Abstract

We present discrimination of the effect of one-photon and two-photon coherences in electromagnetically induced transparency for a three-level ladder-type atomic system. After the optical Bloch equations for a three-level atom, with either cycling or non-cycling transitions, were solved numerically, the solutions were averaged over the velocity distribution and finite transit time. Through this we were able to discriminate one-photon and two-photon coherence parts of the calculated spectra. We also found that the spectra showed peaks as the branching ratio of the intermediate (excited) state increased (decreased). The experimental results of previous reports [H. S. Moon, et al., Opt. Express 16, 12163 (2008); H. S. Moon and H. R. Noh, J. Phys. B 44, 055004 (2011)] could well be accounted for by this discrimination of one-photon and two-photon coherences in the transmittance signals for the simplified three-level atomic system.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997).
    [CrossRef]
  2. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
    [CrossRef]
  3. A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57, 2996–3002 (1998).
    [CrossRef]
  4. E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257–354 (1996).
    [CrossRef]
  5. K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
    [CrossRef] [PubMed]
  6. D. Budker and M. V. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227–234 (2007).
    [CrossRef]
  7. M. D. Lukin, “Colloquium: Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003).
    [CrossRef]
  8. K. Hammerer, A. S. Søorensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
    [CrossRef]
  9. C. Y. Ye and A. S. Zibrov, “Width of the electromagnetically induced transparency resonance in atomic vapor,” Phys. Rev. A 65, 023806 (2002).
    [CrossRef]
  10. W. Jiang, Q.-F. Chen, Y.-S. Zhang, and G.-C. Guo, “Optical pumping-assisted electromagnetically induced transparency,” Phys. Rev. A 73, 053804 (2006).
    [CrossRef]
  11. J. I. Kim, D. Haubrich, B. Kloter, and D. Meschede, “Strong effective saturation by optical pumping in three-level systems,” Phys. Rev. A 80, 063801 (2009).
    [CrossRef]
  12. R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically-induced transparency,” Opt. Commun. 119, 61–68 (1995).
    [CrossRef]
  13. J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
    [CrossRef] [PubMed]
  14. S. Wielandy and A. L. Gaeta, “Investigation of electromagnetically induced transparency in the strong probe regime,” Phys. Rev. A 58, 2500–2505 (1998).
    [CrossRef]
  15. D. McGloin, M. H. Dunn, and D. J. Fulton, “Polarization effects in electromagnetically induced transparency,” Phys. Rev. A 62, 053802 (2000).
    [CrossRef]
  16. S. D. Badger, I. G. Hughes, and C. S. Adams, “Hyperfine effects in electromagnetically induced transparency,” J. Phys. B 34, L749–L756 (2001).
    [CrossRef]
  17. H. S. Moon, L. Lee, and J. B. Kim, “Coupling-intensity effects in ladder-type electromagnetically induced transparency of rubidium atoms,” J. Opt. Soc. Am. B 22, 2529–2533 (2005).
    [CrossRef]
  18. J. J. Clarke, W. A. van Wijngaarden, and H. Chen, “Electromagnetically induced transparency using a vapor cell and a laser-cooled sample of cesium atoms,” Phys. Rev. A 64, 023818 (2001).
    [CrossRef]
  19. B. Yang, Q. Liang, J. He, T. Zhang, and J. Wang, “Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media,” Phys. Rev. A 81, 043803 (2010).
    [CrossRef]
  20. N. Hayashi, A. Fujisawa, H. Kido, K. Takahashi, and M. Mitsunaga, “Interference between electromagnetically induced transparency and two-step excitation in three-level ladder systems,” J. Opt. Soc. Am. B 27, 1645–1650 (2010).
    [CrossRef]
  21. T. Y. Abi-Salloum, “Quantum interference between competing optical pathways in a three-level ladder system,” J. Mod. Opt. 57, 1366–1376 (2010).
    [CrossRef]
  22. H. S. Moon, L. Lee, and J. B. Kim, “Double resonance optical pumping effects in electromagnetically induced transparency,” Opt. Express 16, 12163–12170 (2008).
    [CrossRef] [PubMed]
  23. H. S. Moon and H. R. Noh, “Optical pumping effects in ladder-type electromagnetically induced transparency of 5S1/2−5P3/2−5D3/2 transition of 87Rb atoms,” J. Phys. B 44, 055004 (2011).
    [CrossRef]
  24. H. S. Moon, L. Lee, and J. B. Kim, “Double resonance optical pumping of Rb atoms,” J. Opt. Soc. Am. B 24, 2157–2164 (2007).
    [CrossRef]
  25. H. R. Noh and H. S. Moon, “Calculation of line shapes in double-resonance optical pumping,” Phys. Rev. A 80, 022509 (2009).
    [CrossRef]
  26. P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. B 41, 155004 (2008).
    [CrossRef]
  27. D. Meschede, Optics, Light and Lasers (Wiley-VCH, 2007).
  28. J. Sagle, R. K. Namiotka, and J. Huennekens, “Measurement and modelling of intensity dependent absorption and transit relaxation on the cesium D1 line,” J. Phys. B 29, 2629–2643 (1996).
    [CrossRef]

2011 (1)

H. S. Moon and H. R. Noh, “Optical pumping effects in ladder-type electromagnetically induced transparency of 5S1/2−5P3/2−5D3/2 transition of 87Rb atoms,” J. Phys. B 44, 055004 (2011).
[CrossRef]

2010 (4)

B. Yang, Q. Liang, J. He, T. Zhang, and J. Wang, “Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media,” Phys. Rev. A 81, 043803 (2010).
[CrossRef]

T. Y. Abi-Salloum, “Quantum interference between competing optical pathways in a three-level ladder system,” J. Mod. Opt. 57, 1366–1376 (2010).
[CrossRef]

N. Hayashi, A. Fujisawa, H. Kido, K. Takahashi, and M. Mitsunaga, “Interference between electromagnetically induced transparency and two-step excitation in three-level ladder systems,” J. Opt. Soc. Am. B 27, 1645–1650 (2010).
[CrossRef]

K. Hammerer, A. S. Søorensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
[CrossRef]

2009 (2)

J. I. Kim, D. Haubrich, B. Kloter, and D. Meschede, “Strong effective saturation by optical pumping in three-level systems,” Phys. Rev. A 80, 063801 (2009).
[CrossRef]

H. R. Noh and H. S. Moon, “Calculation of line shapes in double-resonance optical pumping,” Phys. Rev. A 80, 022509 (2009).
[CrossRef]

2008 (2)

P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. B 41, 155004 (2008).
[CrossRef]

H. S. Moon, L. Lee, and J. B. Kim, “Double resonance optical pumping effects in electromagnetically induced transparency,” Opt. Express 16, 12163–12170 (2008).
[CrossRef] [PubMed]

2007 (2)

2006 (1)

W. Jiang, Q.-F. Chen, Y.-S. Zhang, and G.-C. Guo, “Optical pumping-assisted electromagnetically induced transparency,” Phys. Rev. A 73, 053804 (2006).
[CrossRef]

2005 (2)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

H. S. Moon, L. Lee, and J. B. Kim, “Coupling-intensity effects in ladder-type electromagnetically induced transparency of rubidium atoms,” J. Opt. Soc. Am. B 22, 2529–2533 (2005).
[CrossRef]

2003 (1)

M. D. Lukin, “Colloquium: Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003).
[CrossRef]

2002 (1)

C. Y. Ye and A. S. Zibrov, “Width of the electromagnetically induced transparency resonance in atomic vapor,” Phys. Rev. A 65, 023806 (2002).
[CrossRef]

2001 (2)

S. D. Badger, I. G. Hughes, and C. S. Adams, “Hyperfine effects in electromagnetically induced transparency,” J. Phys. B 34, L749–L756 (2001).
[CrossRef]

J. J. Clarke, W. A. van Wijngaarden, and H. Chen, “Electromagnetically induced transparency using a vapor cell and a laser-cooled sample of cesium atoms,” Phys. Rev. A 64, 023818 (2001).
[CrossRef]

2000 (1)

D. McGloin, M. H. Dunn, and D. J. Fulton, “Polarization effects in electromagnetically induced transparency,” Phys. Rev. A 62, 053802 (2000).
[CrossRef]

1998 (2)

S. Wielandy and A. L. Gaeta, “Investigation of electromagnetically induced transparency in the strong probe regime,” Phys. Rev. A 58, 2500–2505 (1998).
[CrossRef]

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57, 2996–3002 (1998).
[CrossRef]

1997 (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997).
[CrossRef]

1996 (2)

E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257–354 (1996).
[CrossRef]

J. Sagle, R. K. Namiotka, and J. Huennekens, “Measurement and modelling of intensity dependent absorption and transit relaxation on the cesium D1 line,” J. Phys. B 29, 2629–2643 (1996).
[CrossRef]

1995 (2)

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically-induced transparency,” Opt. Commun. 119, 61–68 (1995).
[CrossRef]

J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef] [PubMed]

1991 (1)

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

Abi-Salloum, T. Y.

T. Y. Abi-Salloum, “Quantum interference between competing optical pathways in a three-level ladder system,” J. Mod. Opt. 57, 1366–1376 (2010).
[CrossRef]

Adams, C. S.

P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. B 41, 155004 (2008).
[CrossRef]

S. D. Badger, I. G. Hughes, and C. S. Adams, “Hyperfine effects in electromagnetically induced transparency,” J. Phys. B 34, L749–L756 (2001).
[CrossRef]

Akulshin, A. M.

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57, 2996–3002 (1998).
[CrossRef]

Arimondo, E.

E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257–354 (1996).
[CrossRef]

Badger, S. D.

S. D. Badger, I. G. Hughes, and C. S. Adams, “Hyperfine effects in electromagnetically induced transparency,” J. Phys. B 34, L749–L756 (2001).
[CrossRef]

Barreiro, S.

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57, 2996–3002 (1998).
[CrossRef]

Boller, K. J.

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

Budker, D.

D. Budker and M. V. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227–234 (2007).
[CrossRef]

Chen, H.

J. J. Clarke, W. A. van Wijngaarden, and H. Chen, “Electromagnetically induced transparency using a vapor cell and a laser-cooled sample of cesium atoms,” Phys. Rev. A 64, 023818 (2001).
[CrossRef]

Chen, Q.-F.

W. Jiang, Q.-F. Chen, Y.-S. Zhang, and G.-C. Guo, “Optical pumping-assisted electromagnetically induced transparency,” Phys. Rev. A 73, 053804 (2006).
[CrossRef]

Clarke, J. J.

J. J. Clarke, W. A. van Wijngaarden, and H. Chen, “Electromagnetically induced transparency using a vapor cell and a laser-cooled sample of cesium atoms,” Phys. Rev. A 64, 023818 (2001).
[CrossRef]

Dunn, M. H.

D. McGloin, M. H. Dunn, and D. J. Fulton, “Polarization effects in electromagnetically induced transparency,” Phys. Rev. A 62, 053802 (2000).
[CrossRef]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically-induced transparency,” Opt. Commun. 119, 61–68 (1995).
[CrossRef]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Fujisawa, A.

Fulton, D. J.

D. McGloin, M. H. Dunn, and D. J. Fulton, “Polarization effects in electromagnetically induced transparency,” Phys. Rev. A 62, 053802 (2000).
[CrossRef]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically-induced transparency,” Opt. Commun. 119, 61–68 (1995).
[CrossRef]

Gaeta, A. L.

S. Wielandy and A. L. Gaeta, “Investigation of electromagnetically induced transparency in the strong probe regime,” Phys. Rev. A 58, 2500–2505 (1998).
[CrossRef]

Ge, C.

P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. B 41, 155004 (2008).
[CrossRef]

Gea-Banacloche, J.

J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef] [PubMed]

Guo, G.-C.

W. Jiang, Q.-F. Chen, Y.-S. Zhang, and G.-C. Guo, “Optical pumping-assisted electromagnetically induced transparency,” Phys. Rev. A 73, 053804 (2006).
[CrossRef]

Hammerer, K.

K. Hammerer, A. S. Søorensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
[CrossRef]

Harris, S. E.

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997).
[CrossRef]

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

Haubrich, D.

J. I. Kim, D. Haubrich, B. Kloter, and D. Meschede, “Strong effective saturation by optical pumping in three-level systems,” Phys. Rev. A 80, 063801 (2009).
[CrossRef]

Hayashi, N.

He, J.

B. Yang, Q. Liang, J. He, T. Zhang, and J. Wang, “Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media,” Phys. Rev. A 81, 043803 (2010).
[CrossRef]

Huennekens, J.

J. Sagle, R. K. Namiotka, and J. Huennekens, “Measurement and modelling of intensity dependent absorption and transit relaxation on the cesium D1 line,” J. Phys. B 29, 2629–2643 (1996).
[CrossRef]

Hughes, I. G.

P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. B 41, 155004 (2008).
[CrossRef]

S. D. Badger, I. G. Hughes, and C. S. Adams, “Hyperfine effects in electromagnetically induced transparency,” J. Phys. B 34, L749–L756 (2001).
[CrossRef]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

Jiang, W.

W. Jiang, Q.-F. Chen, Y.-S. Zhang, and G.-C. Guo, “Optical pumping-assisted electromagnetically induced transparency,” Phys. Rev. A 73, 053804 (2006).
[CrossRef]

Jin, S.-Z.

J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef] [PubMed]

Kido, H.

Kim, J. B.

Kim, J. I.

J. I. Kim, D. Haubrich, B. Kloter, and D. Meschede, “Strong effective saturation by optical pumping in three-level systems,” Phys. Rev. A 80, 063801 (2009).
[CrossRef]

Kloter, B.

J. I. Kim, D. Haubrich, B. Kloter, and D. Meschede, “Strong effective saturation by optical pumping in three-level systems,” Phys. Rev. A 80, 063801 (2009).
[CrossRef]

Lee, L.

Lezama, A.

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57, 2996–3002 (1998).
[CrossRef]

Li, Y.-Q.

J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef] [PubMed]

Liang, Q.

B. Yang, Q. Liang, J. He, T. Zhang, and J. Wang, “Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media,” Phys. Rev. A 81, 043803 (2010).
[CrossRef]

Lukin, M. D.

M. D. Lukin, “Colloquium: Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003).
[CrossRef]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

McGloin, D.

D. McGloin, M. H. Dunn, and D. J. Fulton, “Polarization effects in electromagnetically induced transparency,” Phys. Rev. A 62, 053802 (2000).
[CrossRef]

Meschede, D.

J. I. Kim, D. Haubrich, B. Kloter, and D. Meschede, “Strong effective saturation by optical pumping in three-level systems,” Phys. Rev. A 80, 063801 (2009).
[CrossRef]

D. Meschede, Optics, Light and Lasers (Wiley-VCH, 2007).

Mitsunaga, M.

Moon, H. S.

Moseley, R. R.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically-induced transparency,” Opt. Commun. 119, 61–68 (1995).
[CrossRef]

Namiotka, R. K.

J. Sagle, R. K. Namiotka, and J. Huennekens, “Measurement and modelling of intensity dependent absorption and transit relaxation on the cesium D1 line,” J. Phys. B 29, 2629–2643 (1996).
[CrossRef]

Noh, H. R.

H. S. Moon and H. R. Noh, “Optical pumping effects in ladder-type electromagnetically induced transparency of 5S1/2−5P3/2−5D3/2 transition of 87Rb atoms,” J. Phys. B 44, 055004 (2011).
[CrossRef]

H. R. Noh and H. S. Moon, “Calculation of line shapes in double-resonance optical pumping,” Phys. Rev. A 80, 022509 (2009).
[CrossRef]

Polzik, E. S.

K. Hammerer, A. S. Søorensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
[CrossRef]

Romalis, M. V.

D. Budker and M. V. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227–234 (2007).
[CrossRef]

Sagle, J.

J. Sagle, R. K. Namiotka, and J. Huennekens, “Measurement and modelling of intensity dependent absorption and transit relaxation on the cesium D1 line,” J. Phys. B 29, 2629–2643 (1996).
[CrossRef]

Shepherd, S.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically-induced transparency,” Opt. Commun. 119, 61–68 (1995).
[CrossRef]

Siddons, P.

P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. B 41, 155004 (2008).
[CrossRef]

Sinclair, B. D.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically-induced transparency,” Opt. Commun. 119, 61–68 (1995).
[CrossRef]

Søorensen, A. S.

K. Hammerer, A. S. Søorensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
[CrossRef]

Takahashi, K.

van Wijngaarden, W. A.

J. J. Clarke, W. A. van Wijngaarden, and H. Chen, “Electromagnetically induced transparency using a vapor cell and a laser-cooled sample of cesium atoms,” Phys. Rev. A 64, 023818 (2001).
[CrossRef]

Wang, J.

B. Yang, Q. Liang, J. He, T. Zhang, and J. Wang, “Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media,” Phys. Rev. A 81, 043803 (2010).
[CrossRef]

Wielandy, S.

S. Wielandy and A. L. Gaeta, “Investigation of electromagnetically induced transparency in the strong probe regime,” Phys. Rev. A 58, 2500–2505 (1998).
[CrossRef]

Xiao, M.

J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef] [PubMed]

Yang, B.

B. Yang, Q. Liang, J. He, T. Zhang, and J. Wang, “Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media,” Phys. Rev. A 81, 043803 (2010).
[CrossRef]

Ye, C. Y.

C. Y. Ye and A. S. Zibrov, “Width of the electromagnetically induced transparency resonance in atomic vapor,” Phys. Rev. A 65, 023806 (2002).
[CrossRef]

Zhang, T.

B. Yang, Q. Liang, J. He, T. Zhang, and J. Wang, “Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media,” Phys. Rev. A 81, 043803 (2010).
[CrossRef]

Zhang, Y.-S.

W. Jiang, Q.-F. Chen, Y.-S. Zhang, and G.-C. Guo, “Optical pumping-assisted electromagnetically induced transparency,” Phys. Rev. A 73, 053804 (2006).
[CrossRef]

Zibrov, A. S.

C. Y. Ye and A. S. Zibrov, “Width of the electromagnetically induced transparency resonance in atomic vapor,” Phys. Rev. A 65, 023806 (2002).
[CrossRef]

J. Mod. Opt. (1)

T. Y. Abi-Salloum, “Quantum interference between competing optical pathways in a three-level ladder system,” J. Mod. Opt. 57, 1366–1376 (2010).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. B (4)

P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. B 41, 155004 (2008).
[CrossRef]

J. Sagle, R. K. Namiotka, and J. Huennekens, “Measurement and modelling of intensity dependent absorption and transit relaxation on the cesium D1 line,” J. Phys. B 29, 2629–2643 (1996).
[CrossRef]

H. S. Moon and H. R. Noh, “Optical pumping effects in ladder-type electromagnetically induced transparency of 5S1/2−5P3/2−5D3/2 transition of 87Rb atoms,” J. Phys. B 44, 055004 (2011).
[CrossRef]

S. D. Badger, I. G. Hughes, and C. S. Adams, “Hyperfine effects in electromagnetically induced transparency,” J. Phys. B 34, L749–L756 (2001).
[CrossRef]

Nat. Phys. (1)

D. Budker and M. V. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227–234 (2007).
[CrossRef]

Opt. Commun. (1)

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically-induced transparency,” Opt. Commun. 119, 61–68 (1995).
[CrossRef]

Opt. Express (1)

Phys. Rev. A (10)

J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef] [PubMed]

S. Wielandy and A. L. Gaeta, “Investigation of electromagnetically induced transparency in the strong probe regime,” Phys. Rev. A 58, 2500–2505 (1998).
[CrossRef]

D. McGloin, M. H. Dunn, and D. J. Fulton, “Polarization effects in electromagnetically induced transparency,” Phys. Rev. A 62, 053802 (2000).
[CrossRef]

J. J. Clarke, W. A. van Wijngaarden, and H. Chen, “Electromagnetically induced transparency using a vapor cell and a laser-cooled sample of cesium atoms,” Phys. Rev. A 64, 023818 (2001).
[CrossRef]

B. Yang, Q. Liang, J. He, T. Zhang, and J. Wang, “Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media,” Phys. Rev. A 81, 043803 (2010).
[CrossRef]

H. R. Noh and H. S. Moon, “Calculation of line shapes in double-resonance optical pumping,” Phys. Rev. A 80, 022509 (2009).
[CrossRef]

C. Y. Ye and A. S. Zibrov, “Width of the electromagnetically induced transparency resonance in atomic vapor,” Phys. Rev. A 65, 023806 (2002).
[CrossRef]

W. Jiang, Q.-F. Chen, Y.-S. Zhang, and G.-C. Guo, “Optical pumping-assisted electromagnetically induced transparency,” Phys. Rev. A 73, 053804 (2006).
[CrossRef]

J. I. Kim, D. Haubrich, B. Kloter, and D. Meschede, “Strong effective saturation by optical pumping in three-level systems,” Phys. Rev. A 80, 063801 (2009).
[CrossRef]

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57, 2996–3002 (1998).
[CrossRef]

Phys. Rev. Lett. (1)

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

Phys. Today (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997).
[CrossRef]

Prog. Opt. (1)

E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257–354 (1996).
[CrossRef]

Rev. Mod. Phys. (3)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

M. D. Lukin, “Colloquium: Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003).
[CrossRef]

K. Hammerer, A. S. Søorensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
[CrossRef]

Other (1)

D. Meschede, Optics, Light and Lasers (Wiley-VCH, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Energy level diagram for the transitions 5S 1/2−5P 3/2−5D 5/2,3/2 of 87Rb atoms. The frequencies are expressed in units of MHz. (b) The observed EIT signals.

Fig. 2
Fig. 2

Energy level diagram of the simple three-level ladder-type atomic system.

Fig. 3
Fig. 3

Diagrams of interaction pathways for (a) one-photon and (b) two-photon coherences.

Fig. 4
Fig. 4

(a) Transmittance signals at various detunings of the coupling laser for a counter-propagating scheme. (b) Transmittance signals for a copropagating scheme.

Fig. 5
Fig. 5

Branching ratio dependence of the signals: (a) Total and one-photon resonance part, (b) Two-photon coherence part, and (c) Further discrimination of the two-photon coherence part.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

p ˙ e = γ 2 p e + i 2 Ω 2 ( ρ e i ρ i e ) , p ˙ i = γ 1 p i + b 2 γ 2 p e i 2 Ω 2 ( ρ e i ρ i e ) + i 2 Ω 1 ( ρ i g ρ g i ) , p ˙ g = b 1 γ 1 p i i 2 Ω 1 ( ρ ig ρ gi ) ,
ρ ˙ ei = ( γ 1 + γ 2 2 + i δ 2 ) ρ ei + i 2 Ω 2 ( p e p i ) + i 2 Ω 1 ρ eg ,
ρ ˙ eg = ( γ 2 2 + i ( δ 1 + δ 2 ) ) ρ eg + i 2 Ω 1 ρ ei i 2 Ω 2 ρ ig ,
ρ ˙ ig = ( γ 1 2 + i δ 1 ) ρ ig + i 2 Ω 1 ( p i p g ) i 2 Ω 2 ρ eg ,
α 0 = N at 3 λ 1 2 2 π γ 1 Ω 1 Im ρ ig .
α 1 ( t ) = dv e ( v / u ) 2 π u α 0 ( δ p k 1 v , δ c k 2 v , t ) ,
Im ρ ig = γ 1 Ω 1 4 δ 1 2 + γ 1 2 ( p i p g ) + Im [ Ω 2 2 δ 1 + i γ 1 ρ eg ] .
Im [ Δ 1 ( p e p i ) Δ 2 ( p i p g ) Δ 1 [ Δ 0 Δ 1 Δ 2 Δ 1 Ω 1 2 Δ 2 Ω 2 2 ] Ω 1 Ω 2 2 ] ,
Im [ Ω 1 Ω 2 2 ( 2 δ 1 + i γ 1 ) { ( 2 δ 1 + i γ 1 ) [ 2 ( δ 1 + δ 2 ) + i γ 2 ] Ω 2 2 } ] .
( 1 b 1 ) γ 1 p i + ( 1 b 2 ) γ 2 p e .

Metrics