Abstract

An experimental demonstration of gridless spectrum and time switching is presented. We propose and demonstrate a bit-rate and modulation-format independent optical cross-connect architecture, based on gridless spectrum selective switch, 20-ms 3D-MEMS and 10-ns PLZT optical switches, that supports arbitrary spectrum allocation and transparent time multiplexing. The architecture is implemented in a four-node field-fiber-linked testbed to transport continuous RZ and NRZ data channels at 12.5, 42.7 and 170.8 Gb/s, and selectively groom sub-wavelength RZ channels at 42.7 Gb/s. We also showed that the architecture is dynamic and can be reconfigured to meet the routing requirements of the network traffic. Results show error-free operation with an end-to-end power penalty between 0.8 dB and 5 dB for all continuous and sub-wavelength channels.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
    [CrossRef]
  2. H. Takahara, B. Kozicki, Y. Sone, T. Tanaka, A. Watanabe, H. Hirano, K. Yonenaga, and M. Jinno, “Distance-adaptive super-wavelength routing in elastic optical path network (SLICE) with optical OFDM,” ECOC 2010, Torino, Italy, 2010.
  3. B. Kozicki, H. Takara, Y. Tsukishima, T. Yoshimatsu, K. Yonenaga, and M. Jinno, “Experimental demonstration of spectrum-sliced elastic optical path network (SLICE),” Opt. Express 18(21), 22105–22118 (2010).
    [CrossRef] [PubMed]
  4. H. Furukawa, N. Wada, and T. Miyazaki, "640-Gbit/s (64-wavelength x 10-Gbit/s) wide-colored and phase-modulated optical packet switching and buffering without packet power compensation," in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper PDPD7.
  5. N. Wada, S. Shinadad, H. Furukawa, “Modulation format free optical packet switching technology,” ICTON, WeC1.5, 2010.
  6. P. Winzer, “Beyond 100G ethernet,” IEEE Commun. Mag. 48(7), 26–30 (2010).
    [CrossRef]
  7. S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48(7), 40–50 (2010).
    [CrossRef]
  8. D. Simeonidou, R. Nejabati, G. Zervas, D. Klonidis, A. Tzanakaki, and M. J. O'Mahony, “Dynamic optical network architectures and technologies for existing and emerging grid services,” J. Lightwave Technol. 23(10), 3347–3357 (2005).
    [CrossRef]
  9. Y. Qin, G. Zervas, V. Martini, M. Ghandour, M. Savi, F. Baroncelli, B. Martini, P. Castoldi, C. Raffaelli, M. Reed, D. Hunter, R. Nejabati, and D. Simeonidou, "Service-oriented multi-granular optical network testbed," in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWK2.
  10. G. Zervas, L. Sadeghioon, Y. Qin, R. Nejabati, and D. Simeonidou, “Demonstration of novel multi-granular switch architecture on an application-aware end-to-end multi-bit rate OBS network testbed,” ECOC 2007 PDP, PDS 3.2, Germany, September 2007.
  11. L. Hui, M. Takagi, H. Imaizumi, and H. Morikawa, “Preliminary demonstration of hybrid optical switching node with dynamic wavelength resource allocation using SOA switch,” OECC 2009, pp.1–2, 13–17 July (2009).
  12. T. Miyazawa, H. Furukawa, K. Fujikawa, N. Wada, and H. Harai, "Partial implementation and experimental demonstration of an integrated optical path and packet node for new-generation networks," in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OThP4.
  13. M. Takagi, H. Li, K. Watabe, H. Imaizumi, T. Tanemura, Y. Nakano, and H. Morikawa, "400Gb/s hybrid optical switching demonstration combining multi-wavelength OPS and OCS with dynamic resource allocation," in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuA6.
  14. G. S. Zervas, M. De Leenheer, L. Sadeghioon, D. Klonidis, Y. Qin, R. Nejabati, D. Simeonidou, C. Develder, B. Dhoedt, and P. Demeester, “Multi-granular optical cross-connect: design, analysis and demonstration,” J. Opt. Commun. Netw. 1(1), 69–84 (2009).
    [CrossRef]
  15. N. Amaya, I. Muhammad, G. S. Zervas, R. Nejabati, D. Simeonidou, Y. Zhou, and A. Lord, "Experimental demonstration of a gridless multi-granular optical network supporting flexible spectrum switching," in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OMW3.
  16. M. C. Wu, O. Solgaard, and J. E. Ford, “Optical MEMS for lightwave communication,” J. Lightwave Technol. 24, 12 (2006).
    [CrossRef]
  17. K. Nashimoto, D. Kudzuma, and H. Han, “High-speed switching and filtering using PLZT waveguide devices,” OECC 2010, Japan, July (2010).
  18. G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, " Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OTuF2.

2010 (3)

P. Winzer, “Beyond 100G ethernet,” IEEE Commun. Mag. 48(7), 26–30 (2010).
[CrossRef]

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48(7), 40–50 (2010).
[CrossRef]

B. Kozicki, H. Takara, Y. Tsukishima, T. Yoshimatsu, K. Yonenaga, and M. Jinno, “Experimental demonstration of spectrum-sliced elastic optical path network (SLICE),” Opt. Express 18(21), 22105–22118 (2010).
[CrossRef] [PubMed]

2009 (2)

G. S. Zervas, M. De Leenheer, L. Sadeghioon, D. Klonidis, Y. Qin, R. Nejabati, D. Simeonidou, C. Develder, B. Dhoedt, and P. Demeester, “Multi-granular optical cross-connect: design, analysis and demonstration,” J. Opt. Commun. Netw. 1(1), 69–84 (2009).
[CrossRef]

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[CrossRef]

2006 (1)

2005 (1)

Basch, B.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48(7), 40–50 (2010).
[CrossRef]

De Leenheer, M.

Demeester, P.

Develder, C.

Dhoedt, B.

Egorov, R.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48(7), 40–50 (2010).
[CrossRef]

Ford, J. E.

Gringeri, S.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48(7), 40–50 (2010).
[CrossRef]

Jinno, M.

B. Kozicki, H. Takara, Y. Tsukishima, T. Yoshimatsu, K. Yonenaga, and M. Jinno, “Experimental demonstration of spectrum-sliced elastic optical path network (SLICE),” Opt. Express 18(21), 22105–22118 (2010).
[CrossRef] [PubMed]

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[CrossRef]

Klonidis, D.

Kozicki, B.

B. Kozicki, H. Takara, Y. Tsukishima, T. Yoshimatsu, K. Yonenaga, and M. Jinno, “Experimental demonstration of spectrum-sliced elastic optical path network (SLICE),” Opt. Express 18(21), 22105–22118 (2010).
[CrossRef] [PubMed]

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[CrossRef]

Matsuoka, S.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[CrossRef]

Nejabati, R.

O'Mahony, M. J.

Qin, Y.

Sadeghioon, L.

Shukla, V.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48(7), 40–50 (2010).
[CrossRef]

Simeonidou, D.

Solgaard, O.

Sone, Y.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[CrossRef]

Takara, H.

B. Kozicki, H. Takara, Y. Tsukishima, T. Yoshimatsu, K. Yonenaga, and M. Jinno, “Experimental demonstration of spectrum-sliced elastic optical path network (SLICE),” Opt. Express 18(21), 22105–22118 (2010).
[CrossRef] [PubMed]

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[CrossRef]

Tsukishima, Y.

B. Kozicki, H. Takara, Y. Tsukishima, T. Yoshimatsu, K. Yonenaga, and M. Jinno, “Experimental demonstration of spectrum-sliced elastic optical path network (SLICE),” Opt. Express 18(21), 22105–22118 (2010).
[CrossRef] [PubMed]

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[CrossRef]

Tzanakaki, A.

Winzer, P.

P. Winzer, “Beyond 100G ethernet,” IEEE Commun. Mag. 48(7), 26–30 (2010).
[CrossRef]

Wu, M. C.

Xia, T. J.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48(7), 40–50 (2010).
[CrossRef]

Yonenaga, K.

Yoshimatsu, T.

Zervas, G.

Zervas, G. S.

IEEE Commun. Mag. (2)

P. Winzer, “Beyond 100G ethernet,” IEEE Commun. Mag. 48(7), 26–30 (2010).
[CrossRef]

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48(7), 40–50 (2010).
[CrossRef]

IEEE Commun. Mag. (1)

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Commun. Netw. (1)

Opt. Express (1)

Other (11)

H. Furukawa, N. Wada, and T. Miyazaki, "640-Gbit/s (64-wavelength x 10-Gbit/s) wide-colored and phase-modulated optical packet switching and buffering without packet power compensation," in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper PDPD7.

N. Wada, S. Shinadad, H. Furukawa, “Modulation format free optical packet switching technology,” ICTON, WeC1.5, 2010.

H. Takahara, B. Kozicki, Y. Sone, T. Tanaka, A. Watanabe, H. Hirano, K. Yonenaga, and M. Jinno, “Distance-adaptive super-wavelength routing in elastic optical path network (SLICE) with optical OFDM,” ECOC 2010, Torino, Italy, 2010.

N. Amaya, I. Muhammad, G. S. Zervas, R. Nejabati, D. Simeonidou, Y. Zhou, and A. Lord, "Experimental demonstration of a gridless multi-granular optical network supporting flexible spectrum switching," in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OMW3.

K. Nashimoto, D. Kudzuma, and H. Han, “High-speed switching and filtering using PLZT waveguide devices,” OECC 2010, Japan, July (2010).

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, " Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OTuF2.

Y. Qin, G. Zervas, V. Martini, M. Ghandour, M. Savi, F. Baroncelli, B. Martini, P. Castoldi, C. Raffaelli, M. Reed, D. Hunter, R. Nejabati, and D. Simeonidou, "Service-oriented multi-granular optical network testbed," in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWK2.

G. Zervas, L. Sadeghioon, Y. Qin, R. Nejabati, and D. Simeonidou, “Demonstration of novel multi-granular switch architecture on an application-aware end-to-end multi-bit rate OBS network testbed,” ECOC 2007 PDP, PDS 3.2, Germany, September 2007.

L. Hui, M. Takagi, H. Imaizumi, and H. Morikawa, “Preliminary demonstration of hybrid optical switching node with dynamic wavelength resource allocation using SOA switch,” OECC 2009, pp.1–2, 13–17 July (2009).

T. Miyazawa, H. Furukawa, K. Fujikawa, N. Wada, and H. Harai, "Partial implementation and experimental demonstration of an integrated optical path and packet node for new-generation networks," in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OThP4.

M. Takagi, H. Li, K. Watabe, H. Imaizumi, T. Tanemura, Y. Nakano, and H. Morikawa, "400Gb/s hybrid optical switching demonstration combining multi-wavelength OPS and OCS with dynamic resource allocation," in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuA6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Gridless spectrum and time optical cross-connect architecture, (b) and (c) possible gridless SSS spectra of input ports, (d) gridless SSS output, (e) sub-wavelength channel data units, (f) gridless SSS output in time and λ.

Fig. 2
Fig. 2

Experimental setup and spectrum plot results.

Fig. 3
Fig. 3

Experimental results for scenarios 1 and 2.

Fig. 4
Fig. 4

(a) BER curves for sub-λ channels and (b) penalties for 170.8 Gb/s and NRZ channels.

Tables (1)

Tables Icon

Table 1 Generated Signals and Routing Requirements for Scenarios 1 and 2

Metrics