Abstract

We investigate the guidance properties of two photonic crystal fibers that have been fabricated by filling the holes of a silica template with hydrogenated amorphous silicon inclusions. The first is an all-solid fiber that guides light via an antiresonant reflecting optical waveguiding mechanism and the second is only partially filled so that it guides light by a hybrid of modified total internal reflection and antiresonant reflecting optical waveguiding. It will be shown that, by selectively filling the silica template to leave an unfilled internal ring of holes, the fiber’s confinement loss can be reduced significantly. This novel fiber design in which the light guided in the silica core can be modified by the semiconductor cladding provides a route to integrating functional semiconductor fibers with existing silica fiber infrastructures.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996), http://www.opticsinfobase.org/abstract.cfm?URI=ol-21-19-1547 .
    [CrossRef] [PubMed]
  2. J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3(2), 85–90 (2009).
    [CrossRef]
  3. W. Wadsworth, R. Percival, G. Bouwmans, J. Knight, and P. Russell, “High power air-clad photonic crystal fibre laser,” Opt. Express 11(1), 48–53 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-1-48 .
    [CrossRef] [PubMed]
  4. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett. 29(17), 1974–1976 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=ol-29-17-1974 .
    [CrossRef] [PubMed]
  5. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
    [CrossRef] [PubMed]
  6. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=ol-27-18-1592 .
    [CrossRef]
  7. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11(10), 1243–1251 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-10-1243 .
    [CrossRef] [PubMed]
  8. A. Fuerbach, P. Steinvurzel, J. Bolger, and B. Eggleton, “Nonlinear pulse propagation at zero dispersion wavelength in anti-resonant photonic crystal fibers,” Opt. Express 13(8), 2977–2987 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-8-2977 .
    [CrossRef] [PubMed]
  9. A. Isomäki and O. G. Okhotnikov, “Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber,” Opt. Express 14(20), 9238–9243 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9238 .
    [CrossRef] [PubMed]
  10. T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-20-2589 .
    [CrossRef] [PubMed]
  11. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12(24), 5857–5871 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-24-5857 .
    [CrossRef] [PubMed]
  12. A. F. Oskooi, J. D. Joannopoulos, and S. G. Johnson, “Zero-group-velocity modes in chalcogenide holey photonic-crystal fibers,” Opt. Express 17(12), 10082–10090 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-12-10082 .
    [CrossRef] [PubMed]
  13. L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96(4), 041105 (2010).
    [CrossRef]
  14. P. Mehta, N. Healy, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Nonlinear transmission properties of hydrogenated amorphous silicon core optical fibers,” Opt. Express 18(16), 16826–16831 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-16-16826 .
    [CrossRef] [PubMed]
  15. D. J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett. 91(16), 161112 (2007).
    [CrossRef]
  16. H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–601 (1980).
    [CrossRef]
  17. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).
  18. J. M. Stone, G. J. Pearce, F. Luan, T. A. Birks, J. C. Knight, A. K. George, and D. M. Bird, “An improved photonic bandgap fiber based on an array of rings,” Opt. Express 14(13), 6291–6296 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-6291 .
    [CrossRef] [PubMed]
  19. R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Active optical fibres with integrated semiconductor junctions,” in preparation.
  20. B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol. 27(11), 1617–1630 (2009),
 http://www.opticsinfobase.org/abstract.cfm?URI=JLT-27-11-1617 .
    [CrossRef]
  21. C.-P. Yu and J. H. Liou, “Selectively liquid-filled photonic crystal fibers for optical devices,” Opt. Express 17(11), 8729–8734 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-11-8729 .
    [CrossRef] [PubMed]

2010 (2)

2009 (4)

2007 (1)

D. J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett. 91(16), 161112 (2007).
[CrossRef]

2006 (2)

2005 (1)

2004 (2)

2003 (3)

2002 (1)

1999 (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

1996 (1)

1980 (1)

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–601 (1980).
[CrossRef]

Abeeluck, A. K.

Alkeskjold, T.

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Anawati, A.

Atkin, D. M.

Badding, J. V.

P. Mehta, N. Healy, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Nonlinear transmission properties of hydrogenated amorphous silicon core optical fibers,” Opt. Express 18(16), 16826–16831 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-16-16826 .
[CrossRef] [PubMed]

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96(4), 041105 (2010).
[CrossRef]

D. J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett. 91(16), 161112 (2007).
[CrossRef]

R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Active optical fibres with integrated semiconductor junctions,” in preparation.

Baril, N. F.

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96(4), 041105 (2010).
[CrossRef]

P. Mehta, N. Healy, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Nonlinear transmission properties of hydrogenated amorphous silicon core optical fibers,” Opt. Express 18(16), 16826–16831 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-16-16826 .
[CrossRef] [PubMed]

D. J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett. 91(16), 161112 (2007).
[CrossRef]

Bird, D. M.

Birks, T. A.

Bjarklev, A.

Bolger, J.

Bouwmans, G.

Broeng, J.

Calkins, J.

D. J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett. 91(16), 161112 (2007).
[CrossRef]

Carlsen, A.

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

de Sterke, C. M.

Dudley, J. M.

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3(2), 85–90 (2009).
[CrossRef]

Dunn, S. C.

Eggleton, B.

Eggleton, B. J.

Folkenberg, J. R.

Fuerbach, A.

George, A. K.

Gopalan, V.

D. J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett. 91(16), 161112 (2007).
[CrossRef]

R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Active optical fibres with integrated semiconductor junctions,” in preparation.

Hansen, T. P.

He, R. R.

R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Active optical fibres with integrated semiconductor junctions,” in preparation.

Headley, C.

Healy, N.

P. Mehta, N. Healy, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Nonlinear transmission properties of hydrogenated amorphous silicon core optical fibers,” Opt. Express 18(16), 16826–16831 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-16-16826 .
[CrossRef] [PubMed]

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96(4), 041105 (2010).
[CrossRef]

R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Active optical fibres with integrated semiconductor junctions,” in preparation.

Hermann, D.

Hoiby, P. E.

Isomäki, A.

Jensen, J. B.

Joannopoulos, J. D.

Johnson, S. G.

Kang, H.

D. J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett. 91(16), 161112 (2007).
[CrossRef]

Knight, J.

Knight, J. C.

Krishnamurthi, M.

R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Active optical fibres with integrated semiconductor junctions,” in preparation.

Kuhlmey, B. T.

Lægsgaard, J.

Lagonigro, L.

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96(4), 041105 (2010).
[CrossRef]

Larsen, T.

Li, H. H.

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–601 (1980).
[CrossRef]

Li, J.

Liou, J. H.

Litchinitser, N. M.

Luan, F.

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

McPhedran, R. C.

Mehta, P.

Nielsen, K.

Nielsen, L. B.

Noordegraaf, D.

Okhotnikov, O. G.

Oskooi, A. F.

Peacock, A. C.

P. Mehta, N. Healy, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Nonlinear transmission properties of hydrogenated amorphous silicon core optical fibers,” Opt. Express 18(16), 16826–16831 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-16-16826 .
[CrossRef] [PubMed]

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96(4), 041105 (2010).
[CrossRef]

R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Active optical fibres with integrated semiconductor junctions,” in preparation.

Pearce, G. J.

Pedersen, L. H.

Percival, R.

Ramirez, M. O.

D. J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett. 91(16), 161112 (2007).
[CrossRef]

Riishede, J.

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Russell, P.

Russell, P. St. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996), http://www.opticsinfobase.org/abstract.cfm?URI=ol-21-19-1547 .
[CrossRef] [PubMed]

Sazio, P. J. A.

P. Mehta, N. Healy, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Nonlinear transmission properties of hydrogenated amorphous silicon core optical fibers,” Opt. Express 18(16), 16826–16831 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-16-16826 .
[CrossRef] [PubMed]

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96(4), 041105 (2010).
[CrossRef]

D. J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett. 91(16), 161112 (2007).
[CrossRef]

R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Active optical fibres with integrated semiconductor junctions,” in preparation.

Sparks, J. R.

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96(4), 041105 (2010).
[CrossRef]

Steinvurzel, P.

Stone, J. M.

Taylor, J. R.

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3(2), 85–90 (2009).
[CrossRef]

Usner, B.

Wadsworth, W.

White, T. P.

Won, D. J.

D. J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett. 91(16), 161112 (2007).
[CrossRef]

Wu, D. K. C.

Wu, S. T.

Yu, C.-P.

Appl. Phys. Lett. (2)

D. J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett. 91(16), 161112 (2007).
[CrossRef]

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96(4), 041105 (2010).
[CrossRef]

J. Lightwave Technol. (1)

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–601 (1980).
[CrossRef]

Nat. Photonics (1)

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3(2), 85–90 (2009).
[CrossRef]

Opt. Express (10)

W. Wadsworth, R. Percival, G. Bouwmans, J. Knight, and P. Russell, “High power air-clad photonic crystal fibre laser,” Opt. Express 11(1), 48–53 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-1-48 .
[CrossRef] [PubMed]

N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11(10), 1243–1251 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-10-1243 .
[CrossRef] [PubMed]

T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-20-2589 .
[CrossRef] [PubMed]

T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12(24), 5857–5871 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-24-5857 .
[CrossRef] [PubMed]

A. Fuerbach, P. Steinvurzel, J. Bolger, and B. Eggleton, “Nonlinear pulse propagation at zero dispersion wavelength in anti-resonant photonic crystal fibers,” Opt. Express 13(8), 2977–2987 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-8-2977 .
[CrossRef] [PubMed]

J. M. Stone, G. J. Pearce, F. Luan, T. A. Birks, J. C. Knight, A. K. George, and D. M. Bird, “An improved photonic bandgap fiber based on an array of rings,” Opt. Express 14(13), 6291–6296 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-6291 .
[CrossRef] [PubMed]

A. Isomäki and O. G. Okhotnikov, “Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber,” Opt. Express 14(20), 9238–9243 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9238 .
[CrossRef] [PubMed]

C.-P. Yu and J. H. Liou, “Selectively liquid-filled photonic crystal fibers for optical devices,” Opt. Express 17(11), 8729–8734 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-11-8729 .
[CrossRef] [PubMed]

A. F. Oskooi, J. D. Joannopoulos, and S. G. Johnson, “Zero-group-velocity modes in chalcogenide holey photonic-crystal fibers,” Opt. Express 17(12), 10082–10090 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-12-10082 .
[CrossRef] [PubMed]

P. Mehta, N. Healy, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Nonlinear transmission properties of hydrogenated amorphous silicon core optical fibers,” Opt. Express 18(16), 16826–16831 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-16-16826 .
[CrossRef] [PubMed]

Opt. Lett. (3)

Science (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).

R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Active optical fibres with integrated semiconductor junctions,” in preparation.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) PCF template used for the design and fabrication of the Si-ARROW fibers, scale bar 5 µm. (b) Transmission spectrum (solid red) and GVD (solid green) of the Si-ARROW fiber, as predicted by the modal simulations, together with the resonance (dashed blue) and antiresonances (dashed black) predicted by Eq. (1). (c) The simulated intensity profile of the mode at 1570 nm, scale bar 2 µm.

Fig. 2
Fig. 2

(a) The polished endface of the Si-ARROW fiber, scale bar 10 µm. (b) Measured transmission spectrum (solid black) compared to the simulations (dashed red). Insets are the output images at an antiresonant condition (core guided) and at a resonant condition. (c) Measured near field intensity profile of the fundamental mode at 1570 nm, scale bar 4 µm.

Fig. 3
Fig. 3

(a) Measured (solid black) and simulated (dashed red) transmission spectra with the simulated GVD curve (green solid) of the hybrid Si-ARROW fiber. (b) The simulated intensity profile of the mode at 1310 nm. (c) SEM image of the fabricated fiber. (d) The measured near field intensity profile of the fundamental mode image at 1310 nm. (e) Micrograph showing a guided mode at 620 nm where the photon energy is greater than the bandgap energy of a-Si:H. All scale bars are 4 µm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ m 2 d ( n i n c 2 n b g 2 ) m + σ ,

Metrics