Abstract

We demonstrate two-dimensional photonic crystals of silicon carbide (SiC)—a wide bandgap semiconductor and one of the hardest materials—at near-infrared wavelengths. Although the refractive index of SiC is lower than that of a conventional semiconductor such as GaAs or Si, we show theoretically that a wide photonic bandgap, a broadband waveguide, and a high-quality nanocavity comparable to those of previous photonic crystals can be obtained in SiC photonic crystals. We also develop a process for fabricating SiC-based photonic crystals that experimentally show a photonic bandgap of 200 nm, a waveguide with a 40-nm bandwidth, and a nanocavity with a high quality factor of 4,500. This demonstration should stimulate further development of resilient and stable photonics at high power and high temperature analogous to SiC power electronics.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
    [CrossRef] [PubMed]
  2. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
    [CrossRef] [PubMed]
  3. B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003).
    [CrossRef] [PubMed]
  4. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
    [CrossRef]
  5. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
    [CrossRef]
  6. Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009).
    [CrossRef] [PubMed]
  7. S. Combrié, A. De Rossi, Q. V. Tran, and H. Benisty, “GaAs photonic crystal cavity with ultrahigh Q: microwatt nonlinearity at 1.55 microm,” Opt. Lett. 33(16), 1908–1910 (2008).
    [CrossRef] [PubMed]
  8. C. F. Lai, P. Yu, T. C. Wang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. K. Lee, “Lasing characteristics of a GaN photonic crystal nanocavity light source,” Appl. Phys. Lett. 91(4), 041101 (2007).
    [CrossRef]
  9. K. Rivoire, A. Faraon, and J. Vuckovic, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett. 93(6), 063103 (2008).
    [CrossRef]
  10. X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, and H. Cao, “Ultraviolet photonic crystal laser,” Appl. Phys. Lett. 85(17), 3657 (2004).
    [CrossRef]
  11. G. L. Harris, Properties of Silicon Carbide (Inspec,1995).
  12. . A. Cooper and A. Agarwal, “SiC power-switching devices-the second electronics revolution?” Proc. IEEE 90(6), 956–968 (2002).
    [CrossRef]
  13. G. T. Reed, and A. P. Knights, Silicon photonics (Wiley, 2004)
  14. S. Yamada, B. S. Song, T. Asano, and S. Noda, “Silicon-carbide-based two-dimensional photonic crystal nanocavities,” in Conference on Lasers and Electro-Optics Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science (QELS), (2010), paper CWB4.
  15. J. Zhou, H. Li, L. Ye, J. Liu, J. Wang, T. Zhao, L. Jiang, and Y. Song, “Facile Fabrication of Tough SiC Inverse Opal Photonic Crystals,” J. Phys. Chem. C 114(50), 22303–22308 (2010).
    [CrossRef]
  16. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
    [CrossRef] [PubMed]
  17. S.-W. Jeon, J. K. Han, B. S. Song, and S. Noda, “Glass-embedded two-dimensional silicon photonic crystal devices with a broad bandwidth waveguide and a high quality nanocavity,” Opt. Express 18(18), 19361–19366 (2010).
    [CrossRef] [PubMed]
  18. J. Vucković, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(1 Pt 2), 016608 (2002).
    [CrossRef] [PubMed]
  19. L. Di Cioccio, Y. Le Tiec, F. Letertre, C. Jaussaud, and M. Bruel, “Silicon carbide on insulator formation using the Smart Cut process,” Electron. Lett. 32(12), 1144 (1996).
    [CrossRef]

2010 (2)

J. Zhou, H. Li, L. Ye, J. Liu, J. Wang, T. Zhao, L. Jiang, and Y. Song, “Facile Fabrication of Tough SiC Inverse Opal Photonic Crystals,” J. Phys. Chem. C 114(50), 22303–22308 (2010).
[CrossRef]

S.-W. Jeon, J. K. Han, B. S. Song, and S. Noda, “Glass-embedded two-dimensional silicon photonic crystal devices with a broad bandwidth waveguide and a high quality nanocavity,” Opt. Express 18(18), 19361–19366 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (2)

S. Combrié, A. De Rossi, Q. V. Tran, and H. Benisty, “GaAs photonic crystal cavity with ultrahigh Q: microwatt nonlinearity at 1.55 microm,” Opt. Lett. 33(16), 1908–1910 (2008).
[CrossRef] [PubMed]

K. Rivoire, A. Faraon, and J. Vuckovic, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett. 93(6), 063103 (2008).
[CrossRef]

2007 (2)

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[CrossRef]

C. F. Lai, P. Yu, T. C. Wang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. K. Lee, “Lasing characteristics of a GaN photonic crystal nanocavity light source,” Appl. Phys. Lett. 91(4), 041101 (2007).
[CrossRef]

2005 (1)

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

2004 (1)

X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, and H. Cao, “Ultraviolet photonic crystal laser,” Appl. Phys. Lett. 85(17), 3657 (2004).
[CrossRef]

2003 (2)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003).
[CrossRef] [PubMed]

2002 (2)

. A. Cooper and A. Agarwal, “SiC power-switching devices-the second electronics revolution?” Proc. IEEE 90(6), 956–968 (2002).
[CrossRef]

J. Vucković, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(1 Pt 2), 016608 (2002).
[CrossRef] [PubMed]

2001 (1)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

2000 (1)

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[CrossRef] [PubMed]

1996 (1)

L. Di Cioccio, Y. Le Tiec, F. Letertre, C. Jaussaud, and M. Bruel, “Silicon carbide on insulator formation using the Smart Cut process,” Electron. Lett. 32(12), 1144 (1996).
[CrossRef]

Agarwal, A.

. A. Cooper and A. Agarwal, “SiC power-switching devices-the second electronics revolution?” Proc. IEEE 90(6), 956–968 (2002).
[CrossRef]

Akahane, Y.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Asano, T.

Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009).
[CrossRef] [PubMed]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[CrossRef]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003).
[CrossRef] [PubMed]

Benisty, H.

Bruel, M.

L. Di Cioccio, Y. Le Tiec, F. Letertre, C. Jaussaud, and M. Bruel, “Silicon carbide on insulator formation using the Smart Cut process,” Electron. Lett. 32(12), 1144 (1996).
[CrossRef]

Cao, H.

X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, and H. Cao, “Ultraviolet photonic crystal laser,” Appl. Phys. Lett. 85(17), 3657 (2004).
[CrossRef]

Chang, R. P. H.

X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, and H. Cao, “Ultraviolet photonic crystal laser,” Appl. Phys. Lett. 85(17), 3657 (2004).
[CrossRef]

Chutinan, A.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[CrossRef] [PubMed]

Combrié, S.

Cooper, . A.

. A. Cooper and A. Agarwal, “SiC power-switching devices-the second electronics revolution?” Proc. IEEE 90(6), 956–968 (2002).
[CrossRef]

De Rossi, A.

Di Cioccio, L.

L. Di Cioccio, Y. Le Tiec, F. Letertre, C. Jaussaud, and M. Bruel, “Silicon carbide on insulator formation using the Smart Cut process,” Electron. Lett. 32(12), 1144 (1996).
[CrossRef]

Dravid, V. P.

X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, and H. Cao, “Ultraviolet photonic crystal laser,” Appl. Phys. Lett. 85(17), 3657 (2004).
[CrossRef]

Faraon, A.

K. Rivoire, A. Faraon, and J. Vuckovic, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett. 93(6), 063103 (2008).
[CrossRef]

Fujita, M.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[CrossRef]

Hagino, H.

Han, J. K.

Imada, M.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[CrossRef] [PubMed]

Jaussaud, C.

L. Di Cioccio, Y. Le Tiec, F. Letertre, C. Jaussaud, and M. Bruel, “Silicon carbide on insulator formation using the Smart Cut process,” Electron. Lett. 32(12), 1144 (1996).
[CrossRef]

Jeon, S.-W.

Jiang, L.

J. Zhou, H. Li, L. Ye, J. Liu, J. Wang, T. Zhao, L. Jiang, and Y. Song, “Facile Fabrication of Tough SiC Inverse Opal Photonic Crystals,” J. Phys. Chem. C 114(50), 22303–22308 (2010).
[CrossRef]

Kuo, H. C.

C. F. Lai, P. Yu, T. C. Wang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. K. Lee, “Lasing characteristics of a GaN photonic crystal nanocavity light source,” Appl. Phys. Lett. 91(4), 041101 (2007).
[CrossRef]

Lai, C. F.

C. F. Lai, P. Yu, T. C. Wang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. K. Lee, “Lasing characteristics of a GaN photonic crystal nanocavity light source,” Appl. Phys. Lett. 91(4), 041101 (2007).
[CrossRef]

Le Tiec, Y.

L. Di Cioccio, Y. Le Tiec, F. Letertre, C. Jaussaud, and M. Bruel, “Silicon carbide on insulator formation using the Smart Cut process,” Electron. Lett. 32(12), 1144 (1996).
[CrossRef]

Lee, C. K.

C. F. Lai, P. Yu, T. C. Wang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. K. Lee, “Lasing characteristics of a GaN photonic crystal nanocavity light source,” Appl. Phys. Lett. 91(4), 041101 (2007).
[CrossRef]

Letertre, F.

L. Di Cioccio, Y. Le Tiec, F. Letertre, C. Jaussaud, and M. Bruel, “Silicon carbide on insulator formation using the Smart Cut process,” Electron. Lett. 32(12), 1144 (1996).
[CrossRef]

Li, H.

J. Zhou, H. Li, L. Ye, J. Liu, J. Wang, T. Zhao, L. Jiang, and Y. Song, “Facile Fabrication of Tough SiC Inverse Opal Photonic Crystals,” J. Phys. Chem. C 114(50), 22303–22308 (2010).
[CrossRef]

Li, S.

X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, and H. Cao, “Ultraviolet photonic crystal laser,” Appl. Phys. Lett. 85(17), 3657 (2004).
[CrossRef]

Liu, J.

J. Zhou, H. Li, L. Ye, J. Liu, J. Wang, T. Zhao, L. Jiang, and Y. Song, “Facile Fabrication of Tough SiC Inverse Opal Photonic Crystals,” J. Phys. Chem. C 114(50), 22303–22308 (2010).
[CrossRef]

Liu, X.

X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, and H. Cao, “Ultraviolet photonic crystal laser,” Appl. Phys. Lett. 85(17), 3657 (2004).
[CrossRef]

Loncar, M.

J. Vucković, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(1 Pt 2), 016608 (2002).
[CrossRef] [PubMed]

Lu, T. C.

C. F. Lai, P. Yu, T. C. Wang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. K. Lee, “Lasing characteristics of a GaN photonic crystal nanocavity light source,” Appl. Phys. Lett. 91(4), 041101 (2007).
[CrossRef]

Mabuchi, H.

J. Vucković, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(1 Pt 2), 016608 (2002).
[CrossRef] [PubMed]

Noda, S.

S.-W. Jeon, J. K. Han, B. S. Song, and S. Noda, “Glass-embedded two-dimensional silicon photonic crystal devices with a broad bandwidth waveguide and a high quality nanocavity,” Opt. Express 18(18), 19361–19366 (2010).
[CrossRef] [PubMed]

Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009).
[CrossRef] [PubMed]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[CrossRef]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003).
[CrossRef] [PubMed]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[CrossRef] [PubMed]

Notomi, M.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Rivoire, K.

K. Rivoire, A. Faraon, and J. Vuckovic, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett. 93(6), 063103 (2008).
[CrossRef]

Sato, Y.

Scherer, A.

J. Vucković, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(1 Pt 2), 016608 (2002).
[CrossRef] [PubMed]

Shinya, A.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Song, B. S.

S.-W. Jeon, J. K. Han, B. S. Song, and S. Noda, “Glass-embedded two-dimensional silicon photonic crystal devices with a broad bandwidth waveguide and a high quality nanocavity,” Opt. Express 18(18), 19361–19366 (2010).
[CrossRef] [PubMed]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003).
[CrossRef] [PubMed]

Song, Y.

J. Zhou, H. Li, L. Ye, J. Liu, J. Wang, T. Zhao, L. Jiang, and Y. Song, “Facile Fabrication of Tough SiC Inverse Opal Photonic Crystals,” J. Phys. Chem. C 114(50), 22303–22308 (2010).
[CrossRef]

Sugiya, T.

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Takahashi, Y.

Tanaka, Y.

Tran, Q. V.

Vuckovic, J.

K. Rivoire, A. Faraon, and J. Vuckovic, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett. 93(6), 063103 (2008).
[CrossRef]

J. Vucković, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(1 Pt 2), 016608 (2002).
[CrossRef] [PubMed]

Wang, J.

J. Zhou, H. Li, L. Ye, J. Liu, J. Wang, T. Zhao, L. Jiang, and Y. Song, “Facile Fabrication of Tough SiC Inverse Opal Photonic Crystals,” J. Phys. Chem. C 114(50), 22303–22308 (2010).
[CrossRef]

Wang, S. C.

C. F. Lai, P. Yu, T. C. Wang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. K. Lee, “Lasing characteristics of a GaN photonic crystal nanocavity light source,” Appl. Phys. Lett. 91(4), 041101 (2007).
[CrossRef]

Wang, T. C.

C. F. Lai, P. Yu, T. C. Wang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. K. Lee, “Lasing characteristics of a GaN photonic crystal nanocavity light source,” Appl. Phys. Lett. 91(4), 041101 (2007).
[CrossRef]

Wu, X.

X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, and H. Cao, “Ultraviolet photonic crystal laser,” Appl. Phys. Lett. 85(17), 3657 (2004).
[CrossRef]

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Yamilov, A.

X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, and H. Cao, “Ultraviolet photonic crystal laser,” Appl. Phys. Lett. 85(17), 3657 (2004).
[CrossRef]

Ye, L.

J. Zhou, H. Li, L. Ye, J. Liu, J. Wang, T. Zhao, L. Jiang, and Y. Song, “Facile Fabrication of Tough SiC Inverse Opal Photonic Crystals,” J. Phys. Chem. C 114(50), 22303–22308 (2010).
[CrossRef]

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Yu, P.

C. F. Lai, P. Yu, T. C. Wang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. K. Lee, “Lasing characteristics of a GaN photonic crystal nanocavity light source,” Appl. Phys. Lett. 91(4), 041101 (2007).
[CrossRef]

Zhao, T.

J. Zhou, H. Li, L. Ye, J. Liu, J. Wang, T. Zhao, L. Jiang, and Y. Song, “Facile Fabrication of Tough SiC Inverse Opal Photonic Crystals,” J. Phys. Chem. C 114(50), 22303–22308 (2010).
[CrossRef]

Zhou, J.

J. Zhou, H. Li, L. Ye, J. Liu, J. Wang, T. Zhao, L. Jiang, and Y. Song, “Facile Fabrication of Tough SiC Inverse Opal Photonic Crystals,” J. Phys. Chem. C 114(50), 22303–22308 (2010).
[CrossRef]

Appl. Phys. Lett. (3)

C. F. Lai, P. Yu, T. C. Wang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. K. Lee, “Lasing characteristics of a GaN photonic crystal nanocavity light source,” Appl. Phys. Lett. 91(4), 041101 (2007).
[CrossRef]

K. Rivoire, A. Faraon, and J. Vuckovic, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett. 93(6), 063103 (2008).
[CrossRef]

X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, and H. Cao, “Ultraviolet photonic crystal laser,” Appl. Phys. Lett. 85(17), 3657 (2004).
[CrossRef]

Electron. Lett. (1)

L. Di Cioccio, Y. Le Tiec, F. Letertre, C. Jaussaud, and M. Bruel, “Silicon carbide on insulator formation using the Smart Cut process,” Electron. Lett. 32(12), 1144 (1996).
[CrossRef]

J. Phys. Chem. C (1)

J. Zhou, H. Li, L. Ye, J. Liu, J. Wang, T. Zhao, L. Jiang, and Y. Song, “Facile Fabrication of Tough SiC Inverse Opal Photonic Crystals,” J. Phys. Chem. C 114(50), 22303–22308 (2010).
[CrossRef]

Nat. Mater. (1)

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Nat. Photonics (1)

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[CrossRef]

Nature (2)

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

J. Vucković, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(1 Pt 2), 016608 (2002).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Proc. IEEE (1)

. A. Cooper and A. Agarwal, “SiC power-switching devices-the second electronics revolution?” Proc. IEEE 90(6), 956–968 (2002).
[CrossRef]

Science (1)

B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003).
[CrossRef] [PubMed]

Other (3)

G. T. Reed, and A. P. Knights, Silicon photonics (Wiley, 2004)

S. Yamada, B. S. Song, T. Asano, and S. Noda, “Silicon-carbide-based two-dimensional photonic crystal nanocavities,” in Conference on Lasers and Electro-Optics Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science (QELS), (2010), paper CWB4.

G. L. Harris, Properties of Silicon Carbide (Inspec,1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) and (c) Schematic drawings of an SiC 2-D photonic crystal structure and its line-defect waveguide. (b) and (d) Calculated band diagrams for the structures depicted in (a) and (c).

Fig. 2
Fig. 2

(a) Schematic drawing of an SiC-based (L3) nanocavity with three missing air holes and a Q factor of 1,200. (b) The electric field (Ey) distribution of the L3 nanocavity. (c) and (d) Schematics of “air-hole shifted” and “hetero-structured” nanocavities with Q factors of 6 × 103 and 5 × 105, respectively.

Fig. 3
Fig. 3

Fabrication process of an SiC-based 2-D photonic crystal (a)-(h).

Fig. 4
Fig. 4

(a) Cross-sectional and (b) top-view SEM images of the fabricated SiC photonic crystal (before using HF solution).

Fig. 5
Fig. 5

Transmission spectra of SiC photonic crystals (a = 525–600 nm) without waveguide or cavity.

Fig. 6
Fig. 6

Transmission spectrum of an SiC photonic crystal waveguide with a = 575 nm.

Fig. 7
Fig. 7

Drop spectrum of an SiC photonic crystal L3 nanocavity with a = 575 nm.

Fig. 8
Fig. 8

(a) Measured Q factors of air-hole shifted cavities and (b) spectrum of a hetero-structured cavity.

Metrics