Abstract

A biosensor scheme that employs long range surface plasmons (LRSPs) for the efficient excitation and collection of fluorescence light from fluorophore-labeled biomolecules captured in a three-dimensional hydrogel matrix is discussed. This new approach to plasmon-enhanced fluorescence (PEF) is experimentally and theoretically investigated by using the Kretschmann configuration of attenuated total reflection (ATR) method. A layer structure supporting LRSPs that consists of a low refractive index fluoropolymer layer, a thin gold film and a large binding capacity N-isopropylacrylamide (NIPAAm)-based hydrogel matrix swollen in an aqueous sample is employed. By using this layer architecture, the extended field of LRSPs probes the binding of biomolecules in the binding matrix at up to micrometer distances from the gold surface. With respect to regular surface plasmon-enhanced fluorescence spectroscopy (SPFS) and surface plasmon-coupled emission (SPCE), a narrower angular distribution of the fluorescence light intensity, a larger peak intensity and the excitation and emission at lower angles were observed.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Seidel and R. Niessner, “Automated analytical microarrays: a critical review,” Anal. Bioanal. Chem. 391(5), 1521–1544 (2008).
    [CrossRef] [PubMed]
  2. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
    [CrossRef] [PubMed]
  3. J. R. Lakowicz, “Plasmonics in biology and plasmon-controlled fluorescence,” Plasmonics 1(1), 5–33 (2006).
    [CrossRef] [PubMed]
  4. J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases 3(3), FD12–FD22 (2008).
    [CrossRef] [PubMed]
  5. T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A Physicochem. Eng. Asp. 171(1-3), 115–130 (2000).
    [CrossRef]
  6. J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: A new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
    [CrossRef] [PubMed]
  7. J. S. Yuk, M. Trnavsky, C. McDonagh, and B. D. MacCraith, “Surface plasmon-coupled emission (SPCE)-based immunoassay using a novel paraboloid array biochip,” Biosens. Bioelectron. 25(6), 1344–1349 (2010).
    [CrossRef]
  8. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Photoluminescence from dye molecules on silver gratings,” Opt. Commun. 122(4-6), 147–154 (1996).
    [CrossRef]
  9. D. Sarid, “Long-range surface-plasma waves on very thin metal-films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
    [CrossRef]
  10. G. Winter, S. Wedge, and W. L. Barnes, “Can lasing at visible wavelength be achieved using the low-loss long range surface plasmon-polariton mode?” N. J. Phys. 8(8), 125–138 (2006).
    [CrossRef]
  11. T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic crystal for efficient energy transfer from fluorescent molecules to long-range surface plasmons,” Opt. Express 17(10), 8294–8301 (2009).
    [CrossRef] [PubMed]
  12. I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
    [CrossRef]
  13. A. Kasry and W. Knoll, “Long range surface plasmon fluorescence spectroscopy,” Appl. Phys. Lett. 89(10), 101106 (2006).
    [CrossRef]
  14. J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics 2(3), 97–106 (2007).
    [CrossRef]
  15. Y. Wang, A. Brunsen, U. Jonas, J. Dostálek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem. 81(23), 9625–9632 (2009).
    [CrossRef] [PubMed]
  16. Y. Wang, J. Dostálek, and W. Knoll, “Long range surface plasmon-enhanced fluorescence spectroscopy for the detection of aflatoxin M1 in milk,” Biosens. Bioelectron. 24(7), 2264–2267 (2009).
    [CrossRef]
  17. C. J. Huang, J. Dostalek, and W. Knoll, “Optimization of layer structure supporting long range surface plasmons for surface plasmon-enhanced fluorescence spectroscopy biosensors,” J. Vac. Sci. Technol. B 28(1), 66–72 (2010).
    [CrossRef]
  18. C. J. Huang, J. Dostalek, and W. Knoll, “Long range surface plasmon and hydrogel optical waveguide field-enhanced fluorescence biosensor with 3D hydrogel binding matrix: on the role of diffusion mass transfer,” Biosens. Bioelectron. 26(4), 1425–1431 (2010).
    [CrossRef] [PubMed]
  19. A. Aulasevich, R. F. Roskamp, U. Jonas, B. Menges, J. Dostalek, and W. Knoll, “Optical waveguide spectroscopy for the investigation of protein-functionalized hydrogel films,” Macromol. Rapid Commun. 30(9-10), 872–877 (2009).
    [CrossRef] [PubMed]
  20. M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt. 46(18), 3811–3820 (2007).
    [CrossRef] [PubMed]
  21. W. N. Hansen, “Electric fields produced by the propagation of plane coherent electromagnetic radiation in a stratified medium,” J. Opt. Soc. Am. 58(3), 380–388 (1968).
    [CrossRef]
  22. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
    [CrossRef]
  23. L. Polerecký, J. Hamrle, and B. D. MacCraith, “Theory of the radiation of dipoles placed within a multilayer system,” Appl. Opt. 39(22), 3968–3977 (2000).
    [CrossRef]
  24. P. W. Beines, I. Klosterkamp, B. Menges, U. Jonas, and W. Knoll, “Responsive thin hydrogel layers from photo-cross-linkable poly(N-isopropylacrylamide) terpolymers,” Langmuir 23(4), 2231–2238 (2007).
    [CrossRef] [PubMed]

2010 (4)

J. S. Yuk, M. Trnavsky, C. McDonagh, and B. D. MacCraith, “Surface plasmon-coupled emission (SPCE)-based immunoassay using a novel paraboloid array biochip,” Biosens. Bioelectron. 25(6), 1344–1349 (2010).
[CrossRef]

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
[CrossRef]

C. J. Huang, J. Dostalek, and W. Knoll, “Optimization of layer structure supporting long range surface plasmons for surface plasmon-enhanced fluorescence spectroscopy biosensors,” J. Vac. Sci. Technol. B 28(1), 66–72 (2010).
[CrossRef]

C. J. Huang, J. Dostalek, and W. Knoll, “Long range surface plasmon and hydrogel optical waveguide field-enhanced fluorescence biosensor with 3D hydrogel binding matrix: on the role of diffusion mass transfer,” Biosens. Bioelectron. 26(4), 1425–1431 (2010).
[CrossRef] [PubMed]

2009 (4)

A. Aulasevich, R. F. Roskamp, U. Jonas, B. Menges, J. Dostalek, and W. Knoll, “Optical waveguide spectroscopy for the investigation of protein-functionalized hydrogel films,” Macromol. Rapid Commun. 30(9-10), 872–877 (2009).
[CrossRef] [PubMed]

Y. Wang, A. Brunsen, U. Jonas, J. Dostálek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem. 81(23), 9625–9632 (2009).
[CrossRef] [PubMed]

Y. Wang, J. Dostálek, and W. Knoll, “Long range surface plasmon-enhanced fluorescence spectroscopy for the detection of aflatoxin M1 in milk,” Biosens. Bioelectron. 24(7), 2264–2267 (2009).
[CrossRef]

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic crystal for efficient energy transfer from fluorescent molecules to long-range surface plasmons,” Opt. Express 17(10), 8294–8301 (2009).
[CrossRef] [PubMed]

2008 (3)

M. Seidel and R. Niessner, “Automated analytical microarrays: a critical review,” Anal. Bioanal. Chem. 391(5), 1521–1544 (2008).
[CrossRef] [PubMed]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases 3(3), FD12–FD22 (2008).
[CrossRef] [PubMed]

2007 (3)

M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt. 46(18), 3811–3820 (2007).
[CrossRef] [PubMed]

P. W. Beines, I. Klosterkamp, B. Menges, U. Jonas, and W. Knoll, “Responsive thin hydrogel layers from photo-cross-linkable poly(N-isopropylacrylamide) terpolymers,” Langmuir 23(4), 2231–2238 (2007).
[CrossRef] [PubMed]

J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics 2(3), 97–106 (2007).
[CrossRef]

2006 (3)

J. R. Lakowicz, “Plasmonics in biology and plasmon-controlled fluorescence,” Plasmonics 1(1), 5–33 (2006).
[CrossRef] [PubMed]

G. Winter, S. Wedge, and W. L. Barnes, “Can lasing at visible wavelength be achieved using the low-loss long range surface plasmon-polariton mode?” N. J. Phys. 8(8), 125–138 (2006).
[CrossRef]

A. Kasry and W. Knoll, “Long range surface plasmon fluorescence spectroscopy,” Appl. Phys. Lett. 89(10), 101106 (2006).
[CrossRef]

2003 (1)

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: A new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[CrossRef] [PubMed]

2000 (2)

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A Physicochem. Eng. Asp. 171(1-3), 115–130 (2000).
[CrossRef]

L. Polerecký, J. Hamrle, and B. D. MacCraith, “Theory of the radiation of dipoles placed within a multilayer system,” Appl. Opt. 39(22), 3968–3977 (2000).
[CrossRef]

1996 (1)

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Photoluminescence from dye molecules on silver gratings,” Opt. Commun. 122(4-6), 147–154 (1996).
[CrossRef]

1984 (1)

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[CrossRef]

1981 (1)

D. Sarid, “Long-range surface-plasma waves on very thin metal-films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
[CrossRef]

1968 (1)

Anderton, C. R.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Aulasevich, A.

A. Aulasevich, R. F. Roskamp, U. Jonas, B. Menges, J. Dostalek, and W. Knoll, “Optical waveguide spectroscopy for the investigation of protein-functionalized hydrogel films,” Macromol. Rapid Commun. 30(9-10), 872–877 (2009).
[CrossRef] [PubMed]

Barnes, W. L.

G. Winter, S. Wedge, and W. L. Barnes, “Can lasing at visible wavelength be achieved using the low-loss long range surface plasmon-polariton mode?” N. J. Phys. 8(8), 125–138 (2006).
[CrossRef]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Photoluminescence from dye molecules on silver gratings,” Opt. Commun. 122(4-6), 147–154 (1996).
[CrossRef]

Beines, P. W.

P. W. Beines, I. Klosterkamp, B. Menges, U. Jonas, and W. Knoll, “Responsive thin hydrogel layers from photo-cross-linkable poly(N-isopropylacrylamide) terpolymers,” Langmuir 23(4), 2231–2238 (2007).
[CrossRef] [PubMed]

Berini, P.

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
[CrossRef]

Brunsen, A.

Y. Wang, A. Brunsen, U. Jonas, J. Dostálek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem. 81(23), 9625–9632 (2009).
[CrossRef] [PubMed]

Daimon, M.

De Leon, I.

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
[CrossRef]

Dostalek, J.

C. J. Huang, J. Dostalek, and W. Knoll, “Optimization of layer structure supporting long range surface plasmons for surface plasmon-enhanced fluorescence spectroscopy biosensors,” J. Vac. Sci. Technol. B 28(1), 66–72 (2010).
[CrossRef]

C. J. Huang, J. Dostalek, and W. Knoll, “Long range surface plasmon and hydrogel optical waveguide field-enhanced fluorescence biosensor with 3D hydrogel binding matrix: on the role of diffusion mass transfer,” Biosens. Bioelectron. 26(4), 1425–1431 (2010).
[CrossRef] [PubMed]

A. Aulasevich, R. F. Roskamp, U. Jonas, B. Menges, J. Dostalek, and W. Knoll, “Optical waveguide spectroscopy for the investigation of protein-functionalized hydrogel films,” Macromol. Rapid Commun. 30(9-10), 872–877 (2009).
[CrossRef] [PubMed]

Dostálek, J.

Y. Wang, A. Brunsen, U. Jonas, J. Dostálek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem. 81(23), 9625–9632 (2009).
[CrossRef] [PubMed]

Y. Wang, J. Dostálek, and W. Knoll, “Long range surface plasmon-enhanced fluorescence spectroscopy for the detection of aflatoxin M1 in milk,” Biosens. Bioelectron. 24(7), 2264–2267 (2009).
[CrossRef]

J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases 3(3), FD12–FD22 (2008).
[CrossRef] [PubMed]

J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics 2(3), 97–106 (2007).
[CrossRef]

Ford, G. W.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[CrossRef]

Gray, S. K.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Gryczynski, I.

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: A new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[CrossRef] [PubMed]

Gryczynski, Z.

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: A new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[CrossRef] [PubMed]

Hamrle, J.

Hansen, W. N.

Huang, C. J.

C. J. Huang, J. Dostalek, and W. Knoll, “Optimization of layer structure supporting long range surface plasmons for surface plasmon-enhanced fluorescence spectroscopy biosensors,” J. Vac. Sci. Technol. B 28(1), 66–72 (2010).
[CrossRef]

C. J. Huang, J. Dostalek, and W. Knoll, “Long range surface plasmon and hydrogel optical waveguide field-enhanced fluorescence biosensor with 3D hydrogel binding matrix: on the role of diffusion mass transfer,” Biosens. Bioelectron. 26(4), 1425–1431 (2010).
[CrossRef] [PubMed]

Jonas, U.

A. Aulasevich, R. F. Roskamp, U. Jonas, B. Menges, J. Dostalek, and W. Knoll, “Optical waveguide spectroscopy for the investigation of protein-functionalized hydrogel films,” Macromol. Rapid Commun. 30(9-10), 872–877 (2009).
[CrossRef] [PubMed]

Y. Wang, A. Brunsen, U. Jonas, J. Dostálek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem. 81(23), 9625–9632 (2009).
[CrossRef] [PubMed]

P. W. Beines, I. Klosterkamp, B. Menges, U. Jonas, and W. Knoll, “Responsive thin hydrogel layers from photo-cross-linkable poly(N-isopropylacrylamide) terpolymers,” Langmuir 23(4), 2231–2238 (2007).
[CrossRef] [PubMed]

Kasry, A.

J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics 2(3), 97–106 (2007).
[CrossRef]

A. Kasry and W. Knoll, “Long range surface plasmon fluorescence spectroscopy,” Appl. Phys. Lett. 89(10), 101106 (2006).
[CrossRef]

Kawata, S.

Kitson, S. C.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Photoluminescence from dye molecules on silver gratings,” Opt. Commun. 122(4-6), 147–154 (1996).
[CrossRef]

Klosterkamp, I.

P. W. Beines, I. Klosterkamp, B. Menges, U. Jonas, and W. Knoll, “Responsive thin hydrogel layers from photo-cross-linkable poly(N-isopropylacrylamide) terpolymers,” Langmuir 23(4), 2231–2238 (2007).
[CrossRef] [PubMed]

Knoll, W.

C. J. Huang, J. Dostalek, and W. Knoll, “Long range surface plasmon and hydrogel optical waveguide field-enhanced fluorescence biosensor with 3D hydrogel binding matrix: on the role of diffusion mass transfer,” Biosens. Bioelectron. 26(4), 1425–1431 (2010).
[CrossRef] [PubMed]

C. J. Huang, J. Dostalek, and W. Knoll, “Optimization of layer structure supporting long range surface plasmons for surface plasmon-enhanced fluorescence spectroscopy biosensors,” J. Vac. Sci. Technol. B 28(1), 66–72 (2010).
[CrossRef]

A. Aulasevich, R. F. Roskamp, U. Jonas, B. Menges, J. Dostalek, and W. Knoll, “Optical waveguide spectroscopy for the investigation of protein-functionalized hydrogel films,” Macromol. Rapid Commun. 30(9-10), 872–877 (2009).
[CrossRef] [PubMed]

Y. Wang, A. Brunsen, U. Jonas, J. Dostálek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem. 81(23), 9625–9632 (2009).
[CrossRef] [PubMed]

Y. Wang, J. Dostálek, and W. Knoll, “Long range surface plasmon-enhanced fluorescence spectroscopy for the detection of aflatoxin M1 in milk,” Biosens. Bioelectron. 24(7), 2264–2267 (2009).
[CrossRef]

J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases 3(3), FD12–FD22 (2008).
[CrossRef] [PubMed]

J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics 2(3), 97–106 (2007).
[CrossRef]

P. W. Beines, I. Klosterkamp, B. Menges, U. Jonas, and W. Knoll, “Responsive thin hydrogel layers from photo-cross-linkable poly(N-isopropylacrylamide) terpolymers,” Langmuir 23(4), 2231–2238 (2007).
[CrossRef] [PubMed]

A. Kasry and W. Knoll, “Long range surface plasmon fluorescence spectroscopy,” Appl. Phys. Lett. 89(10), 101106 (2006).
[CrossRef]

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A Physicochem. Eng. Asp. 171(1-3), 115–130 (2000).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, “Plasmonics in biology and plasmon-controlled fluorescence,” Plasmonics 1(1), 5–33 (2006).
[CrossRef] [PubMed]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: A new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[CrossRef] [PubMed]

Liebermann, T.

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A Physicochem. Eng. Asp. 171(1-3), 115–130 (2000).
[CrossRef]

MacCraith, B. D.

J. S. Yuk, M. Trnavsky, C. McDonagh, and B. D. MacCraith, “Surface plasmon-coupled emission (SPCE)-based immunoassay using a novel paraboloid array biochip,” Biosens. Bioelectron. 25(6), 1344–1349 (2010).
[CrossRef]

L. Polerecký, J. Hamrle, and B. D. MacCraith, “Theory of the radiation of dipoles placed within a multilayer system,” Appl. Opt. 39(22), 3968–3977 (2000).
[CrossRef]

Malicka, J.

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: A new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[CrossRef] [PubMed]

Maria, J.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Masumura, A.

McDonagh, C.

J. S. Yuk, M. Trnavsky, C. McDonagh, and B. D. MacCraith, “Surface plasmon-coupled emission (SPCE)-based immunoassay using a novel paraboloid array biochip,” Biosens. Bioelectron. 25(6), 1344–1349 (2010).
[CrossRef]

Menges, B.

A. Aulasevich, R. F. Roskamp, U. Jonas, B. Menges, J. Dostalek, and W. Knoll, “Optical waveguide spectroscopy for the investigation of protein-functionalized hydrogel films,” Macromol. Rapid Commun. 30(9-10), 872–877 (2009).
[CrossRef] [PubMed]

P. W. Beines, I. Klosterkamp, B. Menges, U. Jonas, and W. Knoll, “Responsive thin hydrogel layers from photo-cross-linkable poly(N-isopropylacrylamide) terpolymers,” Langmuir 23(4), 2231–2238 (2007).
[CrossRef] [PubMed]

Niessner, R.

M. Seidel and R. Niessner, “Automated analytical microarrays: a critical review,” Anal. Bioanal. Chem. 391(5), 1521–1544 (2008).
[CrossRef] [PubMed]

Nuzzo, R. G.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Okamoto, T.

Polerecký, L.

Rogers, J. A.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Roskamp, R. F.

A. Aulasevich, R. F. Roskamp, U. Jonas, B. Menges, J. Dostalek, and W. Knoll, “Optical waveguide spectroscopy for the investigation of protein-functionalized hydrogel films,” Macromol. Rapid Commun. 30(9-10), 872–877 (2009).
[CrossRef] [PubMed]

Sambles, J. R.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Photoluminescence from dye molecules on silver gratings,” Opt. Commun. 122(4-6), 147–154 (1996).
[CrossRef]

Sarid, D.

D. Sarid, “Long-range surface-plasma waves on very thin metal-films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
[CrossRef]

Seidel, M.

M. Seidel and R. Niessner, “Automated analytical microarrays: a critical review,” Anal. Bioanal. Chem. 391(5), 1521–1544 (2008).
[CrossRef] [PubMed]

Simonen, J.

Stewart, M. E.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Thompson, L. B.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Trnavsky, M.

J. S. Yuk, M. Trnavsky, C. McDonagh, and B. D. MacCraith, “Surface plasmon-coupled emission (SPCE)-based immunoassay using a novel paraboloid array biochip,” Biosens. Bioelectron. 25(6), 1344–1349 (2010).
[CrossRef]

Wang, Y.

Y. Wang, A. Brunsen, U. Jonas, J. Dostálek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem. 81(23), 9625–9632 (2009).
[CrossRef] [PubMed]

Y. Wang, J. Dostálek, and W. Knoll, “Long range surface plasmon-enhanced fluorescence spectroscopy for the detection of aflatoxin M1 in milk,” Biosens. Bioelectron. 24(7), 2264–2267 (2009).
[CrossRef]

Weber, W. H.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[CrossRef]

Wedge, S.

G. Winter, S. Wedge, and W. L. Barnes, “Can lasing at visible wavelength be achieved using the low-loss long range surface plasmon-polariton mode?” N. J. Phys. 8(8), 125–138 (2006).
[CrossRef]

Winter, G.

G. Winter, S. Wedge, and W. L. Barnes, “Can lasing at visible wavelength be achieved using the low-loss long range surface plasmon-polariton mode?” N. J. Phys. 8(8), 125–138 (2006).
[CrossRef]

Yuk, J. S.

J. S. Yuk, M. Trnavsky, C. McDonagh, and B. D. MacCraith, “Surface plasmon-coupled emission (SPCE)-based immunoassay using a novel paraboloid array biochip,” Biosens. Bioelectron. 25(6), 1344–1349 (2010).
[CrossRef]

Anal. Bioanal. Chem. (1)

M. Seidel and R. Niessner, “Automated analytical microarrays: a critical review,” Anal. Bioanal. Chem. 391(5), 1521–1544 (2008).
[CrossRef] [PubMed]

Anal. Chem. (1)

Y. Wang, A. Brunsen, U. Jonas, J. Dostálek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem. 81(23), 9625–9632 (2009).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

A. Kasry and W. Knoll, “Long range surface plasmon fluorescence spectroscopy,” Appl. Phys. Lett. 89(10), 101106 (2006).
[CrossRef]

Biochem. Biophys. Res. Commun. (1)

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: A new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[CrossRef] [PubMed]

Biointerphases (1)

J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases 3(3), FD12–FD22 (2008).
[CrossRef] [PubMed]

Biosens. Bioelectron. (3)

J. S. Yuk, M. Trnavsky, C. McDonagh, and B. D. MacCraith, “Surface plasmon-coupled emission (SPCE)-based immunoassay using a novel paraboloid array biochip,” Biosens. Bioelectron. 25(6), 1344–1349 (2010).
[CrossRef]

Y. Wang, J. Dostálek, and W. Knoll, “Long range surface plasmon-enhanced fluorescence spectroscopy for the detection of aflatoxin M1 in milk,” Biosens. Bioelectron. 24(7), 2264–2267 (2009).
[CrossRef]

C. J. Huang, J. Dostalek, and W. Knoll, “Long range surface plasmon and hydrogel optical waveguide field-enhanced fluorescence biosensor with 3D hydrogel binding matrix: on the role of diffusion mass transfer,” Biosens. Bioelectron. 26(4), 1425–1431 (2010).
[CrossRef] [PubMed]

Chem. Rev. (1)

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Colloids Surf. A Physicochem. Eng. Asp. (1)

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A Physicochem. Eng. Asp. 171(1-3), 115–130 (2000).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Vac. Sci. Technol. B (1)

C. J. Huang, J. Dostalek, and W. Knoll, “Optimization of layer structure supporting long range surface plasmons for surface plasmon-enhanced fluorescence spectroscopy biosensors,” J. Vac. Sci. Technol. B 28(1), 66–72 (2010).
[CrossRef]

Langmuir (1)

P. W. Beines, I. Klosterkamp, B. Menges, U. Jonas, and W. Knoll, “Responsive thin hydrogel layers from photo-cross-linkable poly(N-isopropylacrylamide) terpolymers,” Langmuir 23(4), 2231–2238 (2007).
[CrossRef] [PubMed]

Macromol. Rapid Commun. (1)

A. Aulasevich, R. F. Roskamp, U. Jonas, B. Menges, J. Dostalek, and W. Knoll, “Optical waveguide spectroscopy for the investigation of protein-functionalized hydrogel films,” Macromol. Rapid Commun. 30(9-10), 872–877 (2009).
[CrossRef] [PubMed]

N. J. Phys. (1)

G. Winter, S. Wedge, and W. L. Barnes, “Can lasing at visible wavelength be achieved using the low-loss long range surface plasmon-polariton mode?” N. J. Phys. 8(8), 125–138 (2006).
[CrossRef]

Nat. Photonics (1)

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
[CrossRef]

Opt. Commun. (1)

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Photoluminescence from dye molecules on silver gratings,” Opt. Commun. 122(4-6), 147–154 (1996).
[CrossRef]

Opt. Express (1)

Phys. Rep. (1)

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[CrossRef]

Phys. Rev. Lett. (1)

D. Sarid, “Long-range surface-plasma waves on very thin metal-films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
[CrossRef]

Plasmonics (2)

J. R. Lakowicz, “Plasmonics in biology and plasmon-controlled fluorescence,” Plasmonics 1(1), 5–33 (2006).
[CrossRef] [PubMed]

J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics 2(3), 97–106 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Optical setup for the measurement of fluorescence intensity F(θI, θF ) and reflectivity R(θI ) angular spectra. (b) Layer architectures supporting regular SPs and LRSPs with a hydrogel binding matrix.

Fig. 2
Fig. 2

Multilayer system and definition of coordinate system.

Fig. 3
Fig. 3

(a) Angular reflectivity spectra measured for the excitation of LRSP (■, □) and SP modes (▲, Δ) at wavelengths of λem = 670 nm (filled) and λex = 633 nm (blank). Lines denote the fitted curves. (b) Simulated electric field intensity profile at the wavelength λex = 633 nm upon the resonant coupling of LRSPs (θI = 48.5 deg, solid line) and SPs (θI = 56.7 deg , dashed line) compared to that of directly incident light (θI = 180, LRSP: dotted line and SP: dashed dot line).

Fig. 4
Fig. 4

Simulated energy dissipation density as a function of parallel component of the propagation constant k// for the binding matrix with the thickness dh = 20 nm (red) and 600 nm (black) on the top of a layer structure supporting (a) LRSP and (b) regular SP modes.

Fig. 5
Fig. 5

The dependence of energy dissipation probability on the distance from a gold surface t. The probabilities through surface plasmon waves (LRSP: (1), SP: (3)) that can be recovered by reverse Kretschmann configuration nhk0 k //npk0 and that of SRSP which is a part of lossy wave are plotted (2).

Fig. 6
Fig. 6

Experimental fluorescence intensity emitted via LRSP and SP modes for (a) direct excitation with a laser beam (θI = 180 deg) and (b) for the excitation via LRSP and SP modes. In each experiment, three samples were measured (black symbols for LRSPs and red symbols for SPs) and compared to the simulations with the relative angles γ = 0 and 45 deg (dashed and solid lines, respectively).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

F ( θ I , θ F , ϕ ) d Ω P e x P e m P t o t + P n r d α   d β   d ρ   d t   d Ω ,
P e x ( t , α , β , θ I ) | μ e x ( α , β ) E e x ( θ I , t ) | 2 ,
P t o t ( t , α ) = 0 d P e m d k / / ( k / / , t , α ) d k / / ,
d P e m d k / / ( k / / , t , α ) = 3 2 1 k h 3 e [ k / / k h 2 k / / 2 { μ e m 2 ( k / / 2 r T M ) + 1 2 μ e m / / 2 ( k h 2 r / / T E + ( k h 2 k / / 2 ) r / / T M ) } ] ,
r T M = [ 1 + r T M exp ( 2 i k h 2 k / / 2 ( d h t ) ) ] [ 1 + r + T M exp ( 2 i k h 2 k / / 2 t ) ] 1 r T M r + T M exp ( 2 i k h 2 k / / 2 d h ) ,
r / / T M = [ 1 r T M exp ( 2 i k h 2 k / / 2 ( d h t ) ) ] [ 1 r + T M exp ( 2 i k h 2 k / / 2 t ) ] 1 r T M r + T M exp ( 2 i k h 2 k / / 2 d h ) ,
r / / T E = [ 1 + r T E exp ( 2 i k h 2 k / / 2 ( d h t ) ) ] [ 1 + r + T E exp ( 2 i k h 2 k / / 2 t ) ] 1 r T E r + T E exp ( 2 i k h 2 k / / 2 d h ) .
| E | a v e 2 = 1 d h 0 d h | E ( t ) | 2 d t .
D ( t ) = 0 2 π 3 / 2 Δ k / / r e s 3 / 2 Δ k / / r e s 1 P t o t ( t , α ) d P e m d k / / ( k / / k / / r e s , t , α ) d α d k / / ,
D a v e = 1 d h 0 d h D ( t ) d t .

Metrics