Abstract

Tb3+ doped Ba3Gd(PO4)3 and Ba3La(PO4)3 phosphors were synthesized using the traditional high temperature solid state reaction method. The excitation, emission, and decay spectra were measured at room temperature. Efficient energy transfer (ET) from Gd3+ to Tb3+ exists in Tb3+ doped Ba3Gd(PO4)3, and the ET efficiency increases with the increase of Tb3+ concentration. The visible quantum cutting (QC) via cross relaxation was observed upon exciting low-spin (7DJ) 5d levels of Tb3+ ions. Ba3Tb(PO4)3 sample shows relatively strong emission intensity in comparison with Zn2SiO4: Mn2+ (ZSM) upon 172 nm excitation, and with a decay time τ1/10 about 6.4 ms under 351 nm excitation, indicating the potential application of this phosphor for plasma display panels (PDPs) and Hg-free lamps.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Zhong, H. Liang, B. Han, Q. Su, and Y. Tao, “NaGd(PO3)4: Tb3+—a new promising green phosphor for PDPs application,” Chem. Phys. Lett. 453(4-6), 192–196 (2008).
    [CrossRef]
  2. C. H. Kim, I. E. Kwon, C. H. Park, Y. J. Hwang, H. S. Bae, B. Y. Yu, C. H. Pyun, and G. Y. Hong, “Phosphors for plasma display panels,” J. Alloy. Comp. 311(1), 33–39 (2000).
    [CrossRef]
  3. D. Y. Wang and N. Kodama, “Visible quantum cutting through downconversion in GdPO4: Tb3+ and Sr3Gd(PO4)3: Tb3+,” J. Solid State Chem. 182(8), 2219–2224 (2009).
    [CrossRef]
  4. T. J. Lee, L. Y. Luo, E. W. G. Diau, T. M. Chen, B. M. Cheng, and C. Y. Tung, “Visible quantum cutting through downconversion in green-emitting K2GdF5: Tb3+ phosphors,” Appl. Phys. Lett. 89(13), 131121 (2006).
    [CrossRef]
  5. H. Y. Tzeng, B. M. Cheng, and T. M. Chen, “Visible quantum cutting in green-emitting BaGdF5: Tb3+ phosphors via downconversion,” J. Lumin. 122–123, 917–920 (2007).
    [CrossRef]
  6. B. Han, H. B. Liang, Y. Huang, Y. Tao, and Q. Su, “Vacuum ultraviolet-visible spectroscopic properties of Tb3+ in Li(Y, Gd)(PO3)4: tunable emission, quantum cutting, and energy transfer,” J. Phys. Chem. C 114(14), 6770–6777 (2010).
    [CrossRef]
  7. H. J. Zhang, Y. H. Wang, Y. Tao, W. H. Li, D. K. Hu, E. X. Feng, and X. F. Nie, “Visible quantum cutting in Tb3+-doped BaGdB9O16 via downconversion,” J. Electrochem. Soc. 157(8), J293–J296 (2010).
    [CrossRef]
  8. H. B. Liang, Y. Tao, and Q. Su, “The luminescent properties of Ba3Gd1−xLnx(PO4)3 under synchrotron radiation VUV excitation,” Mater. Sci. Eng. B 119(2), 152–158 (2005).
    [CrossRef]
  9. Z. F. Tian, H. B. Liang, B. Han, Q. Su, Y. Tao, G. B. Zhang, and Y. B. Fu, “Photon cascade emission of Gd3+ in Na(Y,Gd)FPO4,” J. Phys. Chem. C 112(32), 12524–12529 (2008).
    [CrossRef]
  10. J. Barbier, “Structural refinements of eulytite-type Ca3Bi(PO4)3 and Ba3La(PO4)3,” J. Solid State Chem. 101(2), 249–256 (1992).
    [CrossRef]
  11. T. Tsuboi, H. J. Seo, B. K. Moon, and J. H. Kim, “Optical studies of Eu3+ ions in Bi4Ge3O12 crystals,” Physica B 270(1-2), 45–51 (1999).
    [CrossRef]
  12. M. F. Hoogendorp, W. J. Schipper, and G. Blasse, “Cerium(III) luminescence and disorder in the eulytite structure,” J. Alloy. Comp. 205(1-2), 249–251 (1994).
    [CrossRef]
  13. E. H. Arbib, B. Elouadi, J. P. Chaminade, and J. Darriet, “The crystal structure of the phosphate eulytite Ba3Bi(PO4)3,” Mater. Res. Bull. 35(5), 761–773 (2000).
    [CrossRef]
  14. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
    [CrossRef]
  15. P. Dorenbos, “The 5d level positions of the trivalent lanthanides in inorganic compounds,” J. Lumin. 91(3-4), 155–176 (2000).
    [CrossRef]
  16. J. Zhong, H. Liang, Q. Su, J. Zhou, Y. Huang, Z. Gao, Y. Tao, and J. Wang, “Luminescence properties of NaGd(PO3)4: Eu3+ and energy transfer from Gd3+ to Eu3+,” Appl. Phys. B 98(1), 139–147 (2010).
    [CrossRef]
  17. L. Wang, X. Zhang, Z. D. Hao, Y. S. Luo, J. H. Zhang, and X. J. Wang, “Interionic energy transfer in Y3Al5O12:Ce3+, Pr3+ phosphor,” J. Appl. Phys. 108(9), 093515 (2010).
    [CrossRef]
  18. M. B. Xie, Y. Tao, Y. Huang, H. B. Liang, and Q. Su, “The quantum cutting of Tb3+ in Ca6Ln2Na2(PO4)6F2 (Ln = Gd, La) under VUV-UV excitation: with and without Gd3+,” Inorg. Chem. 49(24), 11317–11324 (2010).
    [CrossRef] [PubMed]
  19. N. Yocom, R. S. Meltzer, K. W. Jang, and M. Grimm, “New green phosphors for plasma displays,” J. Soc. Inf. Disp. 4(3), 169–172 (1996).
    [CrossRef]

2010 (5)

B. Han, H. B. Liang, Y. Huang, Y. Tao, and Q. Su, “Vacuum ultraviolet-visible spectroscopic properties of Tb3+ in Li(Y, Gd)(PO3)4: tunable emission, quantum cutting, and energy transfer,” J. Phys. Chem. C 114(14), 6770–6777 (2010).
[CrossRef]

H. J. Zhang, Y. H. Wang, Y. Tao, W. H. Li, D. K. Hu, E. X. Feng, and X. F. Nie, “Visible quantum cutting in Tb3+-doped BaGdB9O16 via downconversion,” J. Electrochem. Soc. 157(8), J293–J296 (2010).
[CrossRef]

J. Zhong, H. Liang, Q. Su, J. Zhou, Y. Huang, Z. Gao, Y. Tao, and J. Wang, “Luminescence properties of NaGd(PO3)4: Eu3+ and energy transfer from Gd3+ to Eu3+,” Appl. Phys. B 98(1), 139–147 (2010).
[CrossRef]

L. Wang, X. Zhang, Z. D. Hao, Y. S. Luo, J. H. Zhang, and X. J. Wang, “Interionic energy transfer in Y3Al5O12:Ce3+, Pr3+ phosphor,” J. Appl. Phys. 108(9), 093515 (2010).
[CrossRef]

M. B. Xie, Y. Tao, Y. Huang, H. B. Liang, and Q. Su, “The quantum cutting of Tb3+ in Ca6Ln2Na2(PO4)6F2 (Ln = Gd, La) under VUV-UV excitation: with and without Gd3+,” Inorg. Chem. 49(24), 11317–11324 (2010).
[CrossRef] [PubMed]

2009 (1)

D. Y. Wang and N. Kodama, “Visible quantum cutting through downconversion in GdPO4: Tb3+ and Sr3Gd(PO4)3: Tb3+,” J. Solid State Chem. 182(8), 2219–2224 (2009).
[CrossRef]

2008 (2)

J. Zhong, H. Liang, B. Han, Q. Su, and Y. Tao, “NaGd(PO3)4: Tb3+—a new promising green phosphor for PDPs application,” Chem. Phys. Lett. 453(4-6), 192–196 (2008).
[CrossRef]

Z. F. Tian, H. B. Liang, B. Han, Q. Su, Y. Tao, G. B. Zhang, and Y. B. Fu, “Photon cascade emission of Gd3+ in Na(Y,Gd)FPO4,” J. Phys. Chem. C 112(32), 12524–12529 (2008).
[CrossRef]

2007 (1)

H. Y. Tzeng, B. M. Cheng, and T. M. Chen, “Visible quantum cutting in green-emitting BaGdF5: Tb3+ phosphors via downconversion,” J. Lumin. 122–123, 917–920 (2007).
[CrossRef]

2006 (1)

T. J. Lee, L. Y. Luo, E. W. G. Diau, T. M. Chen, B. M. Cheng, and C. Y. Tung, “Visible quantum cutting through downconversion in green-emitting K2GdF5: Tb3+ phosphors,” Appl. Phys. Lett. 89(13), 131121 (2006).
[CrossRef]

2005 (1)

H. B. Liang, Y. Tao, and Q. Su, “The luminescent properties of Ba3Gd1−xLnx(PO4)3 under synchrotron radiation VUV excitation,” Mater. Sci. Eng. B 119(2), 152–158 (2005).
[CrossRef]

2000 (3)

C. H. Kim, I. E. Kwon, C. H. Park, Y. J. Hwang, H. S. Bae, B. Y. Yu, C. H. Pyun, and G. Y. Hong, “Phosphors for plasma display panels,” J. Alloy. Comp. 311(1), 33–39 (2000).
[CrossRef]

E. H. Arbib, B. Elouadi, J. P. Chaminade, and J. Darriet, “The crystal structure of the phosphate eulytite Ba3Bi(PO4)3,” Mater. Res. Bull. 35(5), 761–773 (2000).
[CrossRef]

P. Dorenbos, “The 5d level positions of the trivalent lanthanides in inorganic compounds,” J. Lumin. 91(3-4), 155–176 (2000).
[CrossRef]

1999 (1)

T. Tsuboi, H. J. Seo, B. K. Moon, and J. H. Kim, “Optical studies of Eu3+ ions in Bi4Ge3O12 crystals,” Physica B 270(1-2), 45–51 (1999).
[CrossRef]

1996 (1)

N. Yocom, R. S. Meltzer, K. W. Jang, and M. Grimm, “New green phosphors for plasma displays,” J. Soc. Inf. Disp. 4(3), 169–172 (1996).
[CrossRef]

1994 (1)

M. F. Hoogendorp, W. J. Schipper, and G. Blasse, “Cerium(III) luminescence and disorder in the eulytite structure,” J. Alloy. Comp. 205(1-2), 249–251 (1994).
[CrossRef]

1992 (1)

J. Barbier, “Structural refinements of eulytite-type Ca3Bi(PO4)3 and Ba3La(PO4)3,” J. Solid State Chem. 101(2), 249–256 (1992).
[CrossRef]

1976 (1)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[CrossRef]

Arbib, E. H.

E. H. Arbib, B. Elouadi, J. P. Chaminade, and J. Darriet, “The crystal structure of the phosphate eulytite Ba3Bi(PO4)3,” Mater. Res. Bull. 35(5), 761–773 (2000).
[CrossRef]

Bae, H. S.

C. H. Kim, I. E. Kwon, C. H. Park, Y. J. Hwang, H. S. Bae, B. Y. Yu, C. H. Pyun, and G. Y. Hong, “Phosphors for plasma display panels,” J. Alloy. Comp. 311(1), 33–39 (2000).
[CrossRef]

Barbier, J.

J. Barbier, “Structural refinements of eulytite-type Ca3Bi(PO4)3 and Ba3La(PO4)3,” J. Solid State Chem. 101(2), 249–256 (1992).
[CrossRef]

Blasse, G.

M. F. Hoogendorp, W. J. Schipper, and G. Blasse, “Cerium(III) luminescence and disorder in the eulytite structure,” J. Alloy. Comp. 205(1-2), 249–251 (1994).
[CrossRef]

Chaminade, J. P.

E. H. Arbib, B. Elouadi, J. P. Chaminade, and J. Darriet, “The crystal structure of the phosphate eulytite Ba3Bi(PO4)3,” Mater. Res. Bull. 35(5), 761–773 (2000).
[CrossRef]

Chen, T. M.

H. Y. Tzeng, B. M. Cheng, and T. M. Chen, “Visible quantum cutting in green-emitting BaGdF5: Tb3+ phosphors via downconversion,” J. Lumin. 122–123, 917–920 (2007).
[CrossRef]

T. J. Lee, L. Y. Luo, E. W. G. Diau, T. M. Chen, B. M. Cheng, and C. Y. Tung, “Visible quantum cutting through downconversion in green-emitting K2GdF5: Tb3+ phosphors,” Appl. Phys. Lett. 89(13), 131121 (2006).
[CrossRef]

Cheng, B. M.

H. Y. Tzeng, B. M. Cheng, and T. M. Chen, “Visible quantum cutting in green-emitting BaGdF5: Tb3+ phosphors via downconversion,” J. Lumin. 122–123, 917–920 (2007).
[CrossRef]

T. J. Lee, L. Y. Luo, E. W. G. Diau, T. M. Chen, B. M. Cheng, and C. Y. Tung, “Visible quantum cutting through downconversion in green-emitting K2GdF5: Tb3+ phosphors,” Appl. Phys. Lett. 89(13), 131121 (2006).
[CrossRef]

Darriet, J.

E. H. Arbib, B. Elouadi, J. P. Chaminade, and J. Darriet, “The crystal structure of the phosphate eulytite Ba3Bi(PO4)3,” Mater. Res. Bull. 35(5), 761–773 (2000).
[CrossRef]

Diau, E. W. G.

T. J. Lee, L. Y. Luo, E. W. G. Diau, T. M. Chen, B. M. Cheng, and C. Y. Tung, “Visible quantum cutting through downconversion in green-emitting K2GdF5: Tb3+ phosphors,” Appl. Phys. Lett. 89(13), 131121 (2006).
[CrossRef]

Dorenbos, P.

P. Dorenbos, “The 5d level positions of the trivalent lanthanides in inorganic compounds,” J. Lumin. 91(3-4), 155–176 (2000).
[CrossRef]

Elouadi, B.

E. H. Arbib, B. Elouadi, J. P. Chaminade, and J. Darriet, “The crystal structure of the phosphate eulytite Ba3Bi(PO4)3,” Mater. Res. Bull. 35(5), 761–773 (2000).
[CrossRef]

Feng, E. X.

H. J. Zhang, Y. H. Wang, Y. Tao, W. H. Li, D. K. Hu, E. X. Feng, and X. F. Nie, “Visible quantum cutting in Tb3+-doped BaGdB9O16 via downconversion,” J. Electrochem. Soc. 157(8), J293–J296 (2010).
[CrossRef]

Fu, Y. B.

Z. F. Tian, H. B. Liang, B. Han, Q. Su, Y. Tao, G. B. Zhang, and Y. B. Fu, “Photon cascade emission of Gd3+ in Na(Y,Gd)FPO4,” J. Phys. Chem. C 112(32), 12524–12529 (2008).
[CrossRef]

Gao, Z.

J. Zhong, H. Liang, Q. Su, J. Zhou, Y. Huang, Z. Gao, Y. Tao, and J. Wang, “Luminescence properties of NaGd(PO3)4: Eu3+ and energy transfer from Gd3+ to Eu3+,” Appl. Phys. B 98(1), 139–147 (2010).
[CrossRef]

Grimm, M.

N. Yocom, R. S. Meltzer, K. W. Jang, and M. Grimm, “New green phosphors for plasma displays,” J. Soc. Inf. Disp. 4(3), 169–172 (1996).
[CrossRef]

Han, B.

B. Han, H. B. Liang, Y. Huang, Y. Tao, and Q. Su, “Vacuum ultraviolet-visible spectroscopic properties of Tb3+ in Li(Y, Gd)(PO3)4: tunable emission, quantum cutting, and energy transfer,” J. Phys. Chem. C 114(14), 6770–6777 (2010).
[CrossRef]

J. Zhong, H. Liang, B. Han, Q. Su, and Y. Tao, “NaGd(PO3)4: Tb3+—a new promising green phosphor for PDPs application,” Chem. Phys. Lett. 453(4-6), 192–196 (2008).
[CrossRef]

Z. F. Tian, H. B. Liang, B. Han, Q. Su, Y. Tao, G. B. Zhang, and Y. B. Fu, “Photon cascade emission of Gd3+ in Na(Y,Gd)FPO4,” J. Phys. Chem. C 112(32), 12524–12529 (2008).
[CrossRef]

Hao, Z. D.

L. Wang, X. Zhang, Z. D. Hao, Y. S. Luo, J. H. Zhang, and X. J. Wang, “Interionic energy transfer in Y3Al5O12:Ce3+, Pr3+ phosphor,” J. Appl. Phys. 108(9), 093515 (2010).
[CrossRef]

Hong, G. Y.

C. H. Kim, I. E. Kwon, C. H. Park, Y. J. Hwang, H. S. Bae, B. Y. Yu, C. H. Pyun, and G. Y. Hong, “Phosphors for plasma display panels,” J. Alloy. Comp. 311(1), 33–39 (2000).
[CrossRef]

Hoogendorp, M. F.

M. F. Hoogendorp, W. J. Schipper, and G. Blasse, “Cerium(III) luminescence and disorder in the eulytite structure,” J. Alloy. Comp. 205(1-2), 249–251 (1994).
[CrossRef]

Hu, D. K.

H. J. Zhang, Y. H. Wang, Y. Tao, W. H. Li, D. K. Hu, E. X. Feng, and X. F. Nie, “Visible quantum cutting in Tb3+-doped BaGdB9O16 via downconversion,” J. Electrochem. Soc. 157(8), J293–J296 (2010).
[CrossRef]

Huang, Y.

B. Han, H. B. Liang, Y. Huang, Y. Tao, and Q. Su, “Vacuum ultraviolet-visible spectroscopic properties of Tb3+ in Li(Y, Gd)(PO3)4: tunable emission, quantum cutting, and energy transfer,” J. Phys. Chem. C 114(14), 6770–6777 (2010).
[CrossRef]

J. Zhong, H. Liang, Q. Su, J. Zhou, Y. Huang, Z. Gao, Y. Tao, and J. Wang, “Luminescence properties of NaGd(PO3)4: Eu3+ and energy transfer from Gd3+ to Eu3+,” Appl. Phys. B 98(1), 139–147 (2010).
[CrossRef]

M. B. Xie, Y. Tao, Y. Huang, H. B. Liang, and Q. Su, “The quantum cutting of Tb3+ in Ca6Ln2Na2(PO4)6F2 (Ln = Gd, La) under VUV-UV excitation: with and without Gd3+,” Inorg. Chem. 49(24), 11317–11324 (2010).
[CrossRef] [PubMed]

Hwang, Y. J.

C. H. Kim, I. E. Kwon, C. H. Park, Y. J. Hwang, H. S. Bae, B. Y. Yu, C. H. Pyun, and G. Y. Hong, “Phosphors for plasma display panels,” J. Alloy. Comp. 311(1), 33–39 (2000).
[CrossRef]

Jang, K. W.

N. Yocom, R. S. Meltzer, K. W. Jang, and M. Grimm, “New green phosphors for plasma displays,” J. Soc. Inf. Disp. 4(3), 169–172 (1996).
[CrossRef]

Kim, C. H.

C. H. Kim, I. E. Kwon, C. H. Park, Y. J. Hwang, H. S. Bae, B. Y. Yu, C. H. Pyun, and G. Y. Hong, “Phosphors for plasma display panels,” J. Alloy. Comp. 311(1), 33–39 (2000).
[CrossRef]

Kim, J. H.

T. Tsuboi, H. J. Seo, B. K. Moon, and J. H. Kim, “Optical studies of Eu3+ ions in Bi4Ge3O12 crystals,” Physica B 270(1-2), 45–51 (1999).
[CrossRef]

Kodama, N.

D. Y. Wang and N. Kodama, “Visible quantum cutting through downconversion in GdPO4: Tb3+ and Sr3Gd(PO4)3: Tb3+,” J. Solid State Chem. 182(8), 2219–2224 (2009).
[CrossRef]

Kwon, I. E.

C. H. Kim, I. E. Kwon, C. H. Park, Y. J. Hwang, H. S. Bae, B. Y. Yu, C. H. Pyun, and G. Y. Hong, “Phosphors for plasma display panels,” J. Alloy. Comp. 311(1), 33–39 (2000).
[CrossRef]

Lee, T. J.

T. J. Lee, L. Y. Luo, E. W. G. Diau, T. M. Chen, B. M. Cheng, and C. Y. Tung, “Visible quantum cutting through downconversion in green-emitting K2GdF5: Tb3+ phosphors,” Appl. Phys. Lett. 89(13), 131121 (2006).
[CrossRef]

Li, W. H.

H. J. Zhang, Y. H. Wang, Y. Tao, W. H. Li, D. K. Hu, E. X. Feng, and X. F. Nie, “Visible quantum cutting in Tb3+-doped BaGdB9O16 via downconversion,” J. Electrochem. Soc. 157(8), J293–J296 (2010).
[CrossRef]

Liang, H.

J. Zhong, H. Liang, Q. Su, J. Zhou, Y. Huang, Z. Gao, Y. Tao, and J. Wang, “Luminescence properties of NaGd(PO3)4: Eu3+ and energy transfer from Gd3+ to Eu3+,” Appl. Phys. B 98(1), 139–147 (2010).
[CrossRef]

J. Zhong, H. Liang, B. Han, Q. Su, and Y. Tao, “NaGd(PO3)4: Tb3+—a new promising green phosphor for PDPs application,” Chem. Phys. Lett. 453(4-6), 192–196 (2008).
[CrossRef]

Liang, H. B.

B. Han, H. B. Liang, Y. Huang, Y. Tao, and Q. Su, “Vacuum ultraviolet-visible spectroscopic properties of Tb3+ in Li(Y, Gd)(PO3)4: tunable emission, quantum cutting, and energy transfer,” J. Phys. Chem. C 114(14), 6770–6777 (2010).
[CrossRef]

M. B. Xie, Y. Tao, Y. Huang, H. B. Liang, and Q. Su, “The quantum cutting of Tb3+ in Ca6Ln2Na2(PO4)6F2 (Ln = Gd, La) under VUV-UV excitation: with and without Gd3+,” Inorg. Chem. 49(24), 11317–11324 (2010).
[CrossRef] [PubMed]

Z. F. Tian, H. B. Liang, B. Han, Q. Su, Y. Tao, G. B. Zhang, and Y. B. Fu, “Photon cascade emission of Gd3+ in Na(Y,Gd)FPO4,” J. Phys. Chem. C 112(32), 12524–12529 (2008).
[CrossRef]

H. B. Liang, Y. Tao, and Q. Su, “The luminescent properties of Ba3Gd1−xLnx(PO4)3 under synchrotron radiation VUV excitation,” Mater. Sci. Eng. B 119(2), 152–158 (2005).
[CrossRef]

Luo, L. Y.

T. J. Lee, L. Y. Luo, E. W. G. Diau, T. M. Chen, B. M. Cheng, and C. Y. Tung, “Visible quantum cutting through downconversion in green-emitting K2GdF5: Tb3+ phosphors,” Appl. Phys. Lett. 89(13), 131121 (2006).
[CrossRef]

Luo, Y. S.

L. Wang, X. Zhang, Z. D. Hao, Y. S. Luo, J. H. Zhang, and X. J. Wang, “Interionic energy transfer in Y3Al5O12:Ce3+, Pr3+ phosphor,” J. Appl. Phys. 108(9), 093515 (2010).
[CrossRef]

Meltzer, R. S.

N. Yocom, R. S. Meltzer, K. W. Jang, and M. Grimm, “New green phosphors for plasma displays,” J. Soc. Inf. Disp. 4(3), 169–172 (1996).
[CrossRef]

Moon, B. K.

T. Tsuboi, H. J. Seo, B. K. Moon, and J. H. Kim, “Optical studies of Eu3+ ions in Bi4Ge3O12 crystals,” Physica B 270(1-2), 45–51 (1999).
[CrossRef]

Nie, X. F.

H. J. Zhang, Y. H. Wang, Y. Tao, W. H. Li, D. K. Hu, E. X. Feng, and X. F. Nie, “Visible quantum cutting in Tb3+-doped BaGdB9O16 via downconversion,” J. Electrochem. Soc. 157(8), J293–J296 (2010).
[CrossRef]

Park, C. H.

C. H. Kim, I. E. Kwon, C. H. Park, Y. J. Hwang, H. S. Bae, B. Y. Yu, C. H. Pyun, and G. Y. Hong, “Phosphors for plasma display panels,” J. Alloy. Comp. 311(1), 33–39 (2000).
[CrossRef]

Pyun, C. H.

C. H. Kim, I. E. Kwon, C. H. Park, Y. J. Hwang, H. S. Bae, B. Y. Yu, C. H. Pyun, and G. Y. Hong, “Phosphors for plasma display panels,” J. Alloy. Comp. 311(1), 33–39 (2000).
[CrossRef]

Schipper, W. J.

M. F. Hoogendorp, W. J. Schipper, and G. Blasse, “Cerium(III) luminescence and disorder in the eulytite structure,” J. Alloy. Comp. 205(1-2), 249–251 (1994).
[CrossRef]

Seo, H. J.

T. Tsuboi, H. J. Seo, B. K. Moon, and J. H. Kim, “Optical studies of Eu3+ ions in Bi4Ge3O12 crystals,” Physica B 270(1-2), 45–51 (1999).
[CrossRef]

Shannon, R. D.

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[CrossRef]

Su, Q.

J. Zhong, H. Liang, Q. Su, J. Zhou, Y. Huang, Z. Gao, Y. Tao, and J. Wang, “Luminescence properties of NaGd(PO3)4: Eu3+ and energy transfer from Gd3+ to Eu3+,” Appl. Phys. B 98(1), 139–147 (2010).
[CrossRef]

B. Han, H. B. Liang, Y. Huang, Y. Tao, and Q. Su, “Vacuum ultraviolet-visible spectroscopic properties of Tb3+ in Li(Y, Gd)(PO3)4: tunable emission, quantum cutting, and energy transfer,” J. Phys. Chem. C 114(14), 6770–6777 (2010).
[CrossRef]

M. B. Xie, Y. Tao, Y. Huang, H. B. Liang, and Q. Su, “The quantum cutting of Tb3+ in Ca6Ln2Na2(PO4)6F2 (Ln = Gd, La) under VUV-UV excitation: with and without Gd3+,” Inorg. Chem. 49(24), 11317–11324 (2010).
[CrossRef] [PubMed]

J. Zhong, H. Liang, B. Han, Q. Su, and Y. Tao, “NaGd(PO3)4: Tb3+—a new promising green phosphor for PDPs application,” Chem. Phys. Lett. 453(4-6), 192–196 (2008).
[CrossRef]

Z. F. Tian, H. B. Liang, B. Han, Q. Su, Y. Tao, G. B. Zhang, and Y. B. Fu, “Photon cascade emission of Gd3+ in Na(Y,Gd)FPO4,” J. Phys. Chem. C 112(32), 12524–12529 (2008).
[CrossRef]

H. B. Liang, Y. Tao, and Q. Su, “The luminescent properties of Ba3Gd1−xLnx(PO4)3 under synchrotron radiation VUV excitation,” Mater. Sci. Eng. B 119(2), 152–158 (2005).
[CrossRef]

Tao, Y.

J. Zhong, H. Liang, Q. Su, J. Zhou, Y. Huang, Z. Gao, Y. Tao, and J. Wang, “Luminescence properties of NaGd(PO3)4: Eu3+ and energy transfer from Gd3+ to Eu3+,” Appl. Phys. B 98(1), 139–147 (2010).
[CrossRef]

H. J. Zhang, Y. H. Wang, Y. Tao, W. H. Li, D. K. Hu, E. X. Feng, and X. F. Nie, “Visible quantum cutting in Tb3+-doped BaGdB9O16 via downconversion,” J. Electrochem. Soc. 157(8), J293–J296 (2010).
[CrossRef]

B. Han, H. B. Liang, Y. Huang, Y. Tao, and Q. Su, “Vacuum ultraviolet-visible spectroscopic properties of Tb3+ in Li(Y, Gd)(PO3)4: tunable emission, quantum cutting, and energy transfer,” J. Phys. Chem. C 114(14), 6770–6777 (2010).
[CrossRef]

M. B. Xie, Y. Tao, Y. Huang, H. B. Liang, and Q. Su, “The quantum cutting of Tb3+ in Ca6Ln2Na2(PO4)6F2 (Ln = Gd, La) under VUV-UV excitation: with and without Gd3+,” Inorg. Chem. 49(24), 11317–11324 (2010).
[CrossRef] [PubMed]

J. Zhong, H. Liang, B. Han, Q. Su, and Y. Tao, “NaGd(PO3)4: Tb3+—a new promising green phosphor for PDPs application,” Chem. Phys. Lett. 453(4-6), 192–196 (2008).
[CrossRef]

Z. F. Tian, H. B. Liang, B. Han, Q. Su, Y. Tao, G. B. Zhang, and Y. B. Fu, “Photon cascade emission of Gd3+ in Na(Y,Gd)FPO4,” J. Phys. Chem. C 112(32), 12524–12529 (2008).
[CrossRef]

H. B. Liang, Y. Tao, and Q. Su, “The luminescent properties of Ba3Gd1−xLnx(PO4)3 under synchrotron radiation VUV excitation,” Mater. Sci. Eng. B 119(2), 152–158 (2005).
[CrossRef]

Tian, Z. F.

Z. F. Tian, H. B. Liang, B. Han, Q. Su, Y. Tao, G. B. Zhang, and Y. B. Fu, “Photon cascade emission of Gd3+ in Na(Y,Gd)FPO4,” J. Phys. Chem. C 112(32), 12524–12529 (2008).
[CrossRef]

Tsuboi, T.

T. Tsuboi, H. J. Seo, B. K. Moon, and J. H. Kim, “Optical studies of Eu3+ ions in Bi4Ge3O12 crystals,” Physica B 270(1-2), 45–51 (1999).
[CrossRef]

Tung, C. Y.

T. J. Lee, L. Y. Luo, E. W. G. Diau, T. M. Chen, B. M. Cheng, and C. Y. Tung, “Visible quantum cutting through downconversion in green-emitting K2GdF5: Tb3+ phosphors,” Appl. Phys. Lett. 89(13), 131121 (2006).
[CrossRef]

Tzeng, H. Y.

H. Y. Tzeng, B. M. Cheng, and T. M. Chen, “Visible quantum cutting in green-emitting BaGdF5: Tb3+ phosphors via downconversion,” J. Lumin. 122–123, 917–920 (2007).
[CrossRef]

Wang, D. Y.

D. Y. Wang and N. Kodama, “Visible quantum cutting through downconversion in GdPO4: Tb3+ and Sr3Gd(PO4)3: Tb3+,” J. Solid State Chem. 182(8), 2219–2224 (2009).
[CrossRef]

Wang, J.

J. Zhong, H. Liang, Q. Su, J. Zhou, Y. Huang, Z. Gao, Y. Tao, and J. Wang, “Luminescence properties of NaGd(PO3)4: Eu3+ and energy transfer from Gd3+ to Eu3+,” Appl. Phys. B 98(1), 139–147 (2010).
[CrossRef]

Wang, L.

L. Wang, X. Zhang, Z. D. Hao, Y. S. Luo, J. H. Zhang, and X. J. Wang, “Interionic energy transfer in Y3Al5O12:Ce3+, Pr3+ phosphor,” J. Appl. Phys. 108(9), 093515 (2010).
[CrossRef]

Wang, X. J.

L. Wang, X. Zhang, Z. D. Hao, Y. S. Luo, J. H. Zhang, and X. J. Wang, “Interionic energy transfer in Y3Al5O12:Ce3+, Pr3+ phosphor,” J. Appl. Phys. 108(9), 093515 (2010).
[CrossRef]

Wang, Y. H.

H. J. Zhang, Y. H. Wang, Y. Tao, W. H. Li, D. K. Hu, E. X. Feng, and X. F. Nie, “Visible quantum cutting in Tb3+-doped BaGdB9O16 via downconversion,” J. Electrochem. Soc. 157(8), J293–J296 (2010).
[CrossRef]

Xie, M. B.

M. B. Xie, Y. Tao, Y. Huang, H. B. Liang, and Q. Su, “The quantum cutting of Tb3+ in Ca6Ln2Na2(PO4)6F2 (Ln = Gd, La) under VUV-UV excitation: with and without Gd3+,” Inorg. Chem. 49(24), 11317–11324 (2010).
[CrossRef] [PubMed]

Yocom, N.

N. Yocom, R. S. Meltzer, K. W. Jang, and M. Grimm, “New green phosphors for plasma displays,” J. Soc. Inf. Disp. 4(3), 169–172 (1996).
[CrossRef]

Yu, B. Y.

C. H. Kim, I. E. Kwon, C. H. Park, Y. J. Hwang, H. S. Bae, B. Y. Yu, C. H. Pyun, and G. Y. Hong, “Phosphors for plasma display panels,” J. Alloy. Comp. 311(1), 33–39 (2000).
[CrossRef]

Zhang, G. B.

Z. F. Tian, H. B. Liang, B. Han, Q. Su, Y. Tao, G. B. Zhang, and Y. B. Fu, “Photon cascade emission of Gd3+ in Na(Y,Gd)FPO4,” J. Phys. Chem. C 112(32), 12524–12529 (2008).
[CrossRef]

Zhang, H. J.

H. J. Zhang, Y. H. Wang, Y. Tao, W. H. Li, D. K. Hu, E. X. Feng, and X. F. Nie, “Visible quantum cutting in Tb3+-doped BaGdB9O16 via downconversion,” J. Electrochem. Soc. 157(8), J293–J296 (2010).
[CrossRef]

Zhang, J. H.

L. Wang, X. Zhang, Z. D. Hao, Y. S. Luo, J. H. Zhang, and X. J. Wang, “Interionic energy transfer in Y3Al5O12:Ce3+, Pr3+ phosphor,” J. Appl. Phys. 108(9), 093515 (2010).
[CrossRef]

Zhang, X.

L. Wang, X. Zhang, Z. D. Hao, Y. S. Luo, J. H. Zhang, and X. J. Wang, “Interionic energy transfer in Y3Al5O12:Ce3+, Pr3+ phosphor,” J. Appl. Phys. 108(9), 093515 (2010).
[CrossRef]

Zhong, J.

J. Zhong, H. Liang, Q. Su, J. Zhou, Y. Huang, Z. Gao, Y. Tao, and J. Wang, “Luminescence properties of NaGd(PO3)4: Eu3+ and energy transfer from Gd3+ to Eu3+,” Appl. Phys. B 98(1), 139–147 (2010).
[CrossRef]

J. Zhong, H. Liang, B. Han, Q. Su, and Y. Tao, “NaGd(PO3)4: Tb3+—a new promising green phosphor for PDPs application,” Chem. Phys. Lett. 453(4-6), 192–196 (2008).
[CrossRef]

Zhou, J.

J. Zhong, H. Liang, Q. Su, J. Zhou, Y. Huang, Z. Gao, Y. Tao, and J. Wang, “Luminescence properties of NaGd(PO3)4: Eu3+ and energy transfer from Gd3+ to Eu3+,” Appl. Phys. B 98(1), 139–147 (2010).
[CrossRef]

Acta Crystallogr. A (1)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[CrossRef]

Appl. Phys. B (1)

J. Zhong, H. Liang, Q. Su, J. Zhou, Y. Huang, Z. Gao, Y. Tao, and J. Wang, “Luminescence properties of NaGd(PO3)4: Eu3+ and energy transfer from Gd3+ to Eu3+,” Appl. Phys. B 98(1), 139–147 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

T. J. Lee, L. Y. Luo, E. W. G. Diau, T. M. Chen, B. M. Cheng, and C. Y. Tung, “Visible quantum cutting through downconversion in green-emitting K2GdF5: Tb3+ phosphors,” Appl. Phys. Lett. 89(13), 131121 (2006).
[CrossRef]

Chem. Phys. Lett. (1)

J. Zhong, H. Liang, B. Han, Q. Su, and Y. Tao, “NaGd(PO3)4: Tb3+—a new promising green phosphor for PDPs application,” Chem. Phys. Lett. 453(4-6), 192–196 (2008).
[CrossRef]

Inorg. Chem. (1)

M. B. Xie, Y. Tao, Y. Huang, H. B. Liang, and Q. Su, “The quantum cutting of Tb3+ in Ca6Ln2Na2(PO4)6F2 (Ln = Gd, La) under VUV-UV excitation: with and without Gd3+,” Inorg. Chem. 49(24), 11317–11324 (2010).
[CrossRef] [PubMed]

J. Alloy. Comp. (2)

M. F. Hoogendorp, W. J. Schipper, and G. Blasse, “Cerium(III) luminescence and disorder in the eulytite structure,” J. Alloy. Comp. 205(1-2), 249–251 (1994).
[CrossRef]

C. H. Kim, I. E. Kwon, C. H. Park, Y. J. Hwang, H. S. Bae, B. Y. Yu, C. H. Pyun, and G. Y. Hong, “Phosphors for plasma display panels,” J. Alloy. Comp. 311(1), 33–39 (2000).
[CrossRef]

J. Appl. Phys. (1)

L. Wang, X. Zhang, Z. D. Hao, Y. S. Luo, J. H. Zhang, and X. J. Wang, “Interionic energy transfer in Y3Al5O12:Ce3+, Pr3+ phosphor,” J. Appl. Phys. 108(9), 093515 (2010).
[CrossRef]

J. Electrochem. Soc. (1)

H. J. Zhang, Y. H. Wang, Y. Tao, W. H. Li, D. K. Hu, E. X. Feng, and X. F. Nie, “Visible quantum cutting in Tb3+-doped BaGdB9O16 via downconversion,” J. Electrochem. Soc. 157(8), J293–J296 (2010).
[CrossRef]

J. Lumin. (2)

H. Y. Tzeng, B. M. Cheng, and T. M. Chen, “Visible quantum cutting in green-emitting BaGdF5: Tb3+ phosphors via downconversion,” J. Lumin. 122–123, 917–920 (2007).
[CrossRef]

P. Dorenbos, “The 5d level positions of the trivalent lanthanides in inorganic compounds,” J. Lumin. 91(3-4), 155–176 (2000).
[CrossRef]

J. Phys. Chem. C (2)

B. Han, H. B. Liang, Y. Huang, Y. Tao, and Q. Su, “Vacuum ultraviolet-visible spectroscopic properties of Tb3+ in Li(Y, Gd)(PO3)4: tunable emission, quantum cutting, and energy transfer,” J. Phys. Chem. C 114(14), 6770–6777 (2010).
[CrossRef]

Z. F. Tian, H. B. Liang, B. Han, Q. Su, Y. Tao, G. B. Zhang, and Y. B. Fu, “Photon cascade emission of Gd3+ in Na(Y,Gd)FPO4,” J. Phys. Chem. C 112(32), 12524–12529 (2008).
[CrossRef]

J. Soc. Inf. Disp. (1)

N. Yocom, R. S. Meltzer, K. W. Jang, and M. Grimm, “New green phosphors for plasma displays,” J. Soc. Inf. Disp. 4(3), 169–172 (1996).
[CrossRef]

J. Solid State Chem. (2)

J. Barbier, “Structural refinements of eulytite-type Ca3Bi(PO4)3 and Ba3La(PO4)3,” J. Solid State Chem. 101(2), 249–256 (1992).
[CrossRef]

D. Y. Wang and N. Kodama, “Visible quantum cutting through downconversion in GdPO4: Tb3+ and Sr3Gd(PO4)3: Tb3+,” J. Solid State Chem. 182(8), 2219–2224 (2009).
[CrossRef]

Mater. Res. Bull. (1)

E. H. Arbib, B. Elouadi, J. P. Chaminade, and J. Darriet, “The crystal structure of the phosphate eulytite Ba3Bi(PO4)3,” Mater. Res. Bull. 35(5), 761–773 (2000).
[CrossRef]

Mater. Sci. Eng. B (1)

H. B. Liang, Y. Tao, and Q. Su, “The luminescent properties of Ba3Gd1−xLnx(PO4)3 under synchrotron radiation VUV excitation,” Mater. Sci. Eng. B 119(2), 152–158 (2005).
[CrossRef]

Physica B (1)

T. Tsuboi, H. J. Seo, B. K. Moon, and J. H. Kim, “Optical studies of Eu3+ ions in Bi4Ge3O12 crystals,” Physica B 270(1-2), 45–51 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

XRD patterns of samples Ba3Gd0.5TbxLa0.5-x(PO4)3 (x = 0.1, 0.5), Ba3Gd1-xTbx(PO4)3 (x = 0.05, 0.2, 1.0), Ba3La1-xTbx(PO4)3 (x = 0.05, 0.2) and Ba3Tb(PO4)3.

Fig. 2
Fig. 2

(a) Emission spectra of Gd3+ ion in samples Ba3Gd0.5TbxLa0.5-x(PO4)3 (x = 0, 0.01, 0.03, 0.05, 0.1, 0.2, 0.3, 0.5) (λex = 274 nm); (b) Emission intensity of Gd3+ (312 nm) as a function of Tb3+ concentration (x value) in samples Ba3Gd0.5TbxLa0.5-x(PO4)3 (x = 0, 0.01, 0.03, 0.05, 0.1, 0.2, 0.3, 0.5) (λex = 274 nm); (c) Emission and (d) Excitation spectra of sample Ba3Gd0.5Tb0.1La0.4(PO4)3ex = 274 nm, λem = 541 nm).

Fig. 3
Fig. 3

Luminescence decays of Tb3+ 5D4 in samples Ba3Gd0.5TbxLa0.5-x(PO4)3 (x = 0.01, 0.03, 0.05, 0.1, 0.2, 0.3, 0.5) at room temperature (λex = 274 nm, λem = 541 nm).

Fig. 4
Fig. 4

The theoretical luminescence decay curves of Ba3Gd0.5TbxLa0.5-x(PO4)3 (x = 0.01, 0.03, 0.05, 0.1, 0.2, 0.3, 0.5) samples at room temperature (λex = 274 nm, λem = 541 nm).

Fig. 5
Fig. 5

Luminescence decay of Gd3+ 6P7/2 in samples Ba3Gd0.5TbxLa0.5-x(PO4)3 (x = 0, 0.01, 0.03, 0.05, 0.1, 0.2, 0.3, 0.5) (λex = 274 nm, λem = 312 nm) at room temperature.

Fig. 6
Fig. 6

Emission spectra of Ba3Gd1-xTbx(PO4)3(x = 0.03, 0.05, 0.1), Ba3La1-xTbx(PO4)3 (x = 0.03, 0.05, 0.1) and Ba3Tb(PO4)3 under 232 nm excitation.

Fig. 7
Fig. 7

Samples Ba3Gd0.95Tb0.05(PO4)3(a) and Ba3La0.95Tb0.05(PO4)3(b) emission spectra under different wavelength excitation(all the curves were normalized by the 5D37F6 emission at 378 nm of Tb3+); the inset figure c and d are the magnified 5D37F6 emission band.

Fig. 8
Fig. 8

The quantum cutting process of Tb3+ion in the host.

Fig. 9
Fig. 9

The excitation and emission spectra of Ba3Tb(PO4)3(BTP) and Zn2SiO4: Mn2+ (ZSM) samples at RT.

Fig. 10
Fig. 10

Decay curves of Ba3Tb(PO4)3 (BTP) together with the decay curve of commercial phosphor Zn2SiO4: Mn2+ (ZSM) at room temperature.

Tables (2)

Tables Icon

Table 1 The Lifetime Values of the 6P7/2 State Within Gd3+ ions (τ) in Ba3Gd0.5TbxLa0.5-x(PO4)3 Samples Under 274 nm Excitation and the Energy Transfer Efficiency (ŋ Gd 3+ →Tb 3+)

Tables Icon

Table 2 The Emission Intensity Ratio of 5D4 to 5D3 and the Quantum Cutting Efficiency

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d N G d P * d t = N G d P * τ G d P K G d T b N G d P * ,
d N T b D * d t = N T b D * τ T b D + K G d T b N G d P * ,
I ( t ) = N T b D * ( t ) = K G d T b N G d P * ( 0 ) 1 τ T b D 1 τ G d P [ exp ( t τ G d P ) exp ( t τ T b D ) ] ,
τ Gd = 0 I Gd ( t ) d t ,
η Gd Tb = 1 τ G d / τ G d 0 .
Tb 3 + ( 7 D J )   +  Tb 3 + ( 7 F 6 ) Tb 3 + ( 5 D 4 )   +  Tb 3 + ( 5 D 3 ) .
η= P (QC) 5 D 4 P (NQC) 5 D 4 P (NQC) 5 D 4 +1 ,

Metrics