Abstract

Modern synchrotron sources have provided for decades intense beams of photons over a large energy spectrum. The availability of improved optics and detectors has opened up new opportunities for the study of matter at the micrometre and nanometre scale in many disciplines. Whilst exploitation of micro-focused beams occurs almost daily in many beamlines, the production of beams of 100 nm is achieved on few instruments which use specialised optics. Refractive lenses, zone plates, curved mirrors, multilayers, and multilayer Laue lenses, can all focus x-rays to less than 50 nm under strict beam stability conditions. Focusing the synchrotron radiation to beam sizes smaller than 10 nm is considered the ultimate goal for the current decade. Silicon micro-technology has so far provided some of the most advanced x-ray refractive lenses; we report on design and characterisation of a novel silicon kinoform lens that is capable of delivering nano-beams with high efficiency.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. R. Sandy, S. Narayanan, M. Sprung, J.-D. Su, K. Evans-Lutterodt, A. F. Isakovic, and A. Stein, “Kinoform optics applied to X-ray photon correlation spectroscopy,” J. Synchrotron Radiat. 17(3), 314–320 (2010).
    [CrossRef] [PubMed]
  2. M. K. Tiwari, L. Alianelli, I. P. Dolbnya, and K. J. S. Sawhney, “Application of kinoform lens for X-ray reflectivity analysis,” J. Synchrotron Radiat. 17(2), 237–242 (2010).
    [CrossRef] [PubMed]
  3. K. Evans-Lutterodt, J. Ablett, A. Stein, C. C. Kao, D. Tennant, F. Klemens, A. Taylor, C. Jacobsen, P. Gammel, H. Huggins, G. Bogart, S. Ustin, and L. Ocola, “Single-element elliptical hard x-ray micro-optics,” Opt. Express 11(8), 919–926 (2003).
    [CrossRef] [PubMed]
  4. K. Evans-Lutterodt, A. Stein, J. M. Ablett, N. Bozovic, A. Taylor, and D. M. Tennant, “Using compound kinoform hard-x-ray lenses to exceed the critical angle limit,” Phys. Rev. Lett. 99(13), 134801 (2007).
    [CrossRef] [PubMed]
  5. E. Hecht, Optics. 2nd ed. 1987, Reading, MA: Addison-Wesley.
    [PubMed]
  6. M. Sánchez del Río, European Synchrotron Radiation Facility, Grenoble, France (personal communication 2010).
  7. C. Welnak, G. J. Chen, and F. Cerrina, “SHADOW: a synchrotron radiation and x-rayoptics simulation tool,” Nucl. Instrum. Methods A347, 344–347 (1994).
  8. L. Alianelli, K.J.S. Sawhney, D.W.K. Jenkins, I.M. Loader, R. Stevens, A. Snigirev and I. Snigireva, Development of Refractive X-ray Focusing Optics at Diamond Light Source” SPIE Proceedings 670507 (2007).
  9. L. Alianelli, K. J. S. Sawhney, M. K. Tiwari, I. P. Dolbnya, R. Stevens, D. W. K. Jenkins, I. M. Loader, M. C. Wilson, and A. Malik, “Germanium and silicon kinoform focusing lenses for hard x-rays,” J. Phys.: Conf. Ser. 186, 012062 (2009).
    [CrossRef]
  10. L. Alianelli, K. J. S. Sawhney, M. K. Tiwari, I. P. Dolbnya, R. Stevens, D. W. K. Jenkins, I. M. Loader, M. C. Wilson, and A. Malik, “Characterization of germanium linear kinoform lenses at Diamond Light Source,” J. Synchrotron Radiat. 16(Pt 3), 325–329 (2009).
    [CrossRef] [PubMed]
  11. L. Alianelli, K. J. S. Sawhney, I. Snigireva, A. Snigirev, R. Garrett, I. Gentle, K. Nugent, and S. Wilkins, “Focusing kinoform lenses: optical design and experimental validation,” AIP Conf. Proc. 1234, 633–636 (2010).
    [CrossRef]
  12. A. Snigirev, I. Snigireva, V. Kohn, V. Yunkin, S. Kuznetsov, M. B. Grigoriev, T. Roth, G. Vaughan, and C. Detlefs, “X-ray nanointerferometer based on si refractive bilenses,” Phys. Rev. Lett. 103(6), 064801 (2009).
    [CrossRef] [PubMed]
  13. C. G. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. Van der Hart, and M. Kuchler, “Hard x-ray nanoprobe based on refractive x-ray lenses,” Appl. Phys. Lett. 87(12), 124103 (2005).
    [CrossRef]
  14. A. Snigirev, I. Snigireva, M. Grigoriev, V. Yunkin, M. D. Michiel, G. Vaughan, V. Kohn, and S. Kuznetsov, “High energy X-ray nanofocusing by silicon planar lenses,” J. Phys.: Conf. Ser. 186, 012072 (2009).
    [CrossRef]
  15. H. C. Kang, H. Yan, R. P. Winarski, M. V. Holt, J. Maser, C. Liu, R. Conley, S. Vogt, A. T. Macrander, and G. B. Stephenson, “Focusing of hard x-rays to 16 nanometers with a multilayer Laue lens,” Appl. Phys. Lett. 92(22), 221114 (2008).
    [CrossRef]
  16. H. Yan, “X-ray nanofocusing by kinoform lenses: a comparative study using different modeling approaches,” Phys. Rev. B 81(7), 075402 (2010).
    [CrossRef]

2010

A. R. Sandy, S. Narayanan, M. Sprung, J.-D. Su, K. Evans-Lutterodt, A. F. Isakovic, and A. Stein, “Kinoform optics applied to X-ray photon correlation spectroscopy,” J. Synchrotron Radiat. 17(3), 314–320 (2010).
[CrossRef] [PubMed]

M. K. Tiwari, L. Alianelli, I. P. Dolbnya, and K. J. S. Sawhney, “Application of kinoform lens for X-ray reflectivity analysis,” J. Synchrotron Radiat. 17(2), 237–242 (2010).
[CrossRef] [PubMed]

L. Alianelli, K. J. S. Sawhney, I. Snigireva, A. Snigirev, R. Garrett, I. Gentle, K. Nugent, and S. Wilkins, “Focusing kinoform lenses: optical design and experimental validation,” AIP Conf. Proc. 1234, 633–636 (2010).
[CrossRef]

H. Yan, “X-ray nanofocusing by kinoform lenses: a comparative study using different modeling approaches,” Phys. Rev. B 81(7), 075402 (2010).
[CrossRef]

2009

A. Snigirev, I. Snigireva, M. Grigoriev, V. Yunkin, M. D. Michiel, G. Vaughan, V. Kohn, and S. Kuznetsov, “High energy X-ray nanofocusing by silicon planar lenses,” J. Phys.: Conf. Ser. 186, 012072 (2009).
[CrossRef]

A. Snigirev, I. Snigireva, V. Kohn, V. Yunkin, S. Kuznetsov, M. B. Grigoriev, T. Roth, G. Vaughan, and C. Detlefs, “X-ray nanointerferometer based on si refractive bilenses,” Phys. Rev. Lett. 103(6), 064801 (2009).
[CrossRef] [PubMed]

L. Alianelli, K. J. S. Sawhney, M. K. Tiwari, I. P. Dolbnya, R. Stevens, D. W. K. Jenkins, I. M. Loader, M. C. Wilson, and A. Malik, “Germanium and silicon kinoform focusing lenses for hard x-rays,” J. Phys.: Conf. Ser. 186, 012062 (2009).
[CrossRef]

L. Alianelli, K. J. S. Sawhney, M. K. Tiwari, I. P. Dolbnya, R. Stevens, D. W. K. Jenkins, I. M. Loader, M. C. Wilson, and A. Malik, “Characterization of germanium linear kinoform lenses at Diamond Light Source,” J. Synchrotron Radiat. 16(Pt 3), 325–329 (2009).
[CrossRef] [PubMed]

2008

H. C. Kang, H. Yan, R. P. Winarski, M. V. Holt, J. Maser, C. Liu, R. Conley, S. Vogt, A. T. Macrander, and G. B. Stephenson, “Focusing of hard x-rays to 16 nanometers with a multilayer Laue lens,” Appl. Phys. Lett. 92(22), 221114 (2008).
[CrossRef]

2007

K. Evans-Lutterodt, A. Stein, J. M. Ablett, N. Bozovic, A. Taylor, and D. M. Tennant, “Using compound kinoform hard-x-ray lenses to exceed the critical angle limit,” Phys. Rev. Lett. 99(13), 134801 (2007).
[CrossRef] [PubMed]

2005

C. G. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. Van der Hart, and M. Kuchler, “Hard x-ray nanoprobe based on refractive x-ray lenses,” Appl. Phys. Lett. 87(12), 124103 (2005).
[CrossRef]

2003

1994

C. Welnak, G. J. Chen, and F. Cerrina, “SHADOW: a synchrotron radiation and x-rayoptics simulation tool,” Nucl. Instrum. Methods A347, 344–347 (1994).

Ablett, J.

Ablett, J. M.

K. Evans-Lutterodt, A. Stein, J. M. Ablett, N. Bozovic, A. Taylor, and D. M. Tennant, “Using compound kinoform hard-x-ray lenses to exceed the critical angle limit,” Phys. Rev. Lett. 99(13), 134801 (2007).
[CrossRef] [PubMed]

Alianelli, L.

M. K. Tiwari, L. Alianelli, I. P. Dolbnya, and K. J. S. Sawhney, “Application of kinoform lens for X-ray reflectivity analysis,” J. Synchrotron Radiat. 17(2), 237–242 (2010).
[CrossRef] [PubMed]

L. Alianelli, K. J. S. Sawhney, I. Snigireva, A. Snigirev, R. Garrett, I. Gentle, K. Nugent, and S. Wilkins, “Focusing kinoform lenses: optical design and experimental validation,” AIP Conf. Proc. 1234, 633–636 (2010).
[CrossRef]

L. Alianelli, K. J. S. Sawhney, M. K. Tiwari, I. P. Dolbnya, R. Stevens, D. W. K. Jenkins, I. M. Loader, M. C. Wilson, and A. Malik, “Germanium and silicon kinoform focusing lenses for hard x-rays,” J. Phys.: Conf. Ser. 186, 012062 (2009).
[CrossRef]

L. Alianelli, K. J. S. Sawhney, M. K. Tiwari, I. P. Dolbnya, R. Stevens, D. W. K. Jenkins, I. M. Loader, M. C. Wilson, and A. Malik, “Characterization of germanium linear kinoform lenses at Diamond Light Source,” J. Synchrotron Radiat. 16(Pt 3), 325–329 (2009).
[CrossRef] [PubMed]

Bogart, G.

Boye, P.

C. G. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. Van der Hart, and M. Kuchler, “Hard x-ray nanoprobe based on refractive x-ray lenses,” Appl. Phys. Lett. 87(12), 124103 (2005).
[CrossRef]

Bozovic, N.

K. Evans-Lutterodt, A. Stein, J. M. Ablett, N. Bozovic, A. Taylor, and D. M. Tennant, “Using compound kinoform hard-x-ray lenses to exceed the critical angle limit,” Phys. Rev. Lett. 99(13), 134801 (2007).
[CrossRef] [PubMed]

Burghammer, M.

C. G. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. Van der Hart, and M. Kuchler, “Hard x-ray nanoprobe based on refractive x-ray lenses,” Appl. Phys. Lett. 87(12), 124103 (2005).
[CrossRef]

Cerrina, F.

C. Welnak, G. J. Chen, and F. Cerrina, “SHADOW: a synchrotron radiation and x-rayoptics simulation tool,” Nucl. Instrum. Methods A347, 344–347 (1994).

Chen, G. J.

C. Welnak, G. J. Chen, and F. Cerrina, “SHADOW: a synchrotron radiation and x-rayoptics simulation tool,” Nucl. Instrum. Methods A347, 344–347 (1994).

Conley, R.

H. C. Kang, H. Yan, R. P. Winarski, M. V. Holt, J. Maser, C. Liu, R. Conley, S. Vogt, A. T. Macrander, and G. B. Stephenson, “Focusing of hard x-rays to 16 nanometers with a multilayer Laue lens,” Appl. Phys. Lett. 92(22), 221114 (2008).
[CrossRef]

Detlefs, C.

A. Snigirev, I. Snigireva, V. Kohn, V. Yunkin, S. Kuznetsov, M. B. Grigoriev, T. Roth, G. Vaughan, and C. Detlefs, “X-ray nanointerferometer based on si refractive bilenses,” Phys. Rev. Lett. 103(6), 064801 (2009).
[CrossRef] [PubMed]

Dolbnya, I. P.

M. K. Tiwari, L. Alianelli, I. P. Dolbnya, and K. J. S. Sawhney, “Application of kinoform lens for X-ray reflectivity analysis,” J. Synchrotron Radiat. 17(2), 237–242 (2010).
[CrossRef] [PubMed]

L. Alianelli, K. J. S. Sawhney, M. K. Tiwari, I. P. Dolbnya, R. Stevens, D. W. K. Jenkins, I. M. Loader, M. C. Wilson, and A. Malik, “Germanium and silicon kinoform focusing lenses for hard x-rays,” J. Phys.: Conf. Ser. 186, 012062 (2009).
[CrossRef]

L. Alianelli, K. J. S. Sawhney, M. K. Tiwari, I. P. Dolbnya, R. Stevens, D. W. K. Jenkins, I. M. Loader, M. C. Wilson, and A. Malik, “Characterization of germanium linear kinoform lenses at Diamond Light Source,” J. Synchrotron Radiat. 16(Pt 3), 325–329 (2009).
[CrossRef] [PubMed]

Evans-Lutterodt, K.

A. R. Sandy, S. Narayanan, M. Sprung, J.-D. Su, K. Evans-Lutterodt, A. F. Isakovic, and A. Stein, “Kinoform optics applied to X-ray photon correlation spectroscopy,” J. Synchrotron Radiat. 17(3), 314–320 (2010).
[CrossRef] [PubMed]

K. Evans-Lutterodt, A. Stein, J. M. Ablett, N. Bozovic, A. Taylor, and D. M. Tennant, “Using compound kinoform hard-x-ray lenses to exceed the critical angle limit,” Phys. Rev. Lett. 99(13), 134801 (2007).
[CrossRef] [PubMed]

K. Evans-Lutterodt, J. Ablett, A. Stein, C. C. Kao, D. Tennant, F. Klemens, A. Taylor, C. Jacobsen, P. Gammel, H. Huggins, G. Bogart, S. Ustin, and L. Ocola, “Single-element elliptical hard x-ray micro-optics,” Opt. Express 11(8), 919–926 (2003).
[CrossRef] [PubMed]

Feldkamp, J.

C. G. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. Van der Hart, and M. Kuchler, “Hard x-ray nanoprobe based on refractive x-ray lenses,” Appl. Phys. Lett. 87(12), 124103 (2005).
[CrossRef]

Gammel, P.

Garrett, R.

L. Alianelli, K. J. S. Sawhney, I. Snigireva, A. Snigirev, R. Garrett, I. Gentle, K. Nugent, and S. Wilkins, “Focusing kinoform lenses: optical design and experimental validation,” AIP Conf. Proc. 1234, 633–636 (2010).
[CrossRef]

Gentle, I.

L. Alianelli, K. J. S. Sawhney, I. Snigireva, A. Snigirev, R. Garrett, I. Gentle, K. Nugent, and S. Wilkins, “Focusing kinoform lenses: optical design and experimental validation,” AIP Conf. Proc. 1234, 633–636 (2010).
[CrossRef]

Grigoriev, M.

A. Snigirev, I. Snigireva, M. Grigoriev, V. Yunkin, M. D. Michiel, G. Vaughan, V. Kohn, and S. Kuznetsov, “High energy X-ray nanofocusing by silicon planar lenses,” J. Phys.: Conf. Ser. 186, 012072 (2009).
[CrossRef]

Grigoriev, M. B.

A. Snigirev, I. Snigireva, V. Kohn, V. Yunkin, S. Kuznetsov, M. B. Grigoriev, T. Roth, G. Vaughan, and C. Detlefs, “X-ray nanointerferometer based on si refractive bilenses,” Phys. Rev. Lett. 103(6), 064801 (2009).
[CrossRef] [PubMed]

Holt, M. V.

H. C. Kang, H. Yan, R. P. Winarski, M. V. Holt, J. Maser, C. Liu, R. Conley, S. Vogt, A. T. Macrander, and G. B. Stephenson, “Focusing of hard x-rays to 16 nanometers with a multilayer Laue lens,” Appl. Phys. Lett. 92(22), 221114 (2008).
[CrossRef]

Huggins, H.

Isakovic, A. F.

A. R. Sandy, S. Narayanan, M. Sprung, J.-D. Su, K. Evans-Lutterodt, A. F. Isakovic, and A. Stein, “Kinoform optics applied to X-ray photon correlation spectroscopy,” J. Synchrotron Radiat. 17(3), 314–320 (2010).
[CrossRef] [PubMed]

Jacobsen, C.

Jenkins, D. W. K.

L. Alianelli, K. J. S. Sawhney, M. K. Tiwari, I. P. Dolbnya, R. Stevens, D. W. K. Jenkins, I. M. Loader, M. C. Wilson, and A. Malik, “Characterization of germanium linear kinoform lenses at Diamond Light Source,” J. Synchrotron Radiat. 16(Pt 3), 325–329 (2009).
[CrossRef] [PubMed]

L. Alianelli, K. J. S. Sawhney, M. K. Tiwari, I. P. Dolbnya, R. Stevens, D. W. K. Jenkins, I. M. Loader, M. C. Wilson, and A. Malik, “Germanium and silicon kinoform focusing lenses for hard x-rays,” J. Phys.: Conf. Ser. 186, 012062 (2009).
[CrossRef]

Kang, H. C.

H. C. Kang, H. Yan, R. P. Winarski, M. V. Holt, J. Maser, C. Liu, R. Conley, S. Vogt, A. T. Macrander, and G. B. Stephenson, “Focusing of hard x-rays to 16 nanometers with a multilayer Laue lens,” Appl. Phys. Lett. 92(22), 221114 (2008).
[CrossRef]

Kao, C. C.

Klemens, F.

Kohn, V.

A. Snigirev, I. Snigireva, V. Kohn, V. Yunkin, S. Kuznetsov, M. B. Grigoriev, T. Roth, G. Vaughan, and C. Detlefs, “X-ray nanointerferometer based on si refractive bilenses,” Phys. Rev. Lett. 103(6), 064801 (2009).
[CrossRef] [PubMed]

A. Snigirev, I. Snigireva, M. Grigoriev, V. Yunkin, M. D. Michiel, G. Vaughan, V. Kohn, and S. Kuznetsov, “High energy X-ray nanofocusing by silicon planar lenses,” J. Phys.: Conf. Ser. 186, 012072 (2009).
[CrossRef]

Kuchler, M.

C. G. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. Van der Hart, and M. Kuchler, “Hard x-ray nanoprobe based on refractive x-ray lenses,” Appl. Phys. Lett. 87(12), 124103 (2005).
[CrossRef]

Kurapova, O.

C. G. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. Van der Hart, and M. Kuchler, “Hard x-ray nanoprobe based on refractive x-ray lenses,” Appl. Phys. Lett. 87(12), 124103 (2005).
[CrossRef]

Kuznetsov, S.

A. Snigirev, I. Snigireva, M. Grigoriev, V. Yunkin, M. D. Michiel, G. Vaughan, V. Kohn, and S. Kuznetsov, “High energy X-ray nanofocusing by silicon planar lenses,” J. Phys.: Conf. Ser. 186, 012072 (2009).
[CrossRef]

A. Snigirev, I. Snigireva, V. Kohn, V. Yunkin, S. Kuznetsov, M. B. Grigoriev, T. Roth, G. Vaughan, and C. Detlefs, “X-ray nanointerferometer based on si refractive bilenses,” Phys. Rev. Lett. 103(6), 064801 (2009).
[CrossRef] [PubMed]

Lengeler, B.

C. G. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. Van der Hart, and M. Kuchler, “Hard x-ray nanoprobe based on refractive x-ray lenses,” Appl. Phys. Lett. 87(12), 124103 (2005).
[CrossRef]

Liu, C.

H. C. Kang, H. Yan, R. P. Winarski, M. V. Holt, J. Maser, C. Liu, R. Conley, S. Vogt, A. T. Macrander, and G. B. Stephenson, “Focusing of hard x-rays to 16 nanometers with a multilayer Laue lens,” Appl. Phys. Lett. 92(22), 221114 (2008).
[CrossRef]

Loader, I. M.

L. Alianelli, K. J. S. Sawhney, M. K. Tiwari, I. P. Dolbnya, R. Stevens, D. W. K. Jenkins, I. M. Loader, M. C. Wilson, and A. Malik, “Germanium and silicon kinoform focusing lenses for hard x-rays,” J. Phys.: Conf. Ser. 186, 012062 (2009).
[CrossRef]

L. Alianelli, K. J. S. Sawhney, M. K. Tiwari, I. P. Dolbnya, R. Stevens, D. W. K. Jenkins, I. M. Loader, M. C. Wilson, and A. Malik, “Characterization of germanium linear kinoform lenses at Diamond Light Source,” J. Synchrotron Radiat. 16(Pt 3), 325–329 (2009).
[CrossRef] [PubMed]

Macrander, A. T.

H. C. Kang, H. Yan, R. P. Winarski, M. V. Holt, J. Maser, C. Liu, R. Conley, S. Vogt, A. T. Macrander, and G. B. Stephenson, “Focusing of hard x-rays to 16 nanometers with a multilayer Laue lens,” Appl. Phys. Lett. 92(22), 221114 (2008).
[CrossRef]

Malik, A.

L. Alianelli, K. J. S. Sawhney, M. K. Tiwari, I. P. Dolbnya, R. Stevens, D. W. K. Jenkins, I. M. Loader, M. C. Wilson, and A. Malik, “Germanium and silicon kinoform focusing lenses for hard x-rays,” J. Phys.: Conf. Ser. 186, 012062 (2009).
[CrossRef]

L. Alianelli, K. J. S. Sawhney, M. K. Tiwari, I. P. Dolbnya, R. Stevens, D. W. K. Jenkins, I. M. Loader, M. C. Wilson, and A. Malik, “Characterization of germanium linear kinoform lenses at Diamond Light Source,” J. Synchrotron Radiat. 16(Pt 3), 325–329 (2009).
[CrossRef] [PubMed]

Maser, J.

H. C. Kang, H. Yan, R. P. Winarski, M. V. Holt, J. Maser, C. Liu, R. Conley, S. Vogt, A. T. Macrander, and G. B. Stephenson, “Focusing of hard x-rays to 16 nanometers with a multilayer Laue lens,” Appl. Phys. Lett. 92(22), 221114 (2008).
[CrossRef]

Michiel, M. D.

A. Snigirev, I. Snigireva, M. Grigoriev, V. Yunkin, M. D. Michiel, G. Vaughan, V. Kohn, and S. Kuznetsov, “High energy X-ray nanofocusing by silicon planar lenses,” J. Phys.: Conf. Ser. 186, 012072 (2009).
[CrossRef]

Narayanan, S.

A. R. Sandy, S. Narayanan, M. Sprung, J.-D. Su, K. Evans-Lutterodt, A. F. Isakovic, and A. Stein, “Kinoform optics applied to X-ray photon correlation spectroscopy,” J. Synchrotron Radiat. 17(3), 314–320 (2010).
[CrossRef] [PubMed]

Nugent, K.

L. Alianelli, K. J. S. Sawhney, I. Snigireva, A. Snigirev, R. Garrett, I. Gentle, K. Nugent, and S. Wilkins, “Focusing kinoform lenses: optical design and experimental validation,” AIP Conf. Proc. 1234, 633–636 (2010).
[CrossRef]

Ocola, L.

Patommel, J.

C. G. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. Van der Hart, and M. Kuchler, “Hard x-ray nanoprobe based on refractive x-ray lenses,” Appl. Phys. Lett. 87(12), 124103 (2005).
[CrossRef]

Riekel, C.

C. G. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. Van der Hart, and M. Kuchler, “Hard x-ray nanoprobe based on refractive x-ray lenses,” Appl. Phys. Lett. 87(12), 124103 (2005).
[CrossRef]

Roth, T.

A. Snigirev, I. Snigireva, V. Kohn, V. Yunkin, S. Kuznetsov, M. B. Grigoriev, T. Roth, G. Vaughan, and C. Detlefs, “X-ray nanointerferometer based on si refractive bilenses,” Phys. Rev. Lett. 103(6), 064801 (2009).
[CrossRef] [PubMed]

Sandy, A. R.

A. R. Sandy, S. Narayanan, M. Sprung, J.-D. Su, K. Evans-Lutterodt, A. F. Isakovic, and A. Stein, “Kinoform optics applied to X-ray photon correlation spectroscopy,” J. Synchrotron Radiat. 17(3), 314–320 (2010).
[CrossRef] [PubMed]

Sawhney, K. J. S.

L. Alianelli, K. J. S. Sawhney, I. Snigireva, A. Snigirev, R. Garrett, I. Gentle, K. Nugent, and S. Wilkins, “Focusing kinoform lenses: optical design and experimental validation,” AIP Conf. Proc. 1234, 633–636 (2010).
[CrossRef]

M. K. Tiwari, L. Alianelli, I. P. Dolbnya, and K. J. S. Sawhney, “Application of kinoform lens for X-ray reflectivity analysis,” J. Synchrotron Radiat. 17(2), 237–242 (2010).
[CrossRef] [PubMed]

L. Alianelli, K. J. S. Sawhney, M. K. Tiwari, I. P. Dolbnya, R. Stevens, D. W. K. Jenkins, I. M. Loader, M. C. Wilson, and A. Malik, “Germanium and silicon kinoform focusing lenses for hard x-rays,” J. Phys.: Conf. Ser. 186, 012062 (2009).
[CrossRef]

L. Alianelli, K. J. S. Sawhney, M. K. Tiwari, I. P. Dolbnya, R. Stevens, D. W. K. Jenkins, I. M. Loader, M. C. Wilson, and A. Malik, “Characterization of germanium linear kinoform lenses at Diamond Light Source,” J. Synchrotron Radiat. 16(Pt 3), 325–329 (2009).
[CrossRef] [PubMed]

Schroer, C. G.

C. G. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. Van der Hart, and M. Kuchler, “Hard x-ray nanoprobe based on refractive x-ray lenses,” Appl. Phys. Lett. 87(12), 124103 (2005).
[CrossRef]

Snigirev, A.

L. Alianelli, K. J. S. Sawhney, I. Snigireva, A. Snigirev, R. Garrett, I. Gentle, K. Nugent, and S. Wilkins, “Focusing kinoform lenses: optical design and experimental validation,” AIP Conf. Proc. 1234, 633–636 (2010).
[CrossRef]

A. Snigirev, I. Snigireva, M. Grigoriev, V. Yunkin, M. D. Michiel, G. Vaughan, V. Kohn, and S. Kuznetsov, “High energy X-ray nanofocusing by silicon planar lenses,” J. Phys.: Conf. Ser. 186, 012072 (2009).
[CrossRef]

A. Snigirev, I. Snigireva, V. Kohn, V. Yunkin, S. Kuznetsov, M. B. Grigoriev, T. Roth, G. Vaughan, and C. Detlefs, “X-ray nanointerferometer based on si refractive bilenses,” Phys. Rev. Lett. 103(6), 064801 (2009).
[CrossRef] [PubMed]

Snigireva, I.

L. Alianelli, K. J. S. Sawhney, I. Snigireva, A. Snigirev, R. Garrett, I. Gentle, K. Nugent, and S. Wilkins, “Focusing kinoform lenses: optical design and experimental validation,” AIP Conf. Proc. 1234, 633–636 (2010).
[CrossRef]

A. Snigirev, I. Snigireva, V. Kohn, V. Yunkin, S. Kuznetsov, M. B. Grigoriev, T. Roth, G. Vaughan, and C. Detlefs, “X-ray nanointerferometer based on si refractive bilenses,” Phys. Rev. Lett. 103(6), 064801 (2009).
[CrossRef] [PubMed]

A. Snigirev, I. Snigireva, M. Grigoriev, V. Yunkin, M. D. Michiel, G. Vaughan, V. Kohn, and S. Kuznetsov, “High energy X-ray nanofocusing by silicon planar lenses,” J. Phys.: Conf. Ser. 186, 012072 (2009).
[CrossRef]

Sprung, M.

A. R. Sandy, S. Narayanan, M. Sprung, J.-D. Su, K. Evans-Lutterodt, A. F. Isakovic, and A. Stein, “Kinoform optics applied to X-ray photon correlation spectroscopy,” J. Synchrotron Radiat. 17(3), 314–320 (2010).
[CrossRef] [PubMed]

Stein, A.

A. R. Sandy, S. Narayanan, M. Sprung, J.-D. Su, K. Evans-Lutterodt, A. F. Isakovic, and A. Stein, “Kinoform optics applied to X-ray photon correlation spectroscopy,” J. Synchrotron Radiat. 17(3), 314–320 (2010).
[CrossRef] [PubMed]

K. Evans-Lutterodt, A. Stein, J. M. Ablett, N. Bozovic, A. Taylor, and D. M. Tennant, “Using compound kinoform hard-x-ray lenses to exceed the critical angle limit,” Phys. Rev. Lett. 99(13), 134801 (2007).
[CrossRef] [PubMed]

K. Evans-Lutterodt, J. Ablett, A. Stein, C. C. Kao, D. Tennant, F. Klemens, A. Taylor, C. Jacobsen, P. Gammel, H. Huggins, G. Bogart, S. Ustin, and L. Ocola, “Single-element elliptical hard x-ray micro-optics,” Opt. Express 11(8), 919–926 (2003).
[CrossRef] [PubMed]

Stephenson, G. B.

H. C. Kang, H. Yan, R. P. Winarski, M. V. Holt, J. Maser, C. Liu, R. Conley, S. Vogt, A. T. Macrander, and G. B. Stephenson, “Focusing of hard x-rays to 16 nanometers with a multilayer Laue lens,” Appl. Phys. Lett. 92(22), 221114 (2008).
[CrossRef]

Stevens, R.

L. Alianelli, K. J. S. Sawhney, M. K. Tiwari, I. P. Dolbnya, R. Stevens, D. W. K. Jenkins, I. M. Loader, M. C. Wilson, and A. Malik, “Germanium and silicon kinoform focusing lenses for hard x-rays,” J. Phys.: Conf. Ser. 186, 012062 (2009).
[CrossRef]

L. Alianelli, K. J. S. Sawhney, M. K. Tiwari, I. P. Dolbnya, R. Stevens, D. W. K. Jenkins, I. M. Loader, M. C. Wilson, and A. Malik, “Characterization of germanium linear kinoform lenses at Diamond Light Source,” J. Synchrotron Radiat. 16(Pt 3), 325–329 (2009).
[CrossRef] [PubMed]

Su, J.-D.

A. R. Sandy, S. Narayanan, M. Sprung, J.-D. Su, K. Evans-Lutterodt, A. F. Isakovic, and A. Stein, “Kinoform optics applied to X-ray photon correlation spectroscopy,” J. Synchrotron Radiat. 17(3), 314–320 (2010).
[CrossRef] [PubMed]

Taylor, A.

K. Evans-Lutterodt, A. Stein, J. M. Ablett, N. Bozovic, A. Taylor, and D. M. Tennant, “Using compound kinoform hard-x-ray lenses to exceed the critical angle limit,” Phys. Rev. Lett. 99(13), 134801 (2007).
[CrossRef] [PubMed]

K. Evans-Lutterodt, J. Ablett, A. Stein, C. C. Kao, D. Tennant, F. Klemens, A. Taylor, C. Jacobsen, P. Gammel, H. Huggins, G. Bogart, S. Ustin, and L. Ocola, “Single-element elliptical hard x-ray micro-optics,” Opt. Express 11(8), 919–926 (2003).
[CrossRef] [PubMed]

Tennant, D.

Tennant, D. M.

K. Evans-Lutterodt, A. Stein, J. M. Ablett, N. Bozovic, A. Taylor, and D. M. Tennant, “Using compound kinoform hard-x-ray lenses to exceed the critical angle limit,” Phys. Rev. Lett. 99(13), 134801 (2007).
[CrossRef] [PubMed]

Tiwari, M. K.

M. K. Tiwari, L. Alianelli, I. P. Dolbnya, and K. J. S. Sawhney, “Application of kinoform lens for X-ray reflectivity analysis,” J. Synchrotron Radiat. 17(2), 237–242 (2010).
[CrossRef] [PubMed]

L. Alianelli, K. J. S. Sawhney, M. K. Tiwari, I. P. Dolbnya, R. Stevens, D. W. K. Jenkins, I. M. Loader, M. C. Wilson, and A. Malik, “Germanium and silicon kinoform focusing lenses for hard x-rays,” J. Phys.: Conf. Ser. 186, 012062 (2009).
[CrossRef]

L. Alianelli, K. J. S. Sawhney, M. K. Tiwari, I. P. Dolbnya, R. Stevens, D. W. K. Jenkins, I. M. Loader, M. C. Wilson, and A. Malik, “Characterization of germanium linear kinoform lenses at Diamond Light Source,” J. Synchrotron Radiat. 16(Pt 3), 325–329 (2009).
[CrossRef] [PubMed]

Ustin, S.

Van der Hart, A.

C. G. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. Van der Hart, and M. Kuchler, “Hard x-ray nanoprobe based on refractive x-ray lenses,” Appl. Phys. Lett. 87(12), 124103 (2005).
[CrossRef]

Vaughan, G.

A. Snigirev, I. Snigireva, V. Kohn, V. Yunkin, S. Kuznetsov, M. B. Grigoriev, T. Roth, G. Vaughan, and C. Detlefs, “X-ray nanointerferometer based on si refractive bilenses,” Phys. Rev. Lett. 103(6), 064801 (2009).
[CrossRef] [PubMed]

A. Snigirev, I. Snigireva, M. Grigoriev, V. Yunkin, M. D. Michiel, G. Vaughan, V. Kohn, and S. Kuznetsov, “High energy X-ray nanofocusing by silicon planar lenses,” J. Phys.: Conf. Ser. 186, 012072 (2009).
[CrossRef]

Vincze, L.

C. G. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. Van der Hart, and M. Kuchler, “Hard x-ray nanoprobe based on refractive x-ray lenses,” Appl. Phys. Lett. 87(12), 124103 (2005).
[CrossRef]

Vogt, S.

H. C. Kang, H. Yan, R. P. Winarski, M. V. Holt, J. Maser, C. Liu, R. Conley, S. Vogt, A. T. Macrander, and G. B. Stephenson, “Focusing of hard x-rays to 16 nanometers with a multilayer Laue lens,” Appl. Phys. Lett. 92(22), 221114 (2008).
[CrossRef]

Welnak, C.

C. Welnak, G. J. Chen, and F. Cerrina, “SHADOW: a synchrotron radiation and x-rayoptics simulation tool,” Nucl. Instrum. Methods A347, 344–347 (1994).

Wilkins, S.

L. Alianelli, K. J. S. Sawhney, I. Snigireva, A. Snigirev, R. Garrett, I. Gentle, K. Nugent, and S. Wilkins, “Focusing kinoform lenses: optical design and experimental validation,” AIP Conf. Proc. 1234, 633–636 (2010).
[CrossRef]

Wilson, M. C.

L. Alianelli, K. J. S. Sawhney, M. K. Tiwari, I. P. Dolbnya, R. Stevens, D. W. K. Jenkins, I. M. Loader, M. C. Wilson, and A. Malik, “Germanium and silicon kinoform focusing lenses for hard x-rays,” J. Phys.: Conf. Ser. 186, 012062 (2009).
[CrossRef]

L. Alianelli, K. J. S. Sawhney, M. K. Tiwari, I. P. Dolbnya, R. Stevens, D. W. K. Jenkins, I. M. Loader, M. C. Wilson, and A. Malik, “Characterization of germanium linear kinoform lenses at Diamond Light Source,” J. Synchrotron Radiat. 16(Pt 3), 325–329 (2009).
[CrossRef] [PubMed]

Winarski, R. P.

H. C. Kang, H. Yan, R. P. Winarski, M. V. Holt, J. Maser, C. Liu, R. Conley, S. Vogt, A. T. Macrander, and G. B. Stephenson, “Focusing of hard x-rays to 16 nanometers with a multilayer Laue lens,” Appl. Phys. Lett. 92(22), 221114 (2008).
[CrossRef]

Yan, H.

H. Yan, “X-ray nanofocusing by kinoform lenses: a comparative study using different modeling approaches,” Phys. Rev. B 81(7), 075402 (2010).
[CrossRef]

H. C. Kang, H. Yan, R. P. Winarski, M. V. Holt, J. Maser, C. Liu, R. Conley, S. Vogt, A. T. Macrander, and G. B. Stephenson, “Focusing of hard x-rays to 16 nanometers with a multilayer Laue lens,” Appl. Phys. Lett. 92(22), 221114 (2008).
[CrossRef]

Yunkin, V.

A. Snigirev, I. Snigireva, M. Grigoriev, V. Yunkin, M. D. Michiel, G. Vaughan, V. Kohn, and S. Kuznetsov, “High energy X-ray nanofocusing by silicon planar lenses,” J. Phys.: Conf. Ser. 186, 012072 (2009).
[CrossRef]

A. Snigirev, I. Snigireva, V. Kohn, V. Yunkin, S. Kuznetsov, M. B. Grigoriev, T. Roth, G. Vaughan, and C. Detlefs, “X-ray nanointerferometer based on si refractive bilenses,” Phys. Rev. Lett. 103(6), 064801 (2009).
[CrossRef] [PubMed]

AIP Conf. Proc.

L. Alianelli, K. J. S. Sawhney, I. Snigireva, A. Snigirev, R. Garrett, I. Gentle, K. Nugent, and S. Wilkins, “Focusing kinoform lenses: optical design and experimental validation,” AIP Conf. Proc. 1234, 633–636 (2010).
[CrossRef]

Appl. Phys. Lett.

C. G. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. Van der Hart, and M. Kuchler, “Hard x-ray nanoprobe based on refractive x-ray lenses,” Appl. Phys. Lett. 87(12), 124103 (2005).
[CrossRef]

H. C. Kang, H. Yan, R. P. Winarski, M. V. Holt, J. Maser, C. Liu, R. Conley, S. Vogt, A. T. Macrander, and G. B. Stephenson, “Focusing of hard x-rays to 16 nanometers with a multilayer Laue lens,” Appl. Phys. Lett. 92(22), 221114 (2008).
[CrossRef]

J. Phys.: Conf. Ser.

A. Snigirev, I. Snigireva, M. Grigoriev, V. Yunkin, M. D. Michiel, G. Vaughan, V. Kohn, and S. Kuznetsov, “High energy X-ray nanofocusing by silicon planar lenses,” J. Phys.: Conf. Ser. 186, 012072 (2009).
[CrossRef]

L. Alianelli, K. J. S. Sawhney, M. K. Tiwari, I. P. Dolbnya, R. Stevens, D. W. K. Jenkins, I. M. Loader, M. C. Wilson, and A. Malik, “Germanium and silicon kinoform focusing lenses for hard x-rays,” J. Phys.: Conf. Ser. 186, 012062 (2009).
[CrossRef]

J. Synchrotron Radiat.

L. Alianelli, K. J. S. Sawhney, M. K. Tiwari, I. P. Dolbnya, R. Stevens, D. W. K. Jenkins, I. M. Loader, M. C. Wilson, and A. Malik, “Characterization of germanium linear kinoform lenses at Diamond Light Source,” J. Synchrotron Radiat. 16(Pt 3), 325–329 (2009).
[CrossRef] [PubMed]

A. R. Sandy, S. Narayanan, M. Sprung, J.-D. Su, K. Evans-Lutterodt, A. F. Isakovic, and A. Stein, “Kinoform optics applied to X-ray photon correlation spectroscopy,” J. Synchrotron Radiat. 17(3), 314–320 (2010).
[CrossRef] [PubMed]

M. K. Tiwari, L. Alianelli, I. P. Dolbnya, and K. J. S. Sawhney, “Application of kinoform lens for X-ray reflectivity analysis,” J. Synchrotron Radiat. 17(2), 237–242 (2010).
[CrossRef] [PubMed]

Nucl. Instrum. Methods

C. Welnak, G. J. Chen, and F. Cerrina, “SHADOW: a synchrotron radiation and x-rayoptics simulation tool,” Nucl. Instrum. Methods A347, 344–347 (1994).

Opt. Express

Phys. Rev. B

H. Yan, “X-ray nanofocusing by kinoform lenses: a comparative study using different modeling approaches,” Phys. Rev. B 81(7), 075402 (2010).
[CrossRef]

Phys. Rev. Lett.

K. Evans-Lutterodt, A. Stein, J. M. Ablett, N. Bozovic, A. Taylor, and D. M. Tennant, “Using compound kinoform hard-x-ray lenses to exceed the critical angle limit,” Phys. Rev. Lett. 99(13), 134801 (2007).
[CrossRef] [PubMed]

A. Snigirev, I. Snigireva, V. Kohn, V. Yunkin, S. Kuznetsov, M. B. Grigoriev, T. Roth, G. Vaughan, and C. Detlefs, “X-ray nanointerferometer based on si refractive bilenses,” Phys. Rev. Lett. 103(6), 064801 (2009).
[CrossRef] [PubMed]

Other

E. Hecht, Optics. 2nd ed. 1987, Reading, MA: Addison-Wesley.
[PubMed]

M. Sánchez del Río, European Synchrotron Radiation Facility, Grenoble, France (personal communication 2010).

L. Alianelli, K.J.S. Sawhney, D.W.K. Jenkins, I.M. Loader, R. Stevens, A. Snigirev and I. Snigireva, Development of Refractive X-ray Focusing Optics at Diamond Light Source” SPIE Proceedings 670507 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Simplified sketch of the nano-focusing system: lens A is designed for collimation, whilst lens B strongly demagnifies the beam. Geometrical aberrations are minimised by the use of two elliptical surfaces. The beam refracted by lens A and incident on lens B is highly collimated. Therefore it is highly parallel to the kinoform steps shown in the SEM in Fig. 2, and phase conservation across the optics is enhanced.

Fig. 2
Fig. 2

Scanning electron microscope images showing details of nano-focusing kinoform lens optics. Both lenses are elliptical: the first has a focal length of 45 m therefore creates a collimated beam when placed at P = 45 m from the synchrotron source. The second lens has a focal length of 150 mm. The kinoform steps are parallel to the optical axis of the lenses. Therefore this system improves phase preservation across the lens aperture, when compared to kinoform lenses working in non-collimated beam.

Fig. 3
Fig. 3

Simulation of beam divergence incident on the nano-focusing lens. The solid line is the undulator beam divergence (αundulator = 22 µrad) incident on lens A in Fig. 1. The dotted line is the beam divergence after the collimator lens and incident on lens B (α < 1 µrad).

Fig. 4
Fig. 4

High resolution image of lens linear focus (f = 150 mm, E = 8 keV). The lens shadow is shown and part of the direct beam from the slits upstream the lens can be seen.

Fig. 7
Fig. 7

Measured transmission by the lenses with f = 150 mm and 75 mm at E = 8 keV. The data are the ratio between transmitted flux and incident flux versus lens aperture. The theoretical peak efficiency of the system is 75%.

Fig. 5
Fig. 5

Transmitted flux from knife edge scan in the focal plane of lens with f = 75 mm, E = 8 keV. The derivative represents the focused spot profile. The data shown are the raw data, without any correction for wire scan shape etc.

Fig. 6
Fig. 6

Focal spot size s (fwhm) versus focal distance. The experimental points summarise data from several measurements at the same beamline ID06 at the ESRF, with x-ray energy in the range E = [812] keV. The solid lines are calculated by convoluting the size of the geometrically demagnified beam with the size of the diffraction limited beam, assuming a lens effective aperture of A = 100 µm (black line), 200 µm (red line), with no diffraction at all (blue line).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ = ϕ a i r ϕ m a t e r i a l = 2 π 1 n λ L = 2 π .
Δ ϕ = ϕ a i r ϕ m a t e r i a l = 2 π cos α n λ L = 2 π ( 1 1 cos α δ ) .
Δ ϕ ~ 2 π ( 1 α 2 2 δ ) .

Metrics