song, “Ultrafast third-order nonlinear optical properties of ZnPc(OBu)6(NCS)/DMSO solution,” Opt. Lett. 34(16), 2471–2473 (2009).
    [CrossRef] [PubMed]
  4. H. W. Lee, J. K. Anthony, H. D. Nguyen, S. I. Mho, K. Kim, H. Lim, J. Lee, and F. Rotermund, “Enhanced ultrafast optical nonlinearity of porous anodized aluminum oxide nanostructures,” Opt. Express 17(21), 19093–19101 (2009).
    [CrossRef]
  5. J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, “Time-resolved luminescence spectroscopy by the optical Kerr-gate method applicable to ultrafast relaxation processes,” Phys. Rev. B 62(15), 10083–10087 (2000).
    [CrossRef]
  6. L. Gundlach and P. Piotrowiak, “Femtosecond Kerr-gated wide-field fluorescence microscopy,” Opt. Lett. 33(9), 992–994 (2008).
    [CrossRef] [PubMed]
  7. T. Yasui, K. Minoshima, and H. Matsumoto, “Three-dimensional shape measurement of a diffusing surface by use of a femtosecond amplifying optical Kerr gate,” Appl. Opt. 39(1), 65–71 (2000).
    [CrossRef]
  8. L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253(5021), 769–771 (1991).
    [CrossRef] [PubMed]
  9. R. A. Ganeev, A. I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa, M. Turu, S. Sakakibara, and H. Kuroda, “Nonlinear refraction in CS2,” Appl. Phys. B 78(3-4), 433–438 (2004).
    [CrossRef]
  10. B. L. Yu, H. P. Xia, C. S. Zhu, and F. X. Gan, “Enhanced third-order nonlinear optical properties of C60-silane compounds,” Appl. Phys. Lett. 81(15), 2701–2703 (2002).
    [CrossRef]
  11. H. Z. Tao, G. P. Dong, Y. B. Zhai, H. T. Guo, X. J. Zhao, Z. W. Wang, S. S. Chu, S. F. Wang, and Q. H. Gong, “Femtosecond third-order optical nonlinearity of the GeS2-Ga2S3-CdI2 new chalcohalide glasses,” Solid State Commun. 138(10-11), 485–488 (2006).
    [CrossRef]
  12. T. X. Lin, Q. Yang, J. H. Si, T. Chen, F. Chen, X. L. Wang, X. Hou, and K. Hirao, “Ultrafast nonlinear optical properties of Bi2O3-B2O3-SiO2 oxide glass,” Opt. Commun. 275(1), 230–233 (2007).
    [CrossRef]
  13. H. Kanbara, H. Kobayashi, T. Kaino, T. Kurihara, N. Ooba, and K. Kubodera, “Highly efficient ultrafast optical Kerr shutters with the use of organic nonlinear materials,” J. Opt. Soc. Am. B 11(11), 2216–2223 (1994).
    [CrossRef]
  14. Y. Kondo, H. Inouye, S. Fujiwara, T. Suzuki, T. Mitsuyu, T. Yoko, and K. Hirao, “Wavelength dependence of photoreduction of Ag+ ions in glasses through the multiphoton process,” J. Appl. Phys. 88(3), 1244–1250 (2000).
    [CrossRef]
  15. P. P. Ho and R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20(5), 2170–2187 (1979).
    [CrossRef]
  16. E. P. Ippen and C. V. Shank, “Picosecond response of a high-repetition-rate CS2 optical Kerr gate,” Appl. Phys. Lett. 26(3), 92–93 (1975).
    [CrossRef]
  17. A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B 16(4), 637–650 (1999).
    [CrossRef]
  18. J. Etchepare, G. Grillon, J. P. Chambaret, G. Hamoniaux, and A. Orszag, “Polarization selectivity in time-resolved transient phase grating,” Opt. Commun. 63(5), 329–334 (1987).
    [CrossRef]

2009 (3)

2008 (1)

2007 (1)

T. X. Lin, Q. Yang, J. H. Si, T. Chen, F. Chen, X. L. Wang, X. Hou, and K. Hirao, “Ultrafast nonlinear optical properties of Bi2O3-B2O3-SiO2 oxide glass,” Opt. Commun. 275(1), 230–233 (2007).
[CrossRef]

2006 (1)

H. Z. Tao, G. P. Dong, Y. B. Zhai, H. T. Guo, X. J. Zhao, Z. W. Wang, S. S. Chu, S. F. Wang, and Q. H. Gong, “Femtosecond third-order optical nonlinearity of the GeS2-Ga2S3-CdI2 new chalcohalide glasses,” Solid State Commun. 138(10-11), 485–488 (2006).
[CrossRef]

2004 (1)

R. A. Ganeev, A. I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa, M. Turu, S. Sakakibara, and H. Kuroda, “Nonlinear refraction in CS2,” Appl. Phys. B 78(3-4), 433–438 (2004).
[CrossRef]

2002 (1)

B. L. Yu, H. P. Xia, C. S. Zhu, and F. X. Gan, “Enhanced third-order nonlinear optical properties of C60-silane compounds,” Appl. Phys. Lett. 81(15), 2701–2703 (2002).
[CrossRef]

2000 (3)

Y. Kondo, H. Inouye, S. Fujiwara, T. Suzuki, T. Mitsuyu, T. Yoko, and K. Hirao, “Wavelength dependence of photoreduction of Ag+ ions in glasses through the multiphoton process,” J. Appl. Phys. 88(3), 1244–1250 (2000).
[CrossRef]

J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, “Time-resolved luminescence spectroscopy by the optical Kerr-gate method applicable to ultrafast relaxation processes,” Phys. Rev. B 62(15), 10083–10087 (2000).
[CrossRef]

T. Yasui, K. Minoshima, and H. Matsumoto, “Three-dimensional shape measurement of a diffusing surface by use of a femtosecond amplifying optical Kerr gate,” Appl. Opt. 39(1), 65–71 (2000).
[CrossRef]

1999 (1)

1994 (1)

1993 (1)

R. Righini, “Ultrafast optical kerr effect in liquids and solids,” Science 262(5138), 1386–1390 (1993).
[CrossRef] [PubMed]

1991 (1)

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253(5021), 769–771 (1991).
[CrossRef] [PubMed]

1987 (1)

J. Etchepare, G. Grillon, J. P. Chambaret, G. Hamoniaux, and A. Orszag, “Polarization selectivity in time-resolved transient phase grating,” Opt. Commun. 63(5), 329–334 (1987).
[CrossRef]

1979 (1)

P. P. Ho and R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20(5), 2170–2187 (1979).
[CrossRef]

1975 (1)

E. P. Ippen and C. V. Shank, “Picosecond response of a high-repetition-rate CS2 optical Kerr gate,” Appl. Phys. Lett. 26(3), 92–93 (1975).
[CrossRef]

Alfano, R. R.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253(5021), 769–771 (1991).
[CrossRef] [PubMed]

P. P. Ho and R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20(5), 2170–2187 (1979).
[CrossRef]

Anthony, J. K.

Baba, M.

R. A. Ganeev, A. I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa, M. Turu, S. Sakakibara, and H. Kuroda, “Nonlinear refraction in CS2,” Appl. Phys. B 78(3-4), 433–438 (2004).
[CrossRef]

Brodeur, A.

Chambaret, J. P.

J. Etchepare, G. Grillon, J. P. Chambaret, G. Hamoniaux, and A. Orszag, “Polarization selectivity in time-resolved transient phase grating,” Opt. Commun. 63(5), 329–334 (1987).
[CrossRef]

Chang, Q.

Chen, F.

T. X. Lin, Q. Yang, J. H. Si, T. Chen, F. Chen, X. L. Wang, X. Hou, and K. Hirao, “Ultrafast nonlinear optical properties of Bi2O3-B2O3-SiO2 oxide glass,” Opt. Commun. 275(1), 230–233 (2007).
[CrossRef]

Chen, T.

T. X. Lin, Q. Yang, J. H. Si, T. Chen, F. Chen, X. L. Wang, X. Hou, and K. Hirao, “Ultrafast nonlinear optical properties of Bi2O3-B2O3-SiO2 oxide glass,” Opt. Commun. 275(1), 230–233 (2007).
[CrossRef]

Chin, S. L.

Chu, S. S.

H. Z. Tao, G. P. Dong, Y. B. Zhai, H. T. Guo, X. J. Zhao, Z. W. Wang, S. S. Chu, S. F. Wang, and Q. H. Gong, “Femtosecond third-order optical nonlinearity of the GeS2-Ga2S3-CdI2 new chalcohalide glasses,” Solid State Commun. 138(10-11), 485–488 (2006).
[CrossRef]

Dong, G. P.

H. Z. Tao, G. P. Dong, Y. B. Zhai, H. T. Guo, X. J. Zhao, Z. W. Wang, S. S. Chu, S. F. Wang, and Q. H. Gong, “Femtosecond third-order optical nonlinearity of the GeS2-Ga2S3-CdI2 new chalcohalide glasses,” Solid State Commun. 138(10-11), 485–488 (2006).
[CrossRef]

Duan, W. B.

Etchepare, J.

J. Etchepare, G. Grillon, J. P. Chambaret, G. Hamoniaux, and A. Orszag, “Polarization selectivity in time-resolved transient phase grating,” Opt. Commun. 63(5), 329–334 (1987).
[CrossRef]

Fujiwara, S.

Y. Kondo, H. Inouye, S. Fujiwara, T. Suzuki, T. Mitsuyu, T. Yoko, and K. Hirao, “Wavelength dependence of photoreduction of Ag+ ions in glasses through the multiphoton process,” J. Appl. Phys. 88(3), 1244–1250 (2000).
[CrossRef]

Gan, F. X.

B. L. Yu, H. P. Xia, C. S. Zhu, and F. X. Gan, “Enhanced third-order nonlinear optical properties of C60-silane compounds,” Appl. Phys. Lett. 81(15), 2701–2703 (2002).
[CrossRef]

Ganeev, R. A.

R. A. Ganeev, A. I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa, M. Turu, S. Sakakibara, and H. Kuroda, “Nonlinear refraction in CS2,” Appl. Phys. B 78(3-4), 433–438 (2004).
[CrossRef]

Gao, Y. C.

Gong, Q. H.

H. Z. Tao, G. P. Dong, Y. B. Zhai, H. T. Guo, X. J. Zhao, Z. W. Wang, S. S. Chu, S. F. Wang, and Q. H. Gong, “Femtosecond third-order optical nonlinearity of the GeS2-Ga2S3-CdI2 new chalcohalide glasses,” Solid State Commun. 138(10-11), 485–488 (2006).
[CrossRef]

Grillon, G.

J. Etchepare, G. Grillon, J. P. Chambaret, G. Hamoniaux, and A. Orszag, “Polarization selectivity in time-resolved transient phase grating,” Opt. Commun. 63(5), 329–334 (1987).
[CrossRef]

Gundlach, L.

Guo, H. T.

H. Z. Tao, G. P. Dong, Y. B. Zhai, H. T. Guo, X. J. Zhao, Z. W. Wang, S. S. Chu, S. F. Wang, and Q. H. Gong, “Femtosecond third-order optical nonlinearity of the GeS2-Ga2S3-CdI2 new chalcohalide glasses,” Solid State Commun. 138(10-11), 485–488 (2006).
[CrossRef]

Hamoniaux, G.

J. Etchepare, G. Grillon, J. P. Chambaret, G. Hamoniaux, and A. Orszag, “Polarization selectivity in time-resolved transient phase grating,” Opt. Commun. 63(5), 329–334 (1987).
[CrossRef]

He, C. Y.

Hirao, K.

T. X. Lin, Q. Yang, J. H. Si, T. Chen, F. Chen, X. L. Wang, X. Hou, and K. Hirao, “Ultrafast nonlinear optical properties of Bi2O3-B2O3-SiO2 oxide glass,” Opt. Commun. 275(1), 230–233 (2007).
[CrossRef]

Y. Kondo, H. Inouye, S. Fujiwara, T. Suzuki, T. Mitsuyu, T. Yoko, and K. Hirao, “Wavelength dependence of photoreduction of Ag+ ions in glasses through the multiphoton process,” J. Appl. Phys. 88(3), 1244–1250 (2000).
[CrossRef]

Ho, P. P.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253(5021), 769–771 (1991).
[CrossRef] [PubMed]

P. P. Ho and R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20(5), 2170–2187 (1979).
[CrossRef]

Hou, X.

T. X. Lin, Q. Yang, J. H. Si, T. Chen, F. Chen, X. L. Wang, X. Hou, and K. Hirao, “Ultrafast nonlinear optical properties of Bi2O3-B2O3-SiO2 oxide glass,” Opt. Commun. 275(1), 230–233 (2007).
[CrossRef]

Inouye, H.

Y. Kondo, H. Inouye, S. Fujiwara, T. Suzuki, T. Mitsuyu, T. Yoko, and K. Hirao, “Wavelength dependence of photoreduction of Ag+ ions in glasses through the multiphoton process,” J. Appl. Phys. 88(3), 1244–1250 (2000).
[CrossRef]

Ippen, E. P.

E. P. Ippen and C. V. Shank, “Picosecond response of a high-repetition-rate CS2 optical Kerr gate,” Appl. Phys. Lett. 26(3), 92–93 (1975).
[CrossRef]

Ishizawa, N.

R. A. Ganeev, A. I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa, M. Turu, S. Sakakibara, and H. Kuroda, “Nonlinear refraction in CS2,” Appl. Phys. B 78(3-4), 433–438 (2004).
[CrossRef]

Kaino, T.

Kanbara, H.

Kim, K.

Kobayashi, H.

Kondo, Y.

Y. Kondo, H. Inouye, S. Fujiwara, T. Suzuki, T. Mitsuyu, T. Yoko, and K. Hirao, “Wavelength dependence of photoreduction of Ag+ ions in glasses through the multiphoton process,” J. Appl. Phys. 88(3), 1244–1250 (2000).
[CrossRef]

Kong, D. G.

Kubodera, K.

Kurihara, T.

Kurita, S.

J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, “Time-resolved luminescence spectroscopy by the optical Kerr-gate method applicable to ultrafast relaxation processes,” Phys. Rev. B 62(15), 10083–10087 (2000).
[CrossRef]

Kuroda, H.

R. A. Ganeev, A. I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa, M. Turu, S. Sakakibara, and H. Kuroda, “Nonlinear refraction in CS2,” Appl. Phys. B 78(3-4), 433–438 (2004).
[CrossRef]

Lee, H. W.

Lee, J.

Li, Z. Y.

Y. Liu, F. Qin, Z. Y. Wei, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, “10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95, 13116–3 (2009).

Lim, H.

Lin, T. X.

T. X. Lin, Q. Yang, J. H. Si, T. Chen, F. Chen, X. L. Wang, X. Hou, and K. Hirao, “Ultrafast nonlinear optical properties of Bi2O3-B2O3-SiO2 oxide glass,” Opt. Commun. 275(1), 230–233 (2007).
[CrossRef]

Liu, C.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253(5021), 769–771 (1991).
[CrossRef] [PubMed]

Liu, Y.

Y. Liu, F. Qin, Z. Y. Wei, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, “10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95, 13116–3 (2009).

Matsumoto, H.

Meng, Q. B.

Y. Liu, F. Qin, Z. Y. Wei, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, “10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95, 13116–3 (2009).

Mho, S. I.

Minoshima, K.

Mitsuyu, T.

Y. Kondo, H. Inouye, S. Fujiwara, T. Suzuki, T. Mitsuyu, T. Yoko, and K. Hirao, “Wavelength dependence of photoreduction of Ag+ ions in glasses through the multiphoton process,” J. Appl. Phys. 88(3), 1244–1250 (2000).
[CrossRef]

Nakajima, K.

J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, “Time-resolved luminescence spectroscopy by the optical Kerr-gate method applicable to ultrafast relaxation processes,” Phys. Rev. B 62(15), 10083–10087 (2000).
[CrossRef]

Nguyen, H. D.

Ooba, N.

Orszag, A.

J. Etchepare, G. Grillon, J. P. Chambaret, G. Hamoniaux, and A. Orszag, “Polarization selectivity in time-resolved transient phase grating,” Opt. Commun. 63(5), 329–334 (1987).
[CrossRef]

Piotrowiak, P.

Qin, F.

Y. Liu, F. Qin, Z. Y. Wei, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, “10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95, 13116–3 (2009).

Righini, R.

R. Righini, “Ultrafast optical kerr effect in liquids and solids,” Science 262(5138), 1386–1390 (1993).
[CrossRef] [PubMed]

Rotermund, F.

Ryasnyansky, A. I.

R. A. Ganeev, A. I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa, M. Turu, S. Sakakibara, and H. Kuroda, “Nonlinear refraction in CS2,” Appl. Phys. B 78(3-4), 433–438 (2004).
[CrossRef]

Saito, S.

J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, “Time-resolved luminescence spectroscopy by the optical Kerr-gate method applicable to ultrafast relaxation processes,” Phys. Rev. B 62(15), 10083–10087 (2000).
[CrossRef]

Sakakibara, S.

R. A. Ganeev, A. I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa, M. Turu, S. Sakakibara, and H. Kuroda, “Nonlinear refraction in CS2,” Appl. Phys. B 78(3-4), 433–438 (2004).
[CrossRef]

Shank, C. V.

E. P. Ippen and C. V. Shank, “Picosecond response of a high-repetition-rate CS2 optical Kerr gate,” Appl. Phys. Lett. 26(3), 92–93 (1975).
[CrossRef]

Si, J. H.

T. X. Lin, Q. Yang, J. H. Si, T. Chen, F. Chen, X. L. Wang, X. Hou, and K. Hirao, “Ultrafast nonlinear optical properties of Bi2O3-B2O3-SiO2 oxide glass,” Opt. Commun. 275(1), 230–233 (2007).
[CrossRef]

Song, Y. L.

Suemoto, T.

J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, “Time-resolved luminescence spectroscopy by the optical Kerr-gate method applicable to ultrafast relaxation processes,” Phys. Rev. B 62(15), 10083–10087 (2000).
[CrossRef]

Suzuki, M.

R. A. Ganeev, A. I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa, M. Turu, S. Sakakibara, and H. Kuroda, “Nonlinear refraction in CS2,” Appl. Phys. B 78(3-4), 433–438 (2004).
[CrossRef]

Suzuki, T.

Y. Kondo, H. Inouye, S. Fujiwara, T. Suzuki, T. Mitsuyu, T. Yoko, and K. Hirao, “Wavelength dependence of photoreduction of Ag+ ions in glasses through the multiphoton process,” J. Appl. Phys. 88(3), 1244–1250 (2000).
[CrossRef]

Takeda, J.

J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, “Time-resolved luminescence spectroscopy by the optical Kerr-gate method applicable to ultrafast relaxation processes,” Phys. Rev. B 62(15), 10083–10087 (2000).
[CrossRef]

Tao, H. Z.

H. Z. Tao, G. P. Dong, Y. B. Zhai, H. T. Guo, X. J. Zhao, Z. W. Wang, S. S. Chu, S. F. Wang, and Q. H. Gong, “Femtosecond third-order optical nonlinearity of the GeS2-Ga2S3-CdI2 new chalcohalide glasses,” Solid State Commun. 138(10-11), 485–488 (2006).
[CrossRef]

Tomimoto, S.

J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, “Time-resolved luminescence spectroscopy by the optical Kerr-gate method applicable to ultrafast relaxation processes,” Phys. Rev. B 62(15), 10083–10087 (2000).
[CrossRef]

Turu, M.

R. A. Ganeev, A. I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa, M. Turu, S. Sakakibara, and H. Kuroda, “Nonlinear refraction in CS2,” Appl. Phys. B 78(3-4), 433–438 (2004).
[CrossRef]

Wang, L.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253(5021), 769–771 (1991).
[CrossRef] [PubMed]

Wang, S. F.

H. Z. Tao, G. P. Dong, Y. B. Zhai, H. T. Guo, X. J. Zhao, Z. W. Wang, S. S. Chu, S. F. Wang, and Q. H. Gong, “Femtosecond third-order optical nonlinearity of the GeS2-Ga2S3-CdI2 new chalcohalide glasses,” Solid State Commun. 138(10-11), 485–488 (2006).
[CrossRef]

Wang, X. L.

T. X. Lin, Q. Yang, J. H. Si, T. Chen, F. Chen, X. L. Wang, X. Hou, and K. Hirao, “Ultrafast nonlinear optical properties of Bi2O3-B2O3-SiO2 oxide glass,” Opt. Commun. 275(1), 230–233 (2007).
[CrossRef]

Wang, Y. X.

Wang, Z. W.

H. Z. Tao, G. P. Dong, Y. B. Zhai, H. T. Guo, X. J. Zhao, Z. W. Wang, S. S. Chu, S. F. Wang, and Q. H. Gong, “Femtosecond third-order optical nonlinearity of the GeS2-Ga2S3-CdI2 new chalcohalide glasses,” Solid State Commun. 138(10-11), 485–488 (2006).
[CrossRef]

Wei, Z. Y.

Y. Liu, F. Qin, Z. Y. Wei, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, “10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95, 13116–3 (2009).

Xia, H. P.

B. L. Yu, H. P. Xia, C. S. Zhu, and F. X. Gan, “Enhanced third-order nonlinear optical properties of C60-silane compounds,” Appl. Phys. Lett. 81(15), 2701–2703 (2002).
[CrossRef]

Yang, Q.

T. X. Lin, Q. Yang, J. H. Si, T. Chen, F. Chen, X. L. Wang, X. Hou, and K. Hirao, “Ultrafast nonlinear optical properties of Bi2O3-B2O3-SiO2 oxide glass,” Opt. Commun. 275(1), 230–233 (2007).
[CrossRef]

Yasui, T.

Yoko, T.

Y. Kondo, H. Inouye, S. Fujiwara, T. Suzuki, T. Mitsuyu, T. Yoko, and K. Hirao, “Wavelength dependence of photoreduction of Ag+ ions in glasses through the multiphoton process,” J. Appl. Phys. 88(3), 1244–1250 (2000).
[CrossRef]

Yu, B. L.

B. L. Yu, H. P. Xia, C. S. Zhu, and F. X. Gan, “Enhanced third-order nonlinear optical properties of C60-silane compounds,” Appl. Phys. Lett. 81(15), 2701–2703 (2002).
[CrossRef]

Zhai, Y. B.

H. Z. Tao, G. P. Dong, Y. B. Zhai, H. T. Guo, X. J. Zhao, Z. W. Wang, S. S. Chu, S. F. Wang, and Q. H. Gong, “Femtosecond third-order optical nonlinearity of the GeS2-Ga2S3-CdI2 new chalcohalide glasses,” Solid State Commun. 138(10-11), 485–488 (2006).
[CrossRef]

Zhang, D. Z.

Y. Liu, F. Qin, Z. Y. Wei, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, “10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95, 13116–3 (2009).

Zhang, G.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253(5021), 769–771 (1991).
[CrossRef] [PubMed]

Zhang, X. R.

Zhao, X. J.

H. Z. Tao, G. P. Dong, Y. B. Zhai, H. T. Guo, X. J. Zhao, Z. W. Wang, S. S. Chu, S. F. Wang, and Q. H. Gong, “Femtosecond third-order optical nonlinearity of the GeS2-Ga2S3-CdI2 new chalcohalide glasses,” Solid State Commun. 138(10-11), 485–488 (2006).
[CrossRef]

Zhu, C. S.

B. L. Yu, H. P. Xia, C. S. Zhu, and F. X. Gan, “Enhanced third-order nonlinear optical properties of C60-silane compounds,” Appl. Phys. Lett. 81(15), 2701–2703 (2002).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

R. A. Ganeev, A. I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa, M. Turu, S. Sakakibara, and H. Kuroda, “Nonlinear refraction in CS2,” Appl. Phys. B 78(3-4), 433–438 (2004).
[CrossRef]

Appl. Phys. Lett. (3)

B. L. Yu, H. P. Xia, C. S. Zhu, and F. X. Gan, “Enhanced third-order nonlinear optical properties of C60-silane compounds,” Appl. Phys. Lett. 81(15), 2701–2703 (2002).
[CrossRef]

E. P. Ippen and C. V. Shank, “Picosecond response of a high-repetition-rate CS2 optical Kerr gate,” Appl. Phys. Lett. 26(3), 92–93 (1975).
[CrossRef]

Y. Liu, F. Qin, Z. Y. Wei, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, “10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals,” Appl. Phys. Lett. 95, 13116–3 (2009).

J. Appl. Phys. (1)

Y. Kondo, H. Inouye, S. Fujiwara, T. Suzuki, T. Mitsuyu, T. Yoko, and K. Hirao, “Wavelength dependence of photoreduction of Ag+ ions in glasses through the multiphoton process,” J. Appl. Phys. 88(3), 1244–1250 (2000).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (2)

T. X. Lin, Q. Yang, J. H. Si, T. Chen, F. Chen, X. L. Wang, X. Hou, and K. Hirao, “Ultrafast nonlinear optical properties of Bi2O3-B2O3-SiO2 oxide glass,” Opt. Commun. 275(1), 230–233 (2007).
[CrossRef]

J. Etchepare, G. Grillon, J. P. Chambaret, G. Hamoniaux, and A. Orszag, “Polarization selectivity in time-resolved transient phase grating,” Opt. Commun. 63(5), 329–334 (1987).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (1)

P. P. Ho and R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20(5), 2170–2187 (1979).
[CrossRef]

Phys. Rev. B (1)

J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, “Time-resolved luminescence spectroscopy by the optical Kerr-gate method applicable to ultrafast relaxation processes,” Phys. Rev. B 62(15), 10083–10087 (2000).
[CrossRef]

Science (2)

R. Righini, “Ultrafast optical kerr effect in liquids and solids,” Science 262(5138), 1386–1390 (1993).
[CrossRef] [PubMed]

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253(5021), 769–771 (1991).
[CrossRef] [PubMed]

Solid State Commun. (1)

H. Z. Tao, G. P. Dong, Y. B. Zhai, H. T. Guo, X. J. Zhao, Z. W. Wang, S. S. Chu, S. F. Wang, and Q. H. Gong, “Femtosecond third-order optical nonlinearity of the GeS2-Ga2S3-CdI2 new chalcohalide glasses,” Solid State Commun. 138(10-11), 485–488 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Pump power dependence of OKS signals in CS2 when the polarization angle between the pump and probe beams was fixed at 45° and 30°, respectively. The arrows in the rectangle show the polarization directions of the OKS signals at the corresponding pump power. The dashed lines (guided for eyes) show the attenuation trend of peak intensity.

Fig. 2
Fig. 2

(a) Temporal profile of 400 nm probe pulse I p r o b e ( t ) and nonlinear response of CS2 R ( t ) , and temporal profile of the probe pulse after passing through the OKS setup when the pump power was fixed at (b) 1.7 mW, (c) 5.1 mW, and 8.4 mW, respectively. The dashed lines in (b)-(d) show the temporal profiles of the incident probe pulse I p r o b e ( t ) .

Fig. 3
Fig. 3

Integrations of the intensity of the incident probe pulse and the pulse after passing through the analyzer, when the pump power was fixed at 1.7 mW, 5.1 mW, and 8.5 mW, respectively. The inset in (b) shows the integration results of the transmitted pulse as well as the incident probe pulse.

Fig. 4
Fig. 4

Time-resolved OKS signals in CS2, when pump power was fixed at (a) 1 mW, 2 mW, and 3 mW, and (b) 5 mW, 7 mW, and 9 mW, respectively.

Fig. 5
Fig. 5

Polarization dependence of OKS signals in CS2, when the delay time was kept at 0 and the pump power was adjusted to 1 mW and 5 mW, respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ   =   2 π n 2 L e f f I g / λ p
I O K S = I p r o b e sin 2 ( 2 θ ) sin 2 ( Δ ϕ / 2 )
I o k s ( t , τ ) I p r o b e ( t τ ) · sin 2 [ A t R ( t t ' ) · I g ( t ' ) d t ' ]
I o k s ( t ) I p r o b e ( t ) · sin 2 [ A I g · R ( t ) ]
S ( τ ) I p r o b e ( t τ ) · sin 2 [ A R ( t t ) · I g ( t ) ] d t

Metrics