Abstract

Improved spectral resolutions were achieved in laser-induced breakdown spectroscopy (LIBS) through generation of high-temperature and low-density plasmas. A first pulse from a KrF excimer laser was used to produce particles by perpendicularly irradiating targets in air. A second pulse from a 532 nm Nd:YAG laser was introduced parallel to the sample surface to reablate the particles. Optical scattering from the first-pulse plasmas was imaged to elucidate particle formation in the plasmas. Narrower line widths (full width at half maximums: FWHMs) and weaker self-absorption were observed from time-integrated LIBS spectra. Estimation of plasma temperatures and densities indicates that high temperature and low density can be achieved simultaneously in plasmas to improve LIBS resolutions.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Hahn and M. M. Lunden, “Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy,” Aerosol Sci. Technol. 33(1), 30–48 (2000).
    [CrossRef]
  2. D. Anglos, S. Couris, and C. Fotakis, “Laser diagnostics of painted artworks: laser induced breakdown spectroscopy of pigments,” Appl. Spectrosc. 51(7), 1025–1030 (1997).
    [CrossRef]
  3. D. A. Cremers, J. E. Barefield, and A. C. Koskelo, “Remote elemental analysis by laser-induced breakdown spectroscopy using a fiber-optic cable,” Appl. Spectrosc. 49(6), 857–860 (1995).
    [CrossRef]
  4. J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Karney, “A preliminary study of the determination of uranium, plutonium and neptunium by laser-induced breakdown spectroscopy,” Rec. Res. Dev. Appl. Spectrosc. 2, 59–67 (1999).
  5. S. Nakamura, Y. Ito, K. Sone, H. Hiraga, and K.- Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68(17), 2981–2986 (1996).
    [CrossRef] [PubMed]
  6. D. A. Cremers, L. J. Radziemski, and R. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38(5), 721–729 (1984).
    [CrossRef]
  7. R. Sattmann, V. Sturm, and R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D Appl. Phys. 28(10), 2181–2187 (1995).
    [CrossRef]
  8. J. Uebbing, J. Brust, W. Sdorra, F. Leis, and K. Niemax, “Reheating of a laser-produced plasma by a second pulse laser,” Appl. Spectrosc. 45(9), 1419–1423 (1991).
    [CrossRef]
  9. F. Colao, S. Pershin, V. Lazic, and R. Fantoni, “Investigation of the mechanisms involved in formation and decay of laser-produced plasmas,” Appl. Surf. Sci. 197-198, 207–212 (2002).
    [CrossRef]
  10. L. St-Onge, V. Detalle, and M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta, B At. Spectrosc. 57(1), 121–135 (2002).
    [CrossRef]
  11. F. Colao, V. Lazic, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta, B At. Spectrosc. 57(7), 1167–1179 (2002).
    [CrossRef]
  12. V. Sturm, L. Peter, and R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54(9), 1275–1278 (2000).
    [CrossRef]
  13. D. N. Stratis, K. L. Eland, and S. M. Angel, “Dual-pulse LIBS using a preablation spark for enhanced ablation and emission,” Appl. Spectrosc. 54(9), 1270–1274 (2000).
    [CrossRef]
  14. S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresenius J. Anal. Chem. 369(3-4), 320–327 (2001).
    [CrossRef] [PubMed]
  15. L. J. Radziemski, and D. A. Cremers, eds., Laser-Induced Plasmas and Applications (Marcel Dekker: New York 1989).
  16. R. E. Russo, X. Mao, and S. S. Mao, “The physics of laser ablation in microchemical analysis,” Anal. Chem. 74(3), 70A–77A (2002).
    [CrossRef] [PubMed]
  17. W. B. Lee, J. Y. Wu, Y. I. Lee, and J. Sneddon, “Recent applications of laser-induced breakdown spectrometry: a review of material approaches,” Appl. Spectrosc. Rev. 39(1), 27–97 (2004).
    [CrossRef]
  18. K. Song, Y. I. Lee, and J. Sneddon, “Recent developments in instrumentation for laser induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 37(1), 89–117 (2002).
    [CrossRef]
  19. I. B. Gornushkin, L. A. King, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Line broadening mechanisms in the low pressure laser-induced plasma,” Spectrochim. Acta, B At. Spectrosc. 54(8), 1207–1217 (1999).
    [CrossRef]
  20. A. Essoltani, P. Proulx, M. I. Boulos, and A. Gleizes, “Radiation and self-absorption in argon-iron plasmas at atmospheric pressure,” J. Anal. At. Spectrom. 5(6), 543–547 (1990).
    [CrossRef]
  21. J. Scaffidi, S. M. Angel, and D. A. Cremers, “Emission enhancement mechanisms in dual-pulse LIBS,” Anal. Chem. 78, 24–32 (2006).
    [CrossRef] [PubMed]
  22. H. Sobral, M. Villagrán-Muniz, R. Navarro-González, and A. C. Raga, “Temporal evolution of the shock wave and hot core air in laser induced plasma,” Appl. Phys. Lett. 77(20), 3158 (2000).
    [CrossRef]
  23. J. Sneddon, T. L. Thiem, and Y. I. Lee, Lasers in Analytical Atomic Spectroscopy (VCH, New York, 1997).
  24. Y. Ralchenko, A. E. Kramida, J. Reader, NIST ASD Team, (2010). NIST Atomic Spectra Database (version 4.0), [Online]. Available: http://physics.nist.gov/asd [Monday, 04-Apr-2011 23:19:27 EDT]. National Institute of Standards and Technology, Gaithersburg, MD.
  25. W. M. Andrzej, P. Vincenzo, and S. Israel, Laser-induced Breakdown Spectroscopy: Fundamentals and Applications (Cambridge University Press, 2006)
  26. H. R. Griem, Spectral Line Broadening by Plasma (Academic Press, 1974).

2006

J. Scaffidi, S. M. Angel, and D. A. Cremers, “Emission enhancement mechanisms in dual-pulse LIBS,” Anal. Chem. 78, 24–32 (2006).
[CrossRef] [PubMed]

2004

W. B. Lee, J. Y. Wu, Y. I. Lee, and J. Sneddon, “Recent applications of laser-induced breakdown spectrometry: a review of material approaches,” Appl. Spectrosc. Rev. 39(1), 27–97 (2004).
[CrossRef]

2002

K. Song, Y. I. Lee, and J. Sneddon, “Recent developments in instrumentation for laser induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 37(1), 89–117 (2002).
[CrossRef]

F. Colao, S. Pershin, V. Lazic, and R. Fantoni, “Investigation of the mechanisms involved in formation and decay of laser-produced plasmas,” Appl. Surf. Sci. 197-198, 207–212 (2002).
[CrossRef]

L. St-Onge, V. Detalle, and M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta, B At. Spectrosc. 57(1), 121–135 (2002).
[CrossRef]

F. Colao, V. Lazic, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta, B At. Spectrosc. 57(7), 1167–1179 (2002).
[CrossRef]

R. E. Russo, X. Mao, and S. S. Mao, “The physics of laser ablation in microchemical analysis,” Anal. Chem. 74(3), 70A–77A (2002).
[CrossRef] [PubMed]

2001

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresenius J. Anal. Chem. 369(3-4), 320–327 (2001).
[CrossRef] [PubMed]

2000

H. Sobral, M. Villagrán-Muniz, R. Navarro-González, and A. C. Raga, “Temporal evolution of the shock wave and hot core air in laser induced plasma,” Appl. Phys. Lett. 77(20), 3158 (2000).
[CrossRef]

D. W. Hahn and M. M. Lunden, “Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy,” Aerosol Sci. Technol. 33(1), 30–48 (2000).
[CrossRef]

D. N. Stratis, K. L. Eland, and S. M. Angel, “Dual-pulse LIBS using a preablation spark for enhanced ablation and emission,” Appl. Spectrosc. 54(9), 1270–1274 (2000).
[CrossRef]

V. Sturm, L. Peter, and R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54(9), 1275–1278 (2000).
[CrossRef]

1999

J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Karney, “A preliminary study of the determination of uranium, plutonium and neptunium by laser-induced breakdown spectroscopy,” Rec. Res. Dev. Appl. Spectrosc. 2, 59–67 (1999).

I. B. Gornushkin, L. A. King, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Line broadening mechanisms in the low pressure laser-induced plasma,” Spectrochim. Acta, B At. Spectrosc. 54(8), 1207–1217 (1999).
[CrossRef]

1997

1996

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, and K.- Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68(17), 2981–2986 (1996).
[CrossRef] [PubMed]

1995

R. Sattmann, V. Sturm, and R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D Appl. Phys. 28(10), 2181–2187 (1995).
[CrossRef]

D. A. Cremers, J. E. Barefield, and A. C. Koskelo, “Remote elemental analysis by laser-induced breakdown spectroscopy using a fiber-optic cable,” Appl. Spectrosc. 49(6), 857–860 (1995).
[CrossRef]

1991

1990

A. Essoltani, P. Proulx, M. I. Boulos, and A. Gleizes, “Radiation and self-absorption in argon-iron plasmas at atmospheric pressure,” J. Anal. At. Spectrom. 5(6), 543–547 (1990).
[CrossRef]

1984

Angel, S. M.

J. Scaffidi, S. M. Angel, and D. A. Cremers, “Emission enhancement mechanisms in dual-pulse LIBS,” Anal. Chem. 78, 24–32 (2006).
[CrossRef] [PubMed]

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresenius J. Anal. Chem. 369(3-4), 320–327 (2001).
[CrossRef] [PubMed]

D. N. Stratis, K. L. Eland, and S. M. Angel, “Dual-pulse LIBS using a preablation spark for enhanced ablation and emission,” Appl. Spectrosc. 54(9), 1270–1274 (2000).
[CrossRef]

Anglos, D.

Barefield, J. E.

Berg, M. A.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresenius J. Anal. Chem. 369(3-4), 320–327 (2001).
[CrossRef] [PubMed]

Boulos, M. I.

A. Essoltani, P. Proulx, M. I. Boulos, and A. Gleizes, “Radiation and self-absorption in argon-iron plasmas at atmospheric pressure,” J. Anal. At. Spectrom. 5(6), 543–547 (1990).
[CrossRef]

Brust, J.

Colao, F.

F. Colao, S. Pershin, V. Lazic, and R. Fantoni, “Investigation of the mechanisms involved in formation and decay of laser-produced plasmas,” Appl. Surf. Sci. 197-198, 207–212 (2002).
[CrossRef]

F. Colao, V. Lazic, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta, B At. Spectrosc. 57(7), 1167–1179 (2002).
[CrossRef]

Couris, S.

Cremers, D. A.

Detalle, V.

L. St-Onge, V. Detalle, and M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta, B At. Spectrosc. 57(1), 121–135 (2002).
[CrossRef]

Eland, K. L.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresenius J. Anal. Chem. 369(3-4), 320–327 (2001).
[CrossRef] [PubMed]

D. N. Stratis, K. L. Eland, and S. M. Angel, “Dual-pulse LIBS using a preablation spark for enhanced ablation and emission,” Appl. Spectrosc. 54(9), 1270–1274 (2000).
[CrossRef]

Essoltani, A.

A. Essoltani, P. Proulx, M. I. Boulos, and A. Gleizes, “Radiation and self-absorption in argon-iron plasmas at atmospheric pressure,” J. Anal. At. Spectrom. 5(6), 543–547 (1990).
[CrossRef]

Fantoni, R.

F. Colao, S. Pershin, V. Lazic, and R. Fantoni, “Investigation of the mechanisms involved in formation and decay of laser-produced plasmas,” Appl. Surf. Sci. 197-198, 207–212 (2002).
[CrossRef]

F. Colao, V. Lazic, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta, B At. Spectrosc. 57(7), 1167–1179 (2002).
[CrossRef]

Fotakis, C.

Gleizes, A.

A. Essoltani, P. Proulx, M. I. Boulos, and A. Gleizes, “Radiation and self-absorption in argon-iron plasmas at atmospheric pressure,” J. Anal. At. Spectrom. 5(6), 543–547 (1990).
[CrossRef]

Gold, D. M.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresenius J. Anal. Chem. 369(3-4), 320–327 (2001).
[CrossRef] [PubMed]

Gornushkin, I. B.

I. B. Gornushkin, L. A. King, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Line broadening mechanisms in the low pressure laser-induced plasma,” Spectrochim. Acta, B At. Spectrosc. 54(8), 1207–1217 (1999).
[CrossRef]

Hahn, D. W.

D. W. Hahn and M. M. Lunden, “Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy,” Aerosol Sci. Technol. 33(1), 30–48 (2000).
[CrossRef]

Hiraga, H.

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, and K.- Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68(17), 2981–2986 (1996).
[CrossRef] [PubMed]

Ito, Y.

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, and K.- Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68(17), 2981–2986 (1996).
[CrossRef] [PubMed]

Kaneko, K.-

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, and K.- Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68(17), 2981–2986 (1996).
[CrossRef] [PubMed]

Karney, K. P.

J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Karney, “A preliminary study of the determination of uranium, plutonium and neptunium by laser-induced breakdown spectroscopy,” Rec. Res. Dev. Appl. Spectrosc. 2, 59–67 (1999).

King, L. A.

I. B. Gornushkin, L. A. King, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Line broadening mechanisms in the low pressure laser-induced plasma,” Spectrochim. Acta, B At. Spectrosc. 54(8), 1207–1217 (1999).
[CrossRef]

Koskelo, A. C.

Lai, T.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresenius J. Anal. Chem. 369(3-4), 320–327 (2001).
[CrossRef] [PubMed]

Lazic, V.

F. Colao, S. Pershin, V. Lazic, and R. Fantoni, “Investigation of the mechanisms involved in formation and decay of laser-produced plasmas,” Appl. Surf. Sci. 197-198, 207–212 (2002).
[CrossRef]

F. Colao, V. Lazic, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta, B At. Spectrosc. 57(7), 1167–1179 (2002).
[CrossRef]

Lee, W. B.

W. B. Lee, J. Y. Wu, Y. I. Lee, and J. Sneddon, “Recent applications of laser-induced breakdown spectrometry: a review of material approaches,” Appl. Spectrosc. Rev. 39(1), 27–97 (2004).
[CrossRef]

Lee, Y. I.

W. B. Lee, J. Y. Wu, Y. I. Lee, and J. Sneddon, “Recent applications of laser-induced breakdown spectrometry: a review of material approaches,” Appl. Spectrosc. Rev. 39(1), 27–97 (2004).
[CrossRef]

K. Song, Y. I. Lee, and J. Sneddon, “Recent developments in instrumentation for laser induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 37(1), 89–117 (2002).
[CrossRef]

Leis, F.

Loree, R. R.

Lunden, M. M.

D. W. Hahn and M. M. Lunden, “Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy,” Aerosol Sci. Technol. 33(1), 30–48 (2000).
[CrossRef]

Mao, S. S.

R. E. Russo, X. Mao, and S. S. Mao, “The physics of laser ablation in microchemical analysis,” Anal. Chem. 74(3), 70A–77A (2002).
[CrossRef] [PubMed]

Mao, X.

R. E. Russo, X. Mao, and S. S. Mao, “The physics of laser ablation in microchemical analysis,” Anal. Chem. 74(3), 70A–77A (2002).
[CrossRef] [PubMed]

Nakamura, S.

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, and K.- Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68(17), 2981–2986 (1996).
[CrossRef] [PubMed]

Navarro-González, R.

H. Sobral, M. Villagrán-Muniz, R. Navarro-González, and A. C. Raga, “Temporal evolution of the shock wave and hot core air in laser induced plasma,” Appl. Phys. Lett. 77(20), 3158 (2000).
[CrossRef]

Niemax, K.

Noll, R.

V. Sturm, L. Peter, and R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54(9), 1275–1278 (2000).
[CrossRef]

R. Sattmann, V. Sturm, and R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D Appl. Phys. 28(10), 2181–2187 (1995).
[CrossRef]

Omenetto, N.

I. B. Gornushkin, L. A. King, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Line broadening mechanisms in the low pressure laser-induced plasma,” Spectrochim. Acta, B At. Spectrosc. 54(8), 1207–1217 (1999).
[CrossRef]

Pershin, S.

F. Colao, S. Pershin, V. Lazic, and R. Fantoni, “Investigation of the mechanisms involved in formation and decay of laser-produced plasmas,” Appl. Surf. Sci. 197-198, 207–212 (2002).
[CrossRef]

F. Colao, V. Lazic, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta, B At. Spectrosc. 57(7), 1167–1179 (2002).
[CrossRef]

Peter, L.

Proulx, P.

A. Essoltani, P. Proulx, M. I. Boulos, and A. Gleizes, “Radiation and self-absorption in argon-iron plasmas at atmospheric pressure,” J. Anal. At. Spectrom. 5(6), 543–547 (1990).
[CrossRef]

Radziemski, L. J.

Raga, A. C.

H. Sobral, M. Villagrán-Muniz, R. Navarro-González, and A. C. Raga, “Temporal evolution of the shock wave and hot core air in laser induced plasma,” Appl. Phys. Lett. 77(20), 3158 (2000).
[CrossRef]

Russo, R. E.

R. E. Russo, X. Mao, and S. S. Mao, “The physics of laser ablation in microchemical analysis,” Anal. Chem. 74(3), 70A–77A (2002).
[CrossRef] [PubMed]

Sabsabi, M.

L. St-Onge, V. Detalle, and M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta, B At. Spectrosc. 57(1), 121–135 (2002).
[CrossRef]

Sattmann, R.

R. Sattmann, V. Sturm, and R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D Appl. Phys. 28(10), 2181–2187 (1995).
[CrossRef]

Scaffidi, J.

J. Scaffidi, S. M. Angel, and D. A. Cremers, “Emission enhancement mechanisms in dual-pulse LIBS,” Anal. Chem. 78, 24–32 (2006).
[CrossRef] [PubMed]

Sdorra, W.

Singh, J. P.

J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Karney, “A preliminary study of the determination of uranium, plutonium and neptunium by laser-induced breakdown spectroscopy,” Rec. Res. Dev. Appl. Spectrosc. 2, 59–67 (1999).

Smith, B. W.

I. B. Gornushkin, L. A. King, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Line broadening mechanisms in the low pressure laser-induced plasma,” Spectrochim. Acta, B At. Spectrosc. 54(8), 1207–1217 (1999).
[CrossRef]

Sneddon, J.

W. B. Lee, J. Y. Wu, Y. I. Lee, and J. Sneddon, “Recent applications of laser-induced breakdown spectrometry: a review of material approaches,” Appl. Spectrosc. Rev. 39(1), 27–97 (2004).
[CrossRef]

K. Song, Y. I. Lee, and J. Sneddon, “Recent developments in instrumentation for laser induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 37(1), 89–117 (2002).
[CrossRef]

Sobral, H.

H. Sobral, M. Villagrán-Muniz, R. Navarro-González, and A. C. Raga, “Temporal evolution of the shock wave and hot core air in laser induced plasma,” Appl. Phys. Lett. 77(20), 3158 (2000).
[CrossRef]

Sone, K.

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, and K.- Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68(17), 2981–2986 (1996).
[CrossRef] [PubMed]

Song, K.

K. Song, Y. I. Lee, and J. Sneddon, “Recent developments in instrumentation for laser induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 37(1), 89–117 (2002).
[CrossRef]

St-Onge, L.

L. St-Onge, V. Detalle, and M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta, B At. Spectrosc. 57(1), 121–135 (2002).
[CrossRef]

Stratis, D. N.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresenius J. Anal. Chem. 369(3-4), 320–327 (2001).
[CrossRef] [PubMed]

D. N. Stratis, K. L. Eland, and S. M. Angel, “Dual-pulse LIBS using a preablation spark for enhanced ablation and emission,” Appl. Spectrosc. 54(9), 1270–1274 (2000).
[CrossRef]

Sturm, V.

V. Sturm, L. Peter, and R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54(9), 1275–1278 (2000).
[CrossRef]

R. Sattmann, V. Sturm, and R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D Appl. Phys. 28(10), 2181–2187 (1995).
[CrossRef]

Uebbing, J.

Villagrán-Muniz, M.

H. Sobral, M. Villagrán-Muniz, R. Navarro-González, and A. C. Raga, “Temporal evolution of the shock wave and hot core air in laser induced plasma,” Appl. Phys. Lett. 77(20), 3158 (2000).
[CrossRef]

Winefordner, J. D.

I. B. Gornushkin, L. A. King, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Line broadening mechanisms in the low pressure laser-induced plasma,” Spectrochim. Acta, B At. Spectrosc. 54(8), 1207–1217 (1999).
[CrossRef]

Wu, J. Y.

W. B. Lee, J. Y. Wu, Y. I. Lee, and J. Sneddon, “Recent applications of laser-induced breakdown spectrometry: a review of material approaches,” Appl. Spectrosc. Rev. 39(1), 27–97 (2004).
[CrossRef]

Yueh, F. Y.

J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Karney, “A preliminary study of the determination of uranium, plutonium and neptunium by laser-induced breakdown spectroscopy,” Rec. Res. Dev. Appl. Spectrosc. 2, 59–67 (1999).

Zhang, H.

J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Karney, “A preliminary study of the determination of uranium, plutonium and neptunium by laser-induced breakdown spectroscopy,” Rec. Res. Dev. Appl. Spectrosc. 2, 59–67 (1999).

Aerosol Sci. Technol.

D. W. Hahn and M. M. Lunden, “Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy,” Aerosol Sci. Technol. 33(1), 30–48 (2000).
[CrossRef]

Anal. Chem.

S. Nakamura, Y. Ito, K. Sone, H. Hiraga, and K.- Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68(17), 2981–2986 (1996).
[CrossRef] [PubMed]

R. E. Russo, X. Mao, and S. S. Mao, “The physics of laser ablation in microchemical analysis,” Anal. Chem. 74(3), 70A–77A (2002).
[CrossRef] [PubMed]

J. Scaffidi, S. M. Angel, and D. A. Cremers, “Emission enhancement mechanisms in dual-pulse LIBS,” Anal. Chem. 78, 24–32 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett.

H. Sobral, M. Villagrán-Muniz, R. Navarro-González, and A. C. Raga, “Temporal evolution of the shock wave and hot core air in laser induced plasma,” Appl. Phys. Lett. 77(20), 3158 (2000).
[CrossRef]

Appl. Spectrosc.

Appl. Spectrosc. Rev.

W. B. Lee, J. Y. Wu, Y. I. Lee, and J. Sneddon, “Recent applications of laser-induced breakdown spectrometry: a review of material approaches,” Appl. Spectrosc. Rev. 39(1), 27–97 (2004).
[CrossRef]

K. Song, Y. I. Lee, and J. Sneddon, “Recent developments in instrumentation for laser induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 37(1), 89–117 (2002).
[CrossRef]

Appl. Surf. Sci.

F. Colao, S. Pershin, V. Lazic, and R. Fantoni, “Investigation of the mechanisms involved in formation and decay of laser-produced plasmas,” Appl. Surf. Sci. 197-198, 207–212 (2002).
[CrossRef]

Fresenius J. Anal. Chem.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresenius J. Anal. Chem. 369(3-4), 320–327 (2001).
[CrossRef] [PubMed]

J. Anal. At. Spectrom.

A. Essoltani, P. Proulx, M. I. Boulos, and A. Gleizes, “Radiation and self-absorption in argon-iron plasmas at atmospheric pressure,” J. Anal. At. Spectrom. 5(6), 543–547 (1990).
[CrossRef]

J. Phys. D Appl. Phys.

R. Sattmann, V. Sturm, and R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D Appl. Phys. 28(10), 2181–2187 (1995).
[CrossRef]

Rec. Res. Dev. Appl. Spectrosc.

J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Karney, “A preliminary study of the determination of uranium, plutonium and neptunium by laser-induced breakdown spectroscopy,” Rec. Res. Dev. Appl. Spectrosc. 2, 59–67 (1999).

Spectrochim. Acta, B At. Spectrosc.

L. St-Onge, V. Detalle, and M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta, B At. Spectrosc. 57(1), 121–135 (2002).
[CrossRef]

F. Colao, V. Lazic, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta, B At. Spectrosc. 57(7), 1167–1179 (2002).
[CrossRef]

I. B. Gornushkin, L. A. King, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Line broadening mechanisms in the low pressure laser-induced plasma,” Spectrochim. Acta, B At. Spectrosc. 54(8), 1207–1217 (1999).
[CrossRef]

Other

J. Sneddon, T. L. Thiem, and Y. I. Lee, Lasers in Analytical Atomic Spectroscopy (VCH, New York, 1997).

Y. Ralchenko, A. E. Kramida, J. Reader, NIST ASD Team, (2010). NIST Atomic Spectra Database (version 4.0), [Online]. Available: http://physics.nist.gov/asd [Monday, 04-Apr-2011 23:19:27 EDT]. National Institute of Standards and Technology, Gaithersburg, MD.

W. M. Andrzej, P. Vincenzo, and S. Israel, Laser-induced Breakdown Spectroscopy: Fundamentals and Applications (Cambridge University Press, 2006)

H. R. Griem, Spectral Line Broadening by Plasma (Academic Press, 1974).

L. J. Radziemski, and D. A. Cremers, eds., Laser-Induced Plasmas and Applications (Marcel Dekker: New York 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup for LIBS with improved spectral resolutions.

Fig. 3
Fig. 3

(a) Temporal evolutions of emission intensity at 394.4 nm with first-pulse plasma only (square symbols), with focal points of the Nd:YAG laser and the KrF excimer laser overlapped (circle symbols), and with focal points of the Nd:YAG laser overshoot 2 mm (triangle symbols); (b) Schematic diagram of overlapped focal points of the Nd:YAG laser and the excimer laser; (c) Schematic diagram of ~2 mm overshoot of the Nd:YAG laser (the focal point of the Nd:YAG laser was ~2 mm beyond the focal point of the excimer laser).

Fig. 2
Fig. 2

Optical scattering from first-pulse plasma using the 532 nm Nd:YAG laser at different interpulse delays. Dashed lines show the location of the substrate surface.

Fig. 4
Fig. 4

Temporal evolutions of emission intensity at 394.4 nm with different interpulse delays: 15, 40, 60, and 80 μs. Inset: intensity temporal evolution with 12 ms interpulse delay.

Fig. 5
Fig. 5

(a) Temporal evolution of LIBS spectra with 50 μs interpulse delay; time-integrated LIBS spectra of plasmas from an Al target under first-pulse only condition [3 μs after plasma generation (dashed lines)] and with reablation [1 μs after second pulse (solid lines)] at different interpulse delays of (b) 20, (c) 50, and (d) 100 μs.

Fig. 6
Fig. 6

Temporal evolutions of the temperature (hollow square symbols) and density (hollow circle symbols) of first-pulse plasma.

Fig. 7
Fig. 7

Temporal evolutions of the temperature and density of the reablation plasma. Hollow square symbols in the solid curve: temperatures of Al plasma acquired 1 μs after second pulse with different interpulse delays. Hollow circle symbols in the dashed curve: Al plasma electron densities 1 μs after second pulse with different interpulse delays. The solid symbols indicated by the dotted line shows data point 3 μs after the generation of first-pulse plasma without reablation.

Tables (1)

Tables Icon

Table 1 Parameters of Atomic Lines Used in Calculation of Plasma Temperatures

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I 1 I 2 = ( g 1 A 1 g 2 A 2 ) ( λ 2 λ 1 ) exp [ ( E 1 E 2 ) k T e ] ,
Δ λ S t a r k = 2 w ( n e 10 16 ) + 3.5 A ( n e 10 16 ) 1 / 4 [ 1 B N D 1 / 3 ] w ( n e 10 16 ) ,
Δ λ S t a r k = 2 w ( n e 10 16 ) ,

Metrics